xref: /linux-6.15/include/linux/memcontrol.h (revision 8fdff1dc)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 
27 struct mem_cgroup;
28 struct page_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Stats that can be updated by kernel. */
34 enum mem_cgroup_page_stat_item {
35 	MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */
36 };
37 
38 struct mem_cgroup_reclaim_cookie {
39 	struct zone *zone;
40 	int priority;
41 	unsigned int generation;
42 };
43 
44 #ifdef CONFIG_MEMCG
45 /*
46  * All "charge" functions with gfp_mask should use GFP_KERNEL or
47  * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
48  * alloc memory but reclaims memory from all available zones. So, "where I want
49  * memory from" bits of gfp_mask has no meaning. So any bits of that field is
50  * available but adding a rule is better. charge functions' gfp_mask should
51  * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
52  * codes.
53  * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
54  */
55 
56 extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm,
57 				gfp_t gfp_mask);
58 /* for swap handling */
59 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
60 		struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
61 extern void mem_cgroup_commit_charge_swapin(struct page *page,
62 					struct mem_cgroup *memcg);
63 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
64 
65 extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
66 					gfp_t gfp_mask);
67 
68 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
69 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
70 
71 /* For coalescing uncharge for reducing memcg' overhead*/
72 extern void mem_cgroup_uncharge_start(void);
73 extern void mem_cgroup_uncharge_end(void);
74 
75 extern void mem_cgroup_uncharge_page(struct page *page);
76 extern void mem_cgroup_uncharge_cache_page(struct page *page);
77 
78 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
79 				  struct mem_cgroup *memcg);
80 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg);
81 
82 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
83 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
84 extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);
85 
86 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
87 extern struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont);
88 
89 static inline
90 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
91 {
92 	struct mem_cgroup *task_memcg;
93 	bool match;
94 
95 	rcu_read_lock();
96 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
97 	match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
98 	rcu_read_unlock();
99 	return match;
100 }
101 
102 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
103 
104 extern void
105 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
106 			     struct mem_cgroup **memcgp);
107 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
108 	struct page *oldpage, struct page *newpage, bool migration_ok);
109 
110 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
111 				   struct mem_cgroup *,
112 				   struct mem_cgroup_reclaim_cookie *);
113 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
114 
115 /*
116  * For memory reclaim.
117  */
118 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
119 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec);
120 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
121 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
122 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
123 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
124 					struct task_struct *p);
125 extern void mem_cgroup_replace_page_cache(struct page *oldpage,
126 					struct page *newpage);
127 
128 #ifdef CONFIG_MEMCG_SWAP
129 extern int do_swap_account;
130 #endif
131 
132 static inline bool mem_cgroup_disabled(void)
133 {
134 	if (mem_cgroup_subsys.disabled)
135 		return true;
136 	return false;
137 }
138 
139 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
140 					 unsigned long *flags);
141 
142 extern atomic_t memcg_moving;
143 
144 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
145 					bool *locked, unsigned long *flags)
146 {
147 	if (mem_cgroup_disabled())
148 		return;
149 	rcu_read_lock();
150 	*locked = false;
151 	if (atomic_read(&memcg_moving))
152 		__mem_cgroup_begin_update_page_stat(page, locked, flags);
153 }
154 
155 void __mem_cgroup_end_update_page_stat(struct page *page,
156 				unsigned long *flags);
157 static inline void mem_cgroup_end_update_page_stat(struct page *page,
158 					bool *locked, unsigned long *flags)
159 {
160 	if (mem_cgroup_disabled())
161 		return;
162 	if (*locked)
163 		__mem_cgroup_end_update_page_stat(page, flags);
164 	rcu_read_unlock();
165 }
166 
167 void mem_cgroup_update_page_stat(struct page *page,
168 				 enum mem_cgroup_page_stat_item idx,
169 				 int val);
170 
171 static inline void mem_cgroup_inc_page_stat(struct page *page,
172 					    enum mem_cgroup_page_stat_item idx)
173 {
174 	mem_cgroup_update_page_stat(page, idx, 1);
175 }
176 
177 static inline void mem_cgroup_dec_page_stat(struct page *page,
178 					    enum mem_cgroup_page_stat_item idx)
179 {
180 	mem_cgroup_update_page_stat(page, idx, -1);
181 }
182 
183 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
184 						gfp_t gfp_mask,
185 						unsigned long *total_scanned);
186 
187 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
188 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
189 					     enum vm_event_item idx)
190 {
191 	if (mem_cgroup_disabled())
192 		return;
193 	__mem_cgroup_count_vm_event(mm, idx);
194 }
195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
196 void mem_cgroup_split_huge_fixup(struct page *head);
197 #endif
198 
199 #ifdef CONFIG_DEBUG_VM
200 bool mem_cgroup_bad_page_check(struct page *page);
201 void mem_cgroup_print_bad_page(struct page *page);
202 #endif
203 #else /* CONFIG_MEMCG */
204 struct mem_cgroup;
205 
206 static inline int mem_cgroup_newpage_charge(struct page *page,
207 					struct mm_struct *mm, gfp_t gfp_mask)
208 {
209 	return 0;
210 }
211 
212 static inline int mem_cgroup_cache_charge(struct page *page,
213 					struct mm_struct *mm, gfp_t gfp_mask)
214 {
215 	return 0;
216 }
217 
218 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
219 		struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
220 {
221 	return 0;
222 }
223 
224 static inline void mem_cgroup_commit_charge_swapin(struct page *page,
225 					  struct mem_cgroup *memcg)
226 {
227 }
228 
229 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
230 {
231 }
232 
233 static inline void mem_cgroup_uncharge_start(void)
234 {
235 }
236 
237 static inline void mem_cgroup_uncharge_end(void)
238 {
239 }
240 
241 static inline void mem_cgroup_uncharge_page(struct page *page)
242 {
243 }
244 
245 static inline void mem_cgroup_uncharge_cache_page(struct page *page)
246 {
247 }
248 
249 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
250 						    struct mem_cgroup *memcg)
251 {
252 	return &zone->lruvec;
253 }
254 
255 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
256 						    struct zone *zone)
257 {
258 	return &zone->lruvec;
259 }
260 
261 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
262 {
263 	return NULL;
264 }
265 
266 static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
267 {
268 	return NULL;
269 }
270 
271 static inline bool mm_match_cgroup(struct mm_struct *mm,
272 		struct mem_cgroup *memcg)
273 {
274 	return true;
275 }
276 
277 static inline int task_in_mem_cgroup(struct task_struct *task,
278 				     const struct mem_cgroup *memcg)
279 {
280 	return 1;
281 }
282 
283 static inline struct cgroup_subsys_state
284 		*mem_cgroup_css(struct mem_cgroup *memcg)
285 {
286 	return NULL;
287 }
288 
289 static inline void
290 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
291 			     struct mem_cgroup **memcgp)
292 {
293 }
294 
295 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
296 		struct page *oldpage, struct page *newpage, bool migration_ok)
297 {
298 }
299 
300 static inline struct mem_cgroup *
301 mem_cgroup_iter(struct mem_cgroup *root,
302 		struct mem_cgroup *prev,
303 		struct mem_cgroup_reclaim_cookie *reclaim)
304 {
305 	return NULL;
306 }
307 
308 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
309 					 struct mem_cgroup *prev)
310 {
311 }
312 
313 static inline bool mem_cgroup_disabled(void)
314 {
315 	return true;
316 }
317 
318 static inline int
319 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
320 {
321 	return 1;
322 }
323 
324 static inline int
325 mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
326 {
327 	return 1;
328 }
329 
330 static inline unsigned long
331 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
332 {
333 	return 0;
334 }
335 
336 static inline void
337 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
338 			      int increment)
339 {
340 }
341 
342 static inline void
343 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
344 {
345 }
346 
347 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
348 					bool *locked, unsigned long *flags)
349 {
350 }
351 
352 static inline void mem_cgroup_end_update_page_stat(struct page *page,
353 					bool *locked, unsigned long *flags)
354 {
355 }
356 
357 static inline void mem_cgroup_inc_page_stat(struct page *page,
358 					    enum mem_cgroup_page_stat_item idx)
359 {
360 }
361 
362 static inline void mem_cgroup_dec_page_stat(struct page *page,
363 					    enum mem_cgroup_page_stat_item idx)
364 {
365 }
366 
367 static inline
368 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
369 					    gfp_t gfp_mask,
370 					    unsigned long *total_scanned)
371 {
372 	return 0;
373 }
374 
375 static inline void mem_cgroup_split_huge_fixup(struct page *head)
376 {
377 }
378 
379 static inline
380 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
381 {
382 }
383 static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
384 				struct page *newpage)
385 {
386 }
387 #endif /* CONFIG_MEMCG */
388 
389 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
390 static inline bool
391 mem_cgroup_bad_page_check(struct page *page)
392 {
393 	return false;
394 }
395 
396 static inline void
397 mem_cgroup_print_bad_page(struct page *page)
398 {
399 }
400 #endif
401 
402 enum {
403 	UNDER_LIMIT,
404 	SOFT_LIMIT,
405 	OVER_LIMIT,
406 };
407 
408 struct sock;
409 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
410 void sock_update_memcg(struct sock *sk);
411 void sock_release_memcg(struct sock *sk);
412 #else
413 static inline void sock_update_memcg(struct sock *sk)
414 {
415 }
416 static inline void sock_release_memcg(struct sock *sk)
417 {
418 }
419 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
420 
421 #ifdef CONFIG_MEMCG_KMEM
422 extern struct static_key memcg_kmem_enabled_key;
423 
424 extern int memcg_limited_groups_array_size;
425 
426 /*
427  * Helper macro to loop through all memcg-specific caches. Callers must still
428  * check if the cache is valid (it is either valid or NULL).
429  * the slab_mutex must be held when looping through those caches
430  */
431 #define for_each_memcg_cache_index(_idx)	\
432 	for ((_idx) = 0; i < memcg_limited_groups_array_size; (_idx)++)
433 
434 static inline bool memcg_kmem_enabled(void)
435 {
436 	return static_key_false(&memcg_kmem_enabled_key);
437 }
438 
439 /*
440  * In general, we'll do everything in our power to not incur in any overhead
441  * for non-memcg users for the kmem functions. Not even a function call, if we
442  * can avoid it.
443  *
444  * Therefore, we'll inline all those functions so that in the best case, we'll
445  * see that kmemcg is off for everybody and proceed quickly.  If it is on,
446  * we'll still do most of the flag checking inline. We check a lot of
447  * conditions, but because they are pretty simple, they are expected to be
448  * fast.
449  */
450 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
451 					int order);
452 void __memcg_kmem_commit_charge(struct page *page,
453 				       struct mem_cgroup *memcg, int order);
454 void __memcg_kmem_uncharge_pages(struct page *page, int order);
455 
456 int memcg_cache_id(struct mem_cgroup *memcg);
457 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
458 			 struct kmem_cache *root_cache);
459 void memcg_release_cache(struct kmem_cache *cachep);
460 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep);
461 
462 int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
463 void memcg_update_array_size(int num_groups);
464 
465 struct kmem_cache *
466 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
467 
468 void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
469 void kmem_cache_destroy_memcg_children(struct kmem_cache *s);
470 
471 /**
472  * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
473  * @gfp: the gfp allocation flags.
474  * @memcg: a pointer to the memcg this was charged against.
475  * @order: allocation order.
476  *
477  * returns true if the memcg where the current task belongs can hold this
478  * allocation.
479  *
480  * We return true automatically if this allocation is not to be accounted to
481  * any memcg.
482  */
483 static inline bool
484 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
485 {
486 	if (!memcg_kmem_enabled())
487 		return true;
488 
489 	/*
490 	 * __GFP_NOFAIL allocations will move on even if charging is not
491 	 * possible. Therefore we don't even try, and have this allocation
492 	 * unaccounted. We could in theory charge it with
493 	 * res_counter_charge_nofail, but we hope those allocations are rare,
494 	 * and won't be worth the trouble.
495 	 */
496 	if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
497 		return true;
498 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
499 		return true;
500 
501 	/* If the test is dying, just let it go. */
502 	if (unlikely(fatal_signal_pending(current)))
503 		return true;
504 
505 	return __memcg_kmem_newpage_charge(gfp, memcg, order);
506 }
507 
508 /**
509  * memcg_kmem_uncharge_pages: uncharge pages from memcg
510  * @page: pointer to struct page being freed
511  * @order: allocation order.
512  *
513  * there is no need to specify memcg here, since it is embedded in page_cgroup
514  */
515 static inline void
516 memcg_kmem_uncharge_pages(struct page *page, int order)
517 {
518 	if (memcg_kmem_enabled())
519 		__memcg_kmem_uncharge_pages(page, order);
520 }
521 
522 /**
523  * memcg_kmem_commit_charge: embeds correct memcg in a page
524  * @page: pointer to struct page recently allocated
525  * @memcg: the memcg structure we charged against
526  * @order: allocation order.
527  *
528  * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
529  * failure of the allocation. if @page is NULL, this function will revert the
530  * charges. Otherwise, it will commit the memcg given by @memcg to the
531  * corresponding page_cgroup.
532  */
533 static inline void
534 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
535 {
536 	if (memcg_kmem_enabled() && memcg)
537 		__memcg_kmem_commit_charge(page, memcg, order);
538 }
539 
540 /**
541  * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
542  * @cachep: the original global kmem cache
543  * @gfp: allocation flags.
544  *
545  * This function assumes that the task allocating, which determines the memcg
546  * in the page allocator, belongs to the same cgroup throughout the whole
547  * process.  Misacounting can happen if the task calls memcg_kmem_get_cache()
548  * while belonging to a cgroup, and later on changes. This is considered
549  * acceptable, and should only happen upon task migration.
550  *
551  * Before the cache is created by the memcg core, there is also a possible
552  * imbalance: the task belongs to a memcg, but the cache being allocated from
553  * is the global cache, since the child cache is not yet guaranteed to be
554  * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
555  * passed and the page allocator will not attempt any cgroup accounting.
556  */
557 static __always_inline struct kmem_cache *
558 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
559 {
560 	if (!memcg_kmem_enabled())
561 		return cachep;
562 	if (gfp & __GFP_NOFAIL)
563 		return cachep;
564 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
565 		return cachep;
566 	if (unlikely(fatal_signal_pending(current)))
567 		return cachep;
568 
569 	return __memcg_kmem_get_cache(cachep, gfp);
570 }
571 #else
572 #define for_each_memcg_cache_index(_idx)	\
573 	for (; NULL; )
574 
575 static inline bool memcg_kmem_enabled(void)
576 {
577 	return false;
578 }
579 
580 static inline bool
581 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
582 {
583 	return true;
584 }
585 
586 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
587 {
588 }
589 
590 static inline void
591 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
592 {
593 }
594 
595 static inline int memcg_cache_id(struct mem_cgroup *memcg)
596 {
597 	return -1;
598 }
599 
600 static inline int
601 memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
602 		     struct kmem_cache *root_cache)
603 {
604 	return 0;
605 }
606 
607 static inline void memcg_release_cache(struct kmem_cache *cachep)
608 {
609 }
610 
611 static inline void memcg_cache_list_add(struct mem_cgroup *memcg,
612 					struct kmem_cache *s)
613 {
614 }
615 
616 static inline struct kmem_cache *
617 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
618 {
619 	return cachep;
620 }
621 
622 static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
623 {
624 }
625 #endif /* CONFIG_MEMCG_KMEM */
626 #endif /* _LINUX_MEMCONTROL_H */
627 
628