1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 27 struct mem_cgroup; 28 struct page_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* Stats that can be updated by kernel. */ 34 enum mem_cgroup_page_stat_item { 35 MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */ 36 }; 37 38 struct mem_cgroup_reclaim_cookie { 39 struct zone *zone; 40 int priority; 41 unsigned int generation; 42 }; 43 44 #ifdef CONFIG_MEMCG 45 /* 46 * All "charge" functions with gfp_mask should use GFP_KERNEL or 47 * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't 48 * alloc memory but reclaims memory from all available zones. So, "where I want 49 * memory from" bits of gfp_mask has no meaning. So any bits of that field is 50 * available but adding a rule is better. charge functions' gfp_mask should 51 * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous 52 * codes. 53 * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.) 54 */ 55 56 extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm, 57 gfp_t gfp_mask); 58 /* for swap handling */ 59 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 60 struct page *page, gfp_t mask, struct mem_cgroup **memcgp); 61 extern void mem_cgroup_commit_charge_swapin(struct page *page, 62 struct mem_cgroup *memcg); 63 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg); 64 65 extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 66 gfp_t gfp_mask); 67 68 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 69 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 70 71 /* For coalescing uncharge for reducing memcg' overhead*/ 72 extern void mem_cgroup_uncharge_start(void); 73 extern void mem_cgroup_uncharge_end(void); 74 75 extern void mem_cgroup_uncharge_page(struct page *page); 76 extern void mem_cgroup_uncharge_cache_page(struct page *page); 77 78 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 79 struct mem_cgroup *memcg); 80 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg); 81 82 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page); 83 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 84 extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm); 85 86 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); 87 extern struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont); 88 89 static inline 90 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg) 91 { 92 struct mem_cgroup *task_memcg; 93 bool match; 94 95 rcu_read_lock(); 96 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 97 match = __mem_cgroup_same_or_subtree(memcg, task_memcg); 98 rcu_read_unlock(); 99 return match; 100 } 101 102 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg); 103 104 extern void 105 mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 106 struct mem_cgroup **memcgp); 107 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg, 108 struct page *oldpage, struct page *newpage, bool migration_ok); 109 110 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 111 struct mem_cgroup *, 112 struct mem_cgroup_reclaim_cookie *); 113 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 114 115 /* 116 * For memory reclaim. 117 */ 118 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec); 119 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec); 120 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 121 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list); 122 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); 123 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 124 struct task_struct *p); 125 extern void mem_cgroup_replace_page_cache(struct page *oldpage, 126 struct page *newpage); 127 128 #ifdef CONFIG_MEMCG_SWAP 129 extern int do_swap_account; 130 #endif 131 132 static inline bool mem_cgroup_disabled(void) 133 { 134 if (mem_cgroup_subsys.disabled) 135 return true; 136 return false; 137 } 138 139 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked, 140 unsigned long *flags); 141 142 extern atomic_t memcg_moving; 143 144 static inline void mem_cgroup_begin_update_page_stat(struct page *page, 145 bool *locked, unsigned long *flags) 146 { 147 if (mem_cgroup_disabled()) 148 return; 149 rcu_read_lock(); 150 *locked = false; 151 if (atomic_read(&memcg_moving)) 152 __mem_cgroup_begin_update_page_stat(page, locked, flags); 153 } 154 155 void __mem_cgroup_end_update_page_stat(struct page *page, 156 unsigned long *flags); 157 static inline void mem_cgroup_end_update_page_stat(struct page *page, 158 bool *locked, unsigned long *flags) 159 { 160 if (mem_cgroup_disabled()) 161 return; 162 if (*locked) 163 __mem_cgroup_end_update_page_stat(page, flags); 164 rcu_read_unlock(); 165 } 166 167 void mem_cgroup_update_page_stat(struct page *page, 168 enum mem_cgroup_page_stat_item idx, 169 int val); 170 171 static inline void mem_cgroup_inc_page_stat(struct page *page, 172 enum mem_cgroup_page_stat_item idx) 173 { 174 mem_cgroup_update_page_stat(page, idx, 1); 175 } 176 177 static inline void mem_cgroup_dec_page_stat(struct page *page, 178 enum mem_cgroup_page_stat_item idx) 179 { 180 mem_cgroup_update_page_stat(page, idx, -1); 181 } 182 183 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 184 gfp_t gfp_mask, 185 unsigned long *total_scanned); 186 187 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx); 188 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 189 enum vm_event_item idx) 190 { 191 if (mem_cgroup_disabled()) 192 return; 193 __mem_cgroup_count_vm_event(mm, idx); 194 } 195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 196 void mem_cgroup_split_huge_fixup(struct page *head); 197 #endif 198 199 #ifdef CONFIG_DEBUG_VM 200 bool mem_cgroup_bad_page_check(struct page *page); 201 void mem_cgroup_print_bad_page(struct page *page); 202 #endif 203 #else /* CONFIG_MEMCG */ 204 struct mem_cgroup; 205 206 static inline int mem_cgroup_newpage_charge(struct page *page, 207 struct mm_struct *mm, gfp_t gfp_mask) 208 { 209 return 0; 210 } 211 212 static inline int mem_cgroup_cache_charge(struct page *page, 213 struct mm_struct *mm, gfp_t gfp_mask) 214 { 215 return 0; 216 } 217 218 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 219 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp) 220 { 221 return 0; 222 } 223 224 static inline void mem_cgroup_commit_charge_swapin(struct page *page, 225 struct mem_cgroup *memcg) 226 { 227 } 228 229 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 230 { 231 } 232 233 static inline void mem_cgroup_uncharge_start(void) 234 { 235 } 236 237 static inline void mem_cgroup_uncharge_end(void) 238 { 239 } 240 241 static inline void mem_cgroup_uncharge_page(struct page *page) 242 { 243 } 244 245 static inline void mem_cgroup_uncharge_cache_page(struct page *page) 246 { 247 } 248 249 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 250 struct mem_cgroup *memcg) 251 { 252 return &zone->lruvec; 253 } 254 255 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 256 struct zone *zone) 257 { 258 return &zone->lruvec; 259 } 260 261 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 262 { 263 return NULL; 264 } 265 266 static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 267 { 268 return NULL; 269 } 270 271 static inline bool mm_match_cgroup(struct mm_struct *mm, 272 struct mem_cgroup *memcg) 273 { 274 return true; 275 } 276 277 static inline int task_in_mem_cgroup(struct task_struct *task, 278 const struct mem_cgroup *memcg) 279 { 280 return 1; 281 } 282 283 static inline struct cgroup_subsys_state 284 *mem_cgroup_css(struct mem_cgroup *memcg) 285 { 286 return NULL; 287 } 288 289 static inline void 290 mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 291 struct mem_cgroup **memcgp) 292 { 293 } 294 295 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg, 296 struct page *oldpage, struct page *newpage, bool migration_ok) 297 { 298 } 299 300 static inline struct mem_cgroup * 301 mem_cgroup_iter(struct mem_cgroup *root, 302 struct mem_cgroup *prev, 303 struct mem_cgroup_reclaim_cookie *reclaim) 304 { 305 return NULL; 306 } 307 308 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 309 struct mem_cgroup *prev) 310 { 311 } 312 313 static inline bool mem_cgroup_disabled(void) 314 { 315 return true; 316 } 317 318 static inline int 319 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 320 { 321 return 1; 322 } 323 324 static inline int 325 mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) 326 { 327 return 1; 328 } 329 330 static inline unsigned long 331 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 332 { 333 return 0; 334 } 335 336 static inline void 337 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 338 int increment) 339 { 340 } 341 342 static inline void 343 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 344 { 345 } 346 347 static inline void mem_cgroup_begin_update_page_stat(struct page *page, 348 bool *locked, unsigned long *flags) 349 { 350 } 351 352 static inline void mem_cgroup_end_update_page_stat(struct page *page, 353 bool *locked, unsigned long *flags) 354 { 355 } 356 357 static inline void mem_cgroup_inc_page_stat(struct page *page, 358 enum mem_cgroup_page_stat_item idx) 359 { 360 } 361 362 static inline void mem_cgroup_dec_page_stat(struct page *page, 363 enum mem_cgroup_page_stat_item idx) 364 { 365 } 366 367 static inline 368 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 369 gfp_t gfp_mask, 370 unsigned long *total_scanned) 371 { 372 return 0; 373 } 374 375 static inline void mem_cgroup_split_huge_fixup(struct page *head) 376 { 377 } 378 379 static inline 380 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 381 { 382 } 383 static inline void mem_cgroup_replace_page_cache(struct page *oldpage, 384 struct page *newpage) 385 { 386 } 387 #endif /* CONFIG_MEMCG */ 388 389 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM) 390 static inline bool 391 mem_cgroup_bad_page_check(struct page *page) 392 { 393 return false; 394 } 395 396 static inline void 397 mem_cgroup_print_bad_page(struct page *page) 398 { 399 } 400 #endif 401 402 enum { 403 UNDER_LIMIT, 404 SOFT_LIMIT, 405 OVER_LIMIT, 406 }; 407 408 struct sock; 409 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 410 void sock_update_memcg(struct sock *sk); 411 void sock_release_memcg(struct sock *sk); 412 #else 413 static inline void sock_update_memcg(struct sock *sk) 414 { 415 } 416 static inline void sock_release_memcg(struct sock *sk) 417 { 418 } 419 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 420 421 #ifdef CONFIG_MEMCG_KMEM 422 extern struct static_key memcg_kmem_enabled_key; 423 424 extern int memcg_limited_groups_array_size; 425 426 /* 427 * Helper macro to loop through all memcg-specific caches. Callers must still 428 * check if the cache is valid (it is either valid or NULL). 429 * the slab_mutex must be held when looping through those caches 430 */ 431 #define for_each_memcg_cache_index(_idx) \ 432 for ((_idx) = 0; i < memcg_limited_groups_array_size; (_idx)++) 433 434 static inline bool memcg_kmem_enabled(void) 435 { 436 return static_key_false(&memcg_kmem_enabled_key); 437 } 438 439 /* 440 * In general, we'll do everything in our power to not incur in any overhead 441 * for non-memcg users for the kmem functions. Not even a function call, if we 442 * can avoid it. 443 * 444 * Therefore, we'll inline all those functions so that in the best case, we'll 445 * see that kmemcg is off for everybody and proceed quickly. If it is on, 446 * we'll still do most of the flag checking inline. We check a lot of 447 * conditions, but because they are pretty simple, they are expected to be 448 * fast. 449 */ 450 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, 451 int order); 452 void __memcg_kmem_commit_charge(struct page *page, 453 struct mem_cgroup *memcg, int order); 454 void __memcg_kmem_uncharge_pages(struct page *page, int order); 455 456 int memcg_cache_id(struct mem_cgroup *memcg); 457 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 458 struct kmem_cache *root_cache); 459 void memcg_release_cache(struct kmem_cache *cachep); 460 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep); 461 462 int memcg_update_cache_size(struct kmem_cache *s, int num_groups); 463 void memcg_update_array_size(int num_groups); 464 465 struct kmem_cache * 466 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp); 467 468 void mem_cgroup_destroy_cache(struct kmem_cache *cachep); 469 void kmem_cache_destroy_memcg_children(struct kmem_cache *s); 470 471 /** 472 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. 473 * @gfp: the gfp allocation flags. 474 * @memcg: a pointer to the memcg this was charged against. 475 * @order: allocation order. 476 * 477 * returns true if the memcg where the current task belongs can hold this 478 * allocation. 479 * 480 * We return true automatically if this allocation is not to be accounted to 481 * any memcg. 482 */ 483 static inline bool 484 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 485 { 486 if (!memcg_kmem_enabled()) 487 return true; 488 489 /* 490 * __GFP_NOFAIL allocations will move on even if charging is not 491 * possible. Therefore we don't even try, and have this allocation 492 * unaccounted. We could in theory charge it with 493 * res_counter_charge_nofail, but we hope those allocations are rare, 494 * and won't be worth the trouble. 495 */ 496 if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL)) 497 return true; 498 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 499 return true; 500 501 /* If the test is dying, just let it go. */ 502 if (unlikely(fatal_signal_pending(current))) 503 return true; 504 505 return __memcg_kmem_newpage_charge(gfp, memcg, order); 506 } 507 508 /** 509 * memcg_kmem_uncharge_pages: uncharge pages from memcg 510 * @page: pointer to struct page being freed 511 * @order: allocation order. 512 * 513 * there is no need to specify memcg here, since it is embedded in page_cgroup 514 */ 515 static inline void 516 memcg_kmem_uncharge_pages(struct page *page, int order) 517 { 518 if (memcg_kmem_enabled()) 519 __memcg_kmem_uncharge_pages(page, order); 520 } 521 522 /** 523 * memcg_kmem_commit_charge: embeds correct memcg in a page 524 * @page: pointer to struct page recently allocated 525 * @memcg: the memcg structure we charged against 526 * @order: allocation order. 527 * 528 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or 529 * failure of the allocation. if @page is NULL, this function will revert the 530 * charges. Otherwise, it will commit the memcg given by @memcg to the 531 * corresponding page_cgroup. 532 */ 533 static inline void 534 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 535 { 536 if (memcg_kmem_enabled() && memcg) 537 __memcg_kmem_commit_charge(page, memcg, order); 538 } 539 540 /** 541 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 542 * @cachep: the original global kmem cache 543 * @gfp: allocation flags. 544 * 545 * This function assumes that the task allocating, which determines the memcg 546 * in the page allocator, belongs to the same cgroup throughout the whole 547 * process. Misacounting can happen if the task calls memcg_kmem_get_cache() 548 * while belonging to a cgroup, and later on changes. This is considered 549 * acceptable, and should only happen upon task migration. 550 * 551 * Before the cache is created by the memcg core, there is also a possible 552 * imbalance: the task belongs to a memcg, but the cache being allocated from 553 * is the global cache, since the child cache is not yet guaranteed to be 554 * ready. This case is also fine, since in this case the GFP_KMEMCG will not be 555 * passed and the page allocator will not attempt any cgroup accounting. 556 */ 557 static __always_inline struct kmem_cache * 558 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 559 { 560 if (!memcg_kmem_enabled()) 561 return cachep; 562 if (gfp & __GFP_NOFAIL) 563 return cachep; 564 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 565 return cachep; 566 if (unlikely(fatal_signal_pending(current))) 567 return cachep; 568 569 return __memcg_kmem_get_cache(cachep, gfp); 570 } 571 #else 572 #define for_each_memcg_cache_index(_idx) \ 573 for (; NULL; ) 574 575 static inline bool memcg_kmem_enabled(void) 576 { 577 return false; 578 } 579 580 static inline bool 581 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 582 { 583 return true; 584 } 585 586 static inline void memcg_kmem_uncharge_pages(struct page *page, int order) 587 { 588 } 589 590 static inline void 591 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 592 { 593 } 594 595 static inline int memcg_cache_id(struct mem_cgroup *memcg) 596 { 597 return -1; 598 } 599 600 static inline int 601 memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 602 struct kmem_cache *root_cache) 603 { 604 return 0; 605 } 606 607 static inline void memcg_release_cache(struct kmem_cache *cachep) 608 { 609 } 610 611 static inline void memcg_cache_list_add(struct mem_cgroup *memcg, 612 struct kmem_cache *s) 613 { 614 } 615 616 static inline struct kmem_cache * 617 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 618 { 619 return cachep; 620 } 621 622 static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 623 { 624 } 625 #endif /* CONFIG_MEMCG_KMEM */ 626 #endif /* _LINUX_MEMCONTROL_H */ 627 628