xref: /linux-6.15/include/linux/memcontrol.h (revision 9376ff9b)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mm.h>
30 #include <linux/vmstat.h>
31 #include <linux/writeback.h>
32 #include <linux/page-flags.h>
33 
34 struct mem_cgroup;
35 struct page;
36 struct mm_struct;
37 struct kmem_cache;
38 
39 /* Cgroup-specific page state, on top of universal node page state */
40 enum memcg_stat_item {
41 	MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
42 	MEMCG_RSS,
43 	MEMCG_RSS_HUGE,
44 	MEMCG_SWAP,
45 	MEMCG_SOCK,
46 	/* XXX: why are these zone and not node counters? */
47 	MEMCG_KERNEL_STACK_KB,
48 	MEMCG_NR_STAT,
49 };
50 
51 enum memcg_memory_event {
52 	MEMCG_LOW,
53 	MEMCG_HIGH,
54 	MEMCG_MAX,
55 	MEMCG_OOM,
56 	MEMCG_NR_MEMORY_EVENTS,
57 };
58 
59 struct mem_cgroup_reclaim_cookie {
60 	pg_data_t *pgdat;
61 	int priority;
62 	unsigned int generation;
63 };
64 
65 #ifdef CONFIG_MEMCG
66 
67 #define MEM_CGROUP_ID_SHIFT	16
68 #define MEM_CGROUP_ID_MAX	USHRT_MAX
69 
70 struct mem_cgroup_id {
71 	int id;
72 	atomic_t ref;
73 };
74 
75 /*
76  * Per memcg event counter is incremented at every pagein/pageout. With THP,
77  * it will be incremated by the number of pages. This counter is used for
78  * for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  */
81 enum mem_cgroup_events_target {
82 	MEM_CGROUP_TARGET_THRESH,
83 	MEM_CGROUP_TARGET_SOFTLIMIT,
84 	MEM_CGROUP_TARGET_NUMAINFO,
85 	MEM_CGROUP_NTARGETS,
86 };
87 
88 struct mem_cgroup_stat_cpu {
89 	long count[MEMCG_NR_STAT];
90 	unsigned long events[NR_VM_EVENT_ITEMS];
91 	unsigned long nr_page_events;
92 	unsigned long targets[MEM_CGROUP_NTARGETS];
93 };
94 
95 struct mem_cgroup_reclaim_iter {
96 	struct mem_cgroup *position;
97 	/* scan generation, increased every round-trip */
98 	unsigned int generation;
99 };
100 
101 struct lruvec_stat {
102 	long count[NR_VM_NODE_STAT_ITEMS];
103 };
104 
105 /*
106  * per-zone information in memory controller.
107  */
108 struct mem_cgroup_per_node {
109 	struct lruvec		lruvec;
110 
111 	struct lruvec_stat __percpu *lruvec_stat_cpu;
112 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
113 
114 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 
116 	struct mem_cgroup_reclaim_iter	iter[DEF_PRIORITY + 1];
117 
118 	struct rb_node		tree_node;	/* RB tree node */
119 	unsigned long		usage_in_excess;/* Set to the value by which */
120 						/* the soft limit is exceeded*/
121 	bool			on_tree;
122 	bool			congested;	/* memcg has many dirty pages */
123 						/* backed by a congested BDI */
124 
125 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
126 						/* use container_of	   */
127 };
128 
129 struct mem_cgroup_threshold {
130 	struct eventfd_ctx *eventfd;
131 	unsigned long threshold;
132 };
133 
134 /* For threshold */
135 struct mem_cgroup_threshold_ary {
136 	/* An array index points to threshold just below or equal to usage. */
137 	int current_threshold;
138 	/* Size of entries[] */
139 	unsigned int size;
140 	/* Array of thresholds */
141 	struct mem_cgroup_threshold entries[0];
142 };
143 
144 struct mem_cgroup_thresholds {
145 	/* Primary thresholds array */
146 	struct mem_cgroup_threshold_ary *primary;
147 	/*
148 	 * Spare threshold array.
149 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
150 	 * It must be able to store at least primary->size - 1 entries.
151 	 */
152 	struct mem_cgroup_threshold_ary *spare;
153 };
154 
155 enum memcg_kmem_state {
156 	KMEM_NONE,
157 	KMEM_ALLOCATED,
158 	KMEM_ONLINE,
159 };
160 
161 /*
162  * The memory controller data structure. The memory controller controls both
163  * page cache and RSS per cgroup. We would eventually like to provide
164  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
165  * to help the administrator determine what knobs to tune.
166  */
167 struct mem_cgroup {
168 	struct cgroup_subsys_state css;
169 
170 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
171 	struct mem_cgroup_id id;
172 
173 	/* Accounted resources */
174 	struct page_counter memory;
175 	struct page_counter swap;
176 
177 	/* Legacy consumer-oriented counters */
178 	struct page_counter memsw;
179 	struct page_counter kmem;
180 	struct page_counter tcpmem;
181 
182 	/* Normal memory consumption range */
183 	unsigned long low;
184 	unsigned long high;
185 
186 	/* Range enforcement for interrupt charges */
187 	struct work_struct high_work;
188 
189 	unsigned long soft_limit;
190 
191 	/* vmpressure notifications */
192 	struct vmpressure vmpressure;
193 
194 	/*
195 	 * Should the accounting and control be hierarchical, per subtree?
196 	 */
197 	bool use_hierarchy;
198 
199 	/* protected by memcg_oom_lock */
200 	bool		oom_lock;
201 	int		under_oom;
202 
203 	int	swappiness;
204 	/* OOM-Killer disable */
205 	int		oom_kill_disable;
206 
207 	/* memory.events */
208 	atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
209 	struct cgroup_file events_file;
210 
211 	/* protect arrays of thresholds */
212 	struct mutex thresholds_lock;
213 
214 	/* thresholds for memory usage. RCU-protected */
215 	struct mem_cgroup_thresholds thresholds;
216 
217 	/* thresholds for mem+swap usage. RCU-protected */
218 	struct mem_cgroup_thresholds memsw_thresholds;
219 
220 	/* For oom notifier event fd */
221 	struct list_head oom_notify;
222 
223 	/*
224 	 * Should we move charges of a task when a task is moved into this
225 	 * mem_cgroup ? And what type of charges should we move ?
226 	 */
227 	unsigned long move_charge_at_immigrate;
228 	/*
229 	 * set > 0 if pages under this cgroup are moving to other cgroup.
230 	 */
231 	atomic_t		moving_account;
232 	/* taken only while moving_account > 0 */
233 	spinlock_t		move_lock;
234 	struct task_struct	*move_lock_task;
235 	unsigned long		move_lock_flags;
236 
237 	/* memory.stat */
238 	struct mem_cgroup_stat_cpu __percpu *stat_cpu;
239 	atomic_long_t		stat[MEMCG_NR_STAT];
240 	atomic_long_t		events[NR_VM_EVENT_ITEMS];
241 
242 	unsigned long		socket_pressure;
243 
244 	/* Legacy tcp memory accounting */
245 	bool			tcpmem_active;
246 	int			tcpmem_pressure;
247 
248 #ifndef CONFIG_SLOB
249         /* Index in the kmem_cache->memcg_params.memcg_caches array */
250 	int kmemcg_id;
251 	enum memcg_kmem_state kmem_state;
252 	struct list_head kmem_caches;
253 #endif
254 
255 	int last_scanned_node;
256 #if MAX_NUMNODES > 1
257 	nodemask_t	scan_nodes;
258 	atomic_t	numainfo_events;
259 	atomic_t	numainfo_updating;
260 #endif
261 
262 #ifdef CONFIG_CGROUP_WRITEBACK
263 	struct list_head cgwb_list;
264 	struct wb_domain cgwb_domain;
265 #endif
266 
267 	/* List of events which userspace want to receive */
268 	struct list_head event_list;
269 	spinlock_t event_list_lock;
270 
271 	struct mem_cgroup_per_node *nodeinfo[0];
272 	/* WARNING: nodeinfo must be the last member here */
273 };
274 
275 /*
276  * size of first charge trial. "32" comes from vmscan.c's magic value.
277  * TODO: maybe necessary to use big numbers in big irons.
278  */
279 #define MEMCG_CHARGE_BATCH 32U
280 
281 extern struct mem_cgroup *root_mem_cgroup;
282 
283 static inline bool mem_cgroup_disabled(void)
284 {
285 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
286 }
287 
288 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
289 
290 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
291 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
292 			  bool compound);
293 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
294 			      bool lrucare, bool compound);
295 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
296 		bool compound);
297 void mem_cgroup_uncharge(struct page *page);
298 void mem_cgroup_uncharge_list(struct list_head *page_list);
299 
300 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
301 
302 static struct mem_cgroup_per_node *
303 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
304 {
305 	return memcg->nodeinfo[nid];
306 }
307 
308 /**
309  * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
310  * @node: node of the wanted lruvec
311  * @memcg: memcg of the wanted lruvec
312  *
313  * Returns the lru list vector holding pages for a given @node or a given
314  * @memcg and @zone. This can be the node lruvec, if the memory controller
315  * is disabled.
316  */
317 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
318 				struct mem_cgroup *memcg)
319 {
320 	struct mem_cgroup_per_node *mz;
321 	struct lruvec *lruvec;
322 
323 	if (mem_cgroup_disabled()) {
324 		lruvec = node_lruvec(pgdat);
325 		goto out;
326 	}
327 
328 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
329 	lruvec = &mz->lruvec;
330 out:
331 	/*
332 	 * Since a node can be onlined after the mem_cgroup was created,
333 	 * we have to be prepared to initialize lruvec->pgdat here;
334 	 * and if offlined then reonlined, we need to reinitialize it.
335 	 */
336 	if (unlikely(lruvec->pgdat != pgdat))
337 		lruvec->pgdat = pgdat;
338 	return lruvec;
339 }
340 
341 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
342 
343 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
344 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
345 
346 static inline
347 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
348 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
349 }
350 
351 #define mem_cgroup_from_counter(counter, member)	\
352 	container_of(counter, struct mem_cgroup, member)
353 
354 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
355 				   struct mem_cgroup *,
356 				   struct mem_cgroup_reclaim_cookie *);
357 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
358 int mem_cgroup_scan_tasks(struct mem_cgroup *,
359 			  int (*)(struct task_struct *, void *), void *);
360 
361 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
362 {
363 	if (mem_cgroup_disabled())
364 		return 0;
365 
366 	return memcg->id.id;
367 }
368 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
369 
370 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
371 {
372 	struct mem_cgroup_per_node *mz;
373 
374 	if (mem_cgroup_disabled())
375 		return NULL;
376 
377 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
378 	return mz->memcg;
379 }
380 
381 /**
382  * parent_mem_cgroup - find the accounting parent of a memcg
383  * @memcg: memcg whose parent to find
384  *
385  * Returns the parent memcg, or NULL if this is the root or the memory
386  * controller is in legacy no-hierarchy mode.
387  */
388 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
389 {
390 	if (!memcg->memory.parent)
391 		return NULL;
392 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
393 }
394 
395 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
396 			      struct mem_cgroup *root)
397 {
398 	if (root == memcg)
399 		return true;
400 	if (!root->use_hierarchy)
401 		return false;
402 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
403 }
404 
405 static inline bool mm_match_cgroup(struct mm_struct *mm,
406 				   struct mem_cgroup *memcg)
407 {
408 	struct mem_cgroup *task_memcg;
409 	bool match = false;
410 
411 	rcu_read_lock();
412 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
413 	if (task_memcg)
414 		match = mem_cgroup_is_descendant(task_memcg, memcg);
415 	rcu_read_unlock();
416 	return match;
417 }
418 
419 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
420 ino_t page_cgroup_ino(struct page *page);
421 
422 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
423 {
424 	if (mem_cgroup_disabled())
425 		return true;
426 	return !!(memcg->css.flags & CSS_ONLINE);
427 }
428 
429 /*
430  * For memory reclaim.
431  */
432 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
433 
434 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
435 		int zid, int nr_pages);
436 
437 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
438 					   int nid, unsigned int lru_mask);
439 
440 static inline
441 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
442 {
443 	struct mem_cgroup_per_node *mz;
444 	unsigned long nr_pages = 0;
445 	int zid;
446 
447 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
448 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
449 		nr_pages += mz->lru_zone_size[zid][lru];
450 	return nr_pages;
451 }
452 
453 static inline
454 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
455 		enum lru_list lru, int zone_idx)
456 {
457 	struct mem_cgroup_per_node *mz;
458 
459 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
460 	return mz->lru_zone_size[zone_idx][lru];
461 }
462 
463 void mem_cgroup_handle_over_high(void);
464 
465 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg);
466 
467 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
468 				struct task_struct *p);
469 
470 static inline void mem_cgroup_oom_enable(void)
471 {
472 	WARN_ON(current->memcg_may_oom);
473 	current->memcg_may_oom = 1;
474 }
475 
476 static inline void mem_cgroup_oom_disable(void)
477 {
478 	WARN_ON(!current->memcg_may_oom);
479 	current->memcg_may_oom = 0;
480 }
481 
482 static inline bool task_in_memcg_oom(struct task_struct *p)
483 {
484 	return p->memcg_in_oom;
485 }
486 
487 bool mem_cgroup_oom_synchronize(bool wait);
488 
489 #ifdef CONFIG_MEMCG_SWAP
490 extern int do_swap_account;
491 #endif
492 
493 struct mem_cgroup *lock_page_memcg(struct page *page);
494 void __unlock_page_memcg(struct mem_cgroup *memcg);
495 void unlock_page_memcg(struct page *page);
496 
497 /* idx can be of type enum memcg_stat_item or node_stat_item */
498 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
499 					     int idx)
500 {
501 	long x = atomic_long_read(&memcg->stat[idx]);
502 #ifdef CONFIG_SMP
503 	if (x < 0)
504 		x = 0;
505 #endif
506 	return x;
507 }
508 
509 /* idx can be of type enum memcg_stat_item or node_stat_item */
510 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
511 				     int idx, int val)
512 {
513 	long x;
514 
515 	if (mem_cgroup_disabled())
516 		return;
517 
518 	x = val + __this_cpu_read(memcg->stat_cpu->count[idx]);
519 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
520 		atomic_long_add(x, &memcg->stat[idx]);
521 		x = 0;
522 	}
523 	__this_cpu_write(memcg->stat_cpu->count[idx], x);
524 }
525 
526 /* idx can be of type enum memcg_stat_item or node_stat_item */
527 static inline void mod_memcg_state(struct mem_cgroup *memcg,
528 				   int idx, int val)
529 {
530 	unsigned long flags;
531 
532 	local_irq_save(flags);
533 	__mod_memcg_state(memcg, idx, val);
534 	local_irq_restore(flags);
535 }
536 
537 /**
538  * mod_memcg_page_state - update page state statistics
539  * @page: the page
540  * @idx: page state item to account
541  * @val: number of pages (positive or negative)
542  *
543  * The @page must be locked or the caller must use lock_page_memcg()
544  * to prevent double accounting when the page is concurrently being
545  * moved to another memcg:
546  *
547  *   lock_page(page) or lock_page_memcg(page)
548  *   if (TestClearPageState(page))
549  *     mod_memcg_page_state(page, state, -1);
550  *   unlock_page(page) or unlock_page_memcg(page)
551  *
552  * Kernel pages are an exception to this, since they'll never move.
553  */
554 static inline void __mod_memcg_page_state(struct page *page,
555 					  int idx, int val)
556 {
557 	if (page->mem_cgroup)
558 		__mod_memcg_state(page->mem_cgroup, idx, val);
559 }
560 
561 static inline void mod_memcg_page_state(struct page *page,
562 					int idx, int val)
563 {
564 	if (page->mem_cgroup)
565 		mod_memcg_state(page->mem_cgroup, idx, val);
566 }
567 
568 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
569 					      enum node_stat_item idx)
570 {
571 	struct mem_cgroup_per_node *pn;
572 	long x;
573 
574 	if (mem_cgroup_disabled())
575 		return node_page_state(lruvec_pgdat(lruvec), idx);
576 
577 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
578 	x = atomic_long_read(&pn->lruvec_stat[idx]);
579 #ifdef CONFIG_SMP
580 	if (x < 0)
581 		x = 0;
582 #endif
583 	return x;
584 }
585 
586 static inline void __mod_lruvec_state(struct lruvec *lruvec,
587 				      enum node_stat_item idx, int val)
588 {
589 	struct mem_cgroup_per_node *pn;
590 	long x;
591 
592 	/* Update node */
593 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
594 
595 	if (mem_cgroup_disabled())
596 		return;
597 
598 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
599 
600 	/* Update memcg */
601 	__mod_memcg_state(pn->memcg, idx, val);
602 
603 	/* Update lruvec */
604 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
605 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
606 		atomic_long_add(x, &pn->lruvec_stat[idx]);
607 		x = 0;
608 	}
609 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
610 }
611 
612 static inline void mod_lruvec_state(struct lruvec *lruvec,
613 				    enum node_stat_item idx, int val)
614 {
615 	unsigned long flags;
616 
617 	local_irq_save(flags);
618 	__mod_lruvec_state(lruvec, idx, val);
619 	local_irq_restore(flags);
620 }
621 
622 static inline void __mod_lruvec_page_state(struct page *page,
623 					   enum node_stat_item idx, int val)
624 {
625 	pg_data_t *pgdat = page_pgdat(page);
626 	struct lruvec *lruvec;
627 
628 	/* Untracked pages have no memcg, no lruvec. Update only the node */
629 	if (!page->mem_cgroup) {
630 		__mod_node_page_state(pgdat, idx, val);
631 		return;
632 	}
633 
634 	lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
635 	__mod_lruvec_state(lruvec, idx, val);
636 }
637 
638 static inline void mod_lruvec_page_state(struct page *page,
639 					 enum node_stat_item idx, int val)
640 {
641 	unsigned long flags;
642 
643 	local_irq_save(flags);
644 	__mod_lruvec_page_state(page, idx, val);
645 	local_irq_restore(flags);
646 }
647 
648 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
649 						gfp_t gfp_mask,
650 						unsigned long *total_scanned);
651 
652 static inline void __count_memcg_events(struct mem_cgroup *memcg,
653 					enum vm_event_item idx,
654 					unsigned long count)
655 {
656 	unsigned long x;
657 
658 	if (mem_cgroup_disabled())
659 		return;
660 
661 	x = count + __this_cpu_read(memcg->stat_cpu->events[idx]);
662 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
663 		atomic_long_add(x, &memcg->events[idx]);
664 		x = 0;
665 	}
666 	__this_cpu_write(memcg->stat_cpu->events[idx], x);
667 }
668 
669 static inline void count_memcg_events(struct mem_cgroup *memcg,
670 				      enum vm_event_item idx,
671 				      unsigned long count)
672 {
673 	unsigned long flags;
674 
675 	local_irq_save(flags);
676 	__count_memcg_events(memcg, idx, count);
677 	local_irq_restore(flags);
678 }
679 
680 static inline void count_memcg_page_event(struct page *page,
681 					  enum vm_event_item idx)
682 {
683 	if (page->mem_cgroup)
684 		count_memcg_events(page->mem_cgroup, idx, 1);
685 }
686 
687 static inline void count_memcg_event_mm(struct mm_struct *mm,
688 					enum vm_event_item idx)
689 {
690 	struct mem_cgroup *memcg;
691 
692 	if (mem_cgroup_disabled())
693 		return;
694 
695 	rcu_read_lock();
696 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
697 	if (likely(memcg)) {
698 		count_memcg_events(memcg, idx, 1);
699 		if (idx == OOM_KILL)
700 			cgroup_file_notify(&memcg->events_file);
701 	}
702 	rcu_read_unlock();
703 }
704 
705 static inline void memcg_memory_event(struct mem_cgroup *memcg,
706 				      enum memcg_memory_event event)
707 {
708 	atomic_long_inc(&memcg->memory_events[event]);
709 	cgroup_file_notify(&memcg->events_file);
710 }
711 
712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
713 void mem_cgroup_split_huge_fixup(struct page *head);
714 #endif
715 
716 #else /* CONFIG_MEMCG */
717 
718 #define MEM_CGROUP_ID_SHIFT	0
719 #define MEM_CGROUP_ID_MAX	0
720 
721 struct mem_cgroup;
722 
723 static inline bool mem_cgroup_disabled(void)
724 {
725 	return true;
726 }
727 
728 static inline void memcg_memory_event(struct mem_cgroup *memcg,
729 				      enum memcg_memory_event event)
730 {
731 }
732 
733 static inline bool mem_cgroup_low(struct mem_cgroup *root,
734 				  struct mem_cgroup *memcg)
735 {
736 	return false;
737 }
738 
739 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
740 					gfp_t gfp_mask,
741 					struct mem_cgroup **memcgp,
742 					bool compound)
743 {
744 	*memcgp = NULL;
745 	return 0;
746 }
747 
748 static inline void mem_cgroup_commit_charge(struct page *page,
749 					    struct mem_cgroup *memcg,
750 					    bool lrucare, bool compound)
751 {
752 }
753 
754 static inline void mem_cgroup_cancel_charge(struct page *page,
755 					    struct mem_cgroup *memcg,
756 					    bool compound)
757 {
758 }
759 
760 static inline void mem_cgroup_uncharge(struct page *page)
761 {
762 }
763 
764 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
765 {
766 }
767 
768 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
769 {
770 }
771 
772 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
773 				struct mem_cgroup *memcg)
774 {
775 	return node_lruvec(pgdat);
776 }
777 
778 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
779 						    struct pglist_data *pgdat)
780 {
781 	return &pgdat->lruvec;
782 }
783 
784 static inline bool mm_match_cgroup(struct mm_struct *mm,
785 		struct mem_cgroup *memcg)
786 {
787 	return true;
788 }
789 
790 static inline bool task_in_mem_cgroup(struct task_struct *task,
791 				      const struct mem_cgroup *memcg)
792 {
793 	return true;
794 }
795 
796 static inline struct mem_cgroup *
797 mem_cgroup_iter(struct mem_cgroup *root,
798 		struct mem_cgroup *prev,
799 		struct mem_cgroup_reclaim_cookie *reclaim)
800 {
801 	return NULL;
802 }
803 
804 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
805 					 struct mem_cgroup *prev)
806 {
807 }
808 
809 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
810 		int (*fn)(struct task_struct *, void *), void *arg)
811 {
812 	return 0;
813 }
814 
815 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
816 {
817 	return 0;
818 }
819 
820 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
821 {
822 	WARN_ON_ONCE(id);
823 	/* XXX: This should always return root_mem_cgroup */
824 	return NULL;
825 }
826 
827 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
828 {
829 	return NULL;
830 }
831 
832 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
833 {
834 	return true;
835 }
836 
837 static inline unsigned long
838 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
839 {
840 	return 0;
841 }
842 static inline
843 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
844 		enum lru_list lru, int zone_idx)
845 {
846 	return 0;
847 }
848 
849 static inline unsigned long
850 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
851 			     int nid, unsigned int lru_mask)
852 {
853 	return 0;
854 }
855 
856 static inline unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
857 {
858 	return 0;
859 }
860 
861 static inline void
862 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
863 {
864 }
865 
866 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
867 {
868 	return NULL;
869 }
870 
871 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
872 {
873 }
874 
875 static inline void unlock_page_memcg(struct page *page)
876 {
877 }
878 
879 static inline void mem_cgroup_handle_over_high(void)
880 {
881 }
882 
883 static inline void mem_cgroup_oom_enable(void)
884 {
885 }
886 
887 static inline void mem_cgroup_oom_disable(void)
888 {
889 }
890 
891 static inline bool task_in_memcg_oom(struct task_struct *p)
892 {
893 	return false;
894 }
895 
896 static inline bool mem_cgroup_oom_synchronize(bool wait)
897 {
898 	return false;
899 }
900 
901 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
902 					     int idx)
903 {
904 	return 0;
905 }
906 
907 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
908 				     int idx,
909 				     int nr)
910 {
911 }
912 
913 static inline void mod_memcg_state(struct mem_cgroup *memcg,
914 				   int idx,
915 				   int nr)
916 {
917 }
918 
919 static inline void __mod_memcg_page_state(struct page *page,
920 					  int idx,
921 					  int nr)
922 {
923 }
924 
925 static inline void mod_memcg_page_state(struct page *page,
926 					int idx,
927 					int nr)
928 {
929 }
930 
931 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
932 					      enum node_stat_item idx)
933 {
934 	return node_page_state(lruvec_pgdat(lruvec), idx);
935 }
936 
937 static inline void __mod_lruvec_state(struct lruvec *lruvec,
938 				      enum node_stat_item idx, int val)
939 {
940 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
941 }
942 
943 static inline void mod_lruvec_state(struct lruvec *lruvec,
944 				    enum node_stat_item idx, int val)
945 {
946 	mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
947 }
948 
949 static inline void __mod_lruvec_page_state(struct page *page,
950 					   enum node_stat_item idx, int val)
951 {
952 	__mod_node_page_state(page_pgdat(page), idx, val);
953 }
954 
955 static inline void mod_lruvec_page_state(struct page *page,
956 					 enum node_stat_item idx, int val)
957 {
958 	mod_node_page_state(page_pgdat(page), idx, val);
959 }
960 
961 static inline
962 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
963 					    gfp_t gfp_mask,
964 					    unsigned long *total_scanned)
965 {
966 	return 0;
967 }
968 
969 static inline void mem_cgroup_split_huge_fixup(struct page *head)
970 {
971 }
972 
973 static inline void count_memcg_events(struct mem_cgroup *memcg,
974 				      enum vm_event_item idx,
975 				      unsigned long count)
976 {
977 }
978 
979 static inline void count_memcg_page_event(struct page *page,
980 					  int idx)
981 {
982 }
983 
984 static inline
985 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
986 {
987 }
988 #endif /* CONFIG_MEMCG */
989 
990 /* idx can be of type enum memcg_stat_item or node_stat_item */
991 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
992 				     int idx)
993 {
994 	__mod_memcg_state(memcg, idx, 1);
995 }
996 
997 /* idx can be of type enum memcg_stat_item or node_stat_item */
998 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
999 				     int idx)
1000 {
1001 	__mod_memcg_state(memcg, idx, -1);
1002 }
1003 
1004 /* idx can be of type enum memcg_stat_item or node_stat_item */
1005 static inline void __inc_memcg_page_state(struct page *page,
1006 					  int idx)
1007 {
1008 	__mod_memcg_page_state(page, idx, 1);
1009 }
1010 
1011 /* idx can be of type enum memcg_stat_item or node_stat_item */
1012 static inline void __dec_memcg_page_state(struct page *page,
1013 					  int idx)
1014 {
1015 	__mod_memcg_page_state(page, idx, -1);
1016 }
1017 
1018 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1019 				      enum node_stat_item idx)
1020 {
1021 	__mod_lruvec_state(lruvec, idx, 1);
1022 }
1023 
1024 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1025 				      enum node_stat_item idx)
1026 {
1027 	__mod_lruvec_state(lruvec, idx, -1);
1028 }
1029 
1030 static inline void __inc_lruvec_page_state(struct page *page,
1031 					   enum node_stat_item idx)
1032 {
1033 	__mod_lruvec_page_state(page, idx, 1);
1034 }
1035 
1036 static inline void __dec_lruvec_page_state(struct page *page,
1037 					   enum node_stat_item idx)
1038 {
1039 	__mod_lruvec_page_state(page, idx, -1);
1040 }
1041 
1042 /* idx can be of type enum memcg_stat_item or node_stat_item */
1043 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1044 				   int idx)
1045 {
1046 	mod_memcg_state(memcg, idx, 1);
1047 }
1048 
1049 /* idx can be of type enum memcg_stat_item or node_stat_item */
1050 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1051 				   int idx)
1052 {
1053 	mod_memcg_state(memcg, idx, -1);
1054 }
1055 
1056 /* idx can be of type enum memcg_stat_item or node_stat_item */
1057 static inline void inc_memcg_page_state(struct page *page,
1058 					int idx)
1059 {
1060 	mod_memcg_page_state(page, idx, 1);
1061 }
1062 
1063 /* idx can be of type enum memcg_stat_item or node_stat_item */
1064 static inline void dec_memcg_page_state(struct page *page,
1065 					int idx)
1066 {
1067 	mod_memcg_page_state(page, idx, -1);
1068 }
1069 
1070 static inline void inc_lruvec_state(struct lruvec *lruvec,
1071 				    enum node_stat_item idx)
1072 {
1073 	mod_lruvec_state(lruvec, idx, 1);
1074 }
1075 
1076 static inline void dec_lruvec_state(struct lruvec *lruvec,
1077 				    enum node_stat_item idx)
1078 {
1079 	mod_lruvec_state(lruvec, idx, -1);
1080 }
1081 
1082 static inline void inc_lruvec_page_state(struct page *page,
1083 					 enum node_stat_item idx)
1084 {
1085 	mod_lruvec_page_state(page, idx, 1);
1086 }
1087 
1088 static inline void dec_lruvec_page_state(struct page *page,
1089 					 enum node_stat_item idx)
1090 {
1091 	mod_lruvec_page_state(page, idx, -1);
1092 }
1093 
1094 #ifdef CONFIG_CGROUP_WRITEBACK
1095 
1096 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
1097 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1098 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1099 			 unsigned long *pheadroom, unsigned long *pdirty,
1100 			 unsigned long *pwriteback);
1101 
1102 #else	/* CONFIG_CGROUP_WRITEBACK */
1103 
1104 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1105 {
1106 	return NULL;
1107 }
1108 
1109 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1110 				       unsigned long *pfilepages,
1111 				       unsigned long *pheadroom,
1112 				       unsigned long *pdirty,
1113 				       unsigned long *pwriteback)
1114 {
1115 }
1116 
1117 #endif	/* CONFIG_CGROUP_WRITEBACK */
1118 
1119 struct sock;
1120 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1121 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1122 #ifdef CONFIG_MEMCG
1123 extern struct static_key_false memcg_sockets_enabled_key;
1124 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1125 void mem_cgroup_sk_alloc(struct sock *sk);
1126 void mem_cgroup_sk_free(struct sock *sk);
1127 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1128 {
1129 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1130 		return true;
1131 	do {
1132 		if (time_before(jiffies, memcg->socket_pressure))
1133 			return true;
1134 	} while ((memcg = parent_mem_cgroup(memcg)));
1135 	return false;
1136 }
1137 #else
1138 #define mem_cgroup_sockets_enabled 0
1139 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1140 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1141 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1142 {
1143 	return false;
1144 }
1145 #endif
1146 
1147 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1148 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1149 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1150 			    struct mem_cgroup *memcg);
1151 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1152 void memcg_kmem_uncharge(struct page *page, int order);
1153 
1154 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1155 extern struct static_key_false memcg_kmem_enabled_key;
1156 extern struct workqueue_struct *memcg_kmem_cache_wq;
1157 
1158 extern int memcg_nr_cache_ids;
1159 void memcg_get_cache_ids(void);
1160 void memcg_put_cache_ids(void);
1161 
1162 /*
1163  * Helper macro to loop through all memcg-specific caches. Callers must still
1164  * check if the cache is valid (it is either valid or NULL).
1165  * the slab_mutex must be held when looping through those caches
1166  */
1167 #define for_each_memcg_cache_index(_idx)	\
1168 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1169 
1170 static inline bool memcg_kmem_enabled(void)
1171 {
1172 	return static_branch_unlikely(&memcg_kmem_enabled_key);
1173 }
1174 
1175 /*
1176  * helper for accessing a memcg's index. It will be used as an index in the
1177  * child cache array in kmem_cache, and also to derive its name. This function
1178  * will return -1 when this is not a kmem-limited memcg.
1179  */
1180 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1181 {
1182 	return memcg ? memcg->kmemcg_id : -1;
1183 }
1184 
1185 #else
1186 #define for_each_memcg_cache_index(_idx)	\
1187 	for (; NULL; )
1188 
1189 static inline bool memcg_kmem_enabled(void)
1190 {
1191 	return false;
1192 }
1193 
1194 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1195 {
1196 	return -1;
1197 }
1198 
1199 static inline void memcg_get_cache_ids(void)
1200 {
1201 }
1202 
1203 static inline void memcg_put_cache_ids(void)
1204 {
1205 }
1206 
1207 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
1208 
1209 #endif /* _LINUX_MEMCONTROL_H */
1210