1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/kernel.h> 18 #include <linux/page_counter.h> 19 #include <linux/vmpressure.h> 20 #include <linux/eventfd.h> 21 #include <linux/mm.h> 22 #include <linux/vmstat.h> 23 #include <linux/writeback.h> 24 #include <linux/page-flags.h> 25 #include <linux/shrinker.h> 26 27 struct mem_cgroup; 28 struct obj_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* Cgroup-specific page state, on top of universal node page state */ 34 enum memcg_stat_item { 35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 36 MEMCG_SOCK, 37 MEMCG_PERCPU_B, 38 MEMCG_VMALLOC, 39 MEMCG_KMEM, 40 MEMCG_ZSWAP_B, 41 MEMCG_ZSWAPPED, 42 MEMCG_NR_STAT, 43 }; 44 45 enum memcg_memory_event { 46 MEMCG_LOW, 47 MEMCG_HIGH, 48 MEMCG_MAX, 49 MEMCG_OOM, 50 MEMCG_OOM_KILL, 51 MEMCG_OOM_GROUP_KILL, 52 MEMCG_SWAP_HIGH, 53 MEMCG_SWAP_MAX, 54 MEMCG_SWAP_FAIL, 55 MEMCG_NR_MEMORY_EVENTS, 56 }; 57 58 struct mem_cgroup_reclaim_cookie { 59 pg_data_t *pgdat; 60 unsigned int generation; 61 }; 62 63 #ifdef CONFIG_MEMCG 64 65 #define MEM_CGROUP_ID_SHIFT 16 66 67 struct mem_cgroup_id { 68 int id; 69 refcount_t ref; 70 }; 71 72 struct memcg_vmstats_percpu; 73 struct memcg_vmstats; 74 struct lruvec_stats_percpu; 75 struct lruvec_stats; 76 77 struct mem_cgroup_reclaim_iter { 78 struct mem_cgroup *position; 79 /* scan generation, increased every round-trip */ 80 unsigned int generation; 81 }; 82 83 /* 84 * per-node information in memory controller. 85 */ 86 struct mem_cgroup_per_node { 87 /* Keep the read-only fields at the start */ 88 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 89 /* use container_of */ 90 91 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 92 struct lruvec_stats *lruvec_stats; 93 struct shrinker_info __rcu *shrinker_info; 94 95 #ifdef CONFIG_MEMCG_V1 96 /* 97 * Memcg-v1 only stuff in middle as buffer between read mostly fields 98 * and update often fields to avoid false sharing. If v1 stuff is 99 * not present, an explicit padding is needed. 100 */ 101 102 struct rb_node tree_node; /* RB tree node */ 103 unsigned long usage_in_excess;/* Set to the value by which */ 104 /* the soft limit is exceeded*/ 105 bool on_tree; 106 #else 107 CACHELINE_PADDING(_pad1_); 108 #endif 109 110 /* Fields which get updated often at the end. */ 111 struct lruvec lruvec; 112 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 113 struct mem_cgroup_reclaim_iter iter; 114 }; 115 116 struct mem_cgroup_threshold { 117 struct eventfd_ctx *eventfd; 118 unsigned long threshold; 119 }; 120 121 /* For threshold */ 122 struct mem_cgroup_threshold_ary { 123 /* An array index points to threshold just below or equal to usage. */ 124 int current_threshold; 125 /* Size of entries[] */ 126 unsigned int size; 127 /* Array of thresholds */ 128 struct mem_cgroup_threshold entries[] __counted_by(size); 129 }; 130 131 struct mem_cgroup_thresholds { 132 /* Primary thresholds array */ 133 struct mem_cgroup_threshold_ary *primary; 134 /* 135 * Spare threshold array. 136 * This is needed to make mem_cgroup_unregister_event() "never fail". 137 * It must be able to store at least primary->size - 1 entries. 138 */ 139 struct mem_cgroup_threshold_ary *spare; 140 }; 141 142 /* 143 * Remember four most recent foreign writebacks with dirty pages in this 144 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 145 * one in a given round, we're likely to catch it later if it keeps 146 * foreign-dirtying, so a fairly low count should be enough. 147 * 148 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 149 */ 150 #define MEMCG_CGWB_FRN_CNT 4 151 152 struct memcg_cgwb_frn { 153 u64 bdi_id; /* bdi->id of the foreign inode */ 154 int memcg_id; /* memcg->css.id of foreign inode */ 155 u64 at; /* jiffies_64 at the time of dirtying */ 156 struct wb_completion done; /* tracks in-flight foreign writebacks */ 157 }; 158 159 /* 160 * Bucket for arbitrarily byte-sized objects charged to a memory 161 * cgroup. The bucket can be reparented in one piece when the cgroup 162 * is destroyed, without having to round up the individual references 163 * of all live memory objects in the wild. 164 */ 165 struct obj_cgroup { 166 struct percpu_ref refcnt; 167 struct mem_cgroup *memcg; 168 atomic_t nr_charged_bytes; 169 union { 170 struct list_head list; /* protected by objcg_lock */ 171 struct rcu_head rcu; 172 }; 173 }; 174 175 /* 176 * The memory controller data structure. The memory controller controls both 177 * page cache and RSS per cgroup. We would eventually like to provide 178 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 179 * to help the administrator determine what knobs to tune. 180 */ 181 struct mem_cgroup { 182 struct cgroup_subsys_state css; 183 184 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 185 struct mem_cgroup_id id; 186 187 /* Accounted resources */ 188 struct page_counter memory; /* Both v1 & v2 */ 189 190 union { 191 struct page_counter swap; /* v2 only */ 192 struct page_counter memsw; /* v1 only */ 193 }; 194 195 /* Range enforcement for interrupt charges */ 196 struct work_struct high_work; 197 198 #ifdef CONFIG_ZSWAP 199 unsigned long zswap_max; 200 201 /* 202 * Prevent pages from this memcg from being written back from zswap to 203 * swap, and from being swapped out on zswap store failures. 204 */ 205 bool zswap_writeback; 206 #endif 207 208 /* vmpressure notifications */ 209 struct vmpressure vmpressure; 210 211 /* 212 * Should the OOM killer kill all belonging tasks, had it kill one? 213 */ 214 bool oom_group; 215 216 int swappiness; 217 218 /* memory.events and memory.events.local */ 219 struct cgroup_file events_file; 220 struct cgroup_file events_local_file; 221 222 /* handle for "memory.swap.events" */ 223 struct cgroup_file swap_events_file; 224 225 /* memory.stat */ 226 struct memcg_vmstats *vmstats; 227 228 /* memory.events */ 229 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 230 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 231 232 /* 233 * Hint of reclaim pressure for socket memroy management. Note 234 * that this indicator should NOT be used in legacy cgroup mode 235 * where socket memory is accounted/charged separately. 236 */ 237 unsigned long socket_pressure; 238 239 int kmemcg_id; 240 /* 241 * memcg->objcg is wiped out as a part of the objcg repaprenting 242 * process. memcg->orig_objcg preserves a pointer (and a reference) 243 * to the original objcg until the end of live of memcg. 244 */ 245 struct obj_cgroup __rcu *objcg; 246 struct obj_cgroup *orig_objcg; 247 /* list of inherited objcgs, protected by objcg_lock */ 248 struct list_head objcg_list; 249 250 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 251 252 #ifdef CONFIG_CGROUP_WRITEBACK 253 struct list_head cgwb_list; 254 struct wb_domain cgwb_domain; 255 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 256 #endif 257 258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 259 struct deferred_split deferred_split_queue; 260 #endif 261 262 #ifdef CONFIG_LRU_GEN_WALKS_MMU 263 /* per-memcg mm_struct list */ 264 struct lru_gen_mm_list mm_list; 265 #endif 266 267 #ifdef CONFIG_MEMCG_V1 268 /* Legacy consumer-oriented counters */ 269 struct page_counter kmem; /* v1 only */ 270 struct page_counter tcpmem; /* v1 only */ 271 272 unsigned long soft_limit; 273 274 /* protected by memcg_oom_lock */ 275 bool oom_lock; 276 int under_oom; 277 278 /* OOM-Killer disable */ 279 int oom_kill_disable; 280 281 /* protect arrays of thresholds */ 282 struct mutex thresholds_lock; 283 284 /* thresholds for memory usage. RCU-protected */ 285 struct mem_cgroup_thresholds thresholds; 286 287 /* thresholds for mem+swap usage. RCU-protected */ 288 struct mem_cgroup_thresholds memsw_thresholds; 289 290 /* For oom notifier event fd */ 291 struct list_head oom_notify; 292 293 /* 294 * Should we move charges of a task when a task is moved into this 295 * mem_cgroup ? And what type of charges should we move ? 296 */ 297 unsigned long move_charge_at_immigrate; 298 /* taken only while moving_account > 0 */ 299 spinlock_t move_lock; 300 unsigned long move_lock_flags; 301 302 /* Legacy tcp memory accounting */ 303 bool tcpmem_active; 304 int tcpmem_pressure; 305 306 /* 307 * set > 0 if pages under this cgroup are moving to other cgroup. 308 */ 309 atomic_t moving_account; 310 struct task_struct *move_lock_task; 311 312 /* List of events which userspace want to receive */ 313 struct list_head event_list; 314 spinlock_t event_list_lock; 315 #endif /* CONFIG_MEMCG_V1 */ 316 317 struct mem_cgroup_per_node *nodeinfo[]; 318 }; 319 320 /* 321 * size of first charge trial. 322 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 323 * workload. 324 */ 325 #define MEMCG_CHARGE_BATCH 64U 326 327 extern struct mem_cgroup *root_mem_cgroup; 328 329 enum page_memcg_data_flags { 330 /* page->memcg_data is a pointer to an slabobj_ext vector */ 331 MEMCG_DATA_OBJEXTS = (1UL << 0), 332 /* page has been accounted as a non-slab kernel page */ 333 MEMCG_DATA_KMEM = (1UL << 1), 334 /* the next bit after the last actual flag */ 335 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 336 }; 337 338 #define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS 339 340 #else /* CONFIG_MEMCG */ 341 342 #define __FIRST_OBJEXT_FLAG (1UL << 0) 343 344 #endif /* CONFIG_MEMCG */ 345 346 enum objext_flags { 347 /* slabobj_ext vector failed to allocate */ 348 OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG, 349 /* the next bit after the last actual flag */ 350 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1), 351 }; 352 353 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1) 354 355 #ifdef CONFIG_MEMCG 356 357 static inline bool folio_memcg_kmem(struct folio *folio); 358 359 /* 360 * After the initialization objcg->memcg is always pointing at 361 * a valid memcg, but can be atomically swapped to the parent memcg. 362 * 363 * The caller must ensure that the returned memcg won't be released: 364 * e.g. acquire the rcu_read_lock or css_set_lock. 365 */ 366 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 367 { 368 return READ_ONCE(objcg->memcg); 369 } 370 371 /* 372 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 373 * @folio: Pointer to the folio. 374 * 375 * Returns a pointer to the memory cgroup associated with the folio, 376 * or NULL. This function assumes that the folio is known to have a 377 * proper memory cgroup pointer. It's not safe to call this function 378 * against some type of folios, e.g. slab folios or ex-slab folios or 379 * kmem folios. 380 */ 381 static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 382 { 383 unsigned long memcg_data = folio->memcg_data; 384 385 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 386 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 387 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 388 389 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 390 } 391 392 /* 393 * __folio_objcg - get the object cgroup associated with a kmem folio. 394 * @folio: Pointer to the folio. 395 * 396 * Returns a pointer to the object cgroup associated with the folio, 397 * or NULL. This function assumes that the folio is known to have a 398 * proper object cgroup pointer. It's not safe to call this function 399 * against some type of folios, e.g. slab folios or ex-slab folios or 400 * LRU folios. 401 */ 402 static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 403 { 404 unsigned long memcg_data = folio->memcg_data; 405 406 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 407 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 408 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 409 410 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 411 } 412 413 /* 414 * folio_memcg - Get the memory cgroup associated with a folio. 415 * @folio: Pointer to the folio. 416 * 417 * Returns a pointer to the memory cgroup associated with the folio, 418 * or NULL. This function assumes that the folio is known to have a 419 * proper memory cgroup pointer. It's not safe to call this function 420 * against some type of folios, e.g. slab folios or ex-slab folios. 421 * 422 * For a non-kmem folio any of the following ensures folio and memcg binding 423 * stability: 424 * 425 * - the folio lock 426 * - LRU isolation 427 * - folio_memcg_lock() 428 * - exclusive reference 429 * - mem_cgroup_trylock_pages() 430 * 431 * For a kmem folio a caller should hold an rcu read lock to protect memcg 432 * associated with a kmem folio from being released. 433 */ 434 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 435 { 436 if (folio_memcg_kmem(folio)) 437 return obj_cgroup_memcg(__folio_objcg(folio)); 438 return __folio_memcg(folio); 439 } 440 441 /** 442 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 443 * @folio: Pointer to the folio. 444 * 445 * This function assumes that the folio is known to have a 446 * proper memory cgroup pointer. It's not safe to call this function 447 * against some type of folios, e.g. slab folios or ex-slab folios. 448 * 449 * Return: A pointer to the memory cgroup associated with the folio, 450 * or NULL. 451 */ 452 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 453 { 454 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 455 456 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 457 WARN_ON_ONCE(!rcu_read_lock_held()); 458 459 if (memcg_data & MEMCG_DATA_KMEM) { 460 struct obj_cgroup *objcg; 461 462 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 463 return obj_cgroup_memcg(objcg); 464 } 465 466 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 467 } 468 469 /* 470 * folio_memcg_check - Get the memory cgroup associated with a folio. 471 * @folio: Pointer to the folio. 472 * 473 * Returns a pointer to the memory cgroup associated with the folio, 474 * or NULL. This function unlike folio_memcg() can take any folio 475 * as an argument. It has to be used in cases when it's not known if a folio 476 * has an associated memory cgroup pointer or an object cgroups vector or 477 * an object cgroup. 478 * 479 * For a non-kmem folio any of the following ensures folio and memcg binding 480 * stability: 481 * 482 * - the folio lock 483 * - LRU isolation 484 * - lock_folio_memcg() 485 * - exclusive reference 486 * - mem_cgroup_trylock_pages() 487 * 488 * For a kmem folio a caller should hold an rcu read lock to protect memcg 489 * associated with a kmem folio from being released. 490 */ 491 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 492 { 493 /* 494 * Because folio->memcg_data might be changed asynchronously 495 * for slabs, READ_ONCE() should be used here. 496 */ 497 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 498 499 if (memcg_data & MEMCG_DATA_OBJEXTS) 500 return NULL; 501 502 if (memcg_data & MEMCG_DATA_KMEM) { 503 struct obj_cgroup *objcg; 504 505 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 506 return obj_cgroup_memcg(objcg); 507 } 508 509 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 510 } 511 512 static inline struct mem_cgroup *page_memcg_check(struct page *page) 513 { 514 if (PageTail(page)) 515 return NULL; 516 return folio_memcg_check((struct folio *)page); 517 } 518 519 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 520 { 521 struct mem_cgroup *memcg; 522 523 rcu_read_lock(); 524 retry: 525 memcg = obj_cgroup_memcg(objcg); 526 if (unlikely(!css_tryget(&memcg->css))) 527 goto retry; 528 rcu_read_unlock(); 529 530 return memcg; 531 } 532 533 /* 534 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 535 * @folio: Pointer to the folio. 536 * 537 * Checks if the folio has MemcgKmem flag set. The caller must ensure 538 * that the folio has an associated memory cgroup. It's not safe to call 539 * this function against some types of folios, e.g. slab folios. 540 */ 541 static inline bool folio_memcg_kmem(struct folio *folio) 542 { 543 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 544 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio); 545 return folio->memcg_data & MEMCG_DATA_KMEM; 546 } 547 548 static inline bool PageMemcgKmem(struct page *page) 549 { 550 return folio_memcg_kmem(page_folio(page)); 551 } 552 553 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 554 { 555 return (memcg == root_mem_cgroup); 556 } 557 558 static inline bool mem_cgroup_disabled(void) 559 { 560 return !cgroup_subsys_enabled(memory_cgrp_subsys); 561 } 562 563 static inline void mem_cgroup_protection(struct mem_cgroup *root, 564 struct mem_cgroup *memcg, 565 unsigned long *min, 566 unsigned long *low) 567 { 568 *min = *low = 0; 569 570 if (mem_cgroup_disabled()) 571 return; 572 573 /* 574 * There is no reclaim protection applied to a targeted reclaim. 575 * We are special casing this specific case here because 576 * mem_cgroup_calculate_protection is not robust enough to keep 577 * the protection invariant for calculated effective values for 578 * parallel reclaimers with different reclaim target. This is 579 * especially a problem for tail memcgs (as they have pages on LRU) 580 * which would want to have effective values 0 for targeted reclaim 581 * but a different value for external reclaim. 582 * 583 * Example 584 * Let's have global and A's reclaim in parallel: 585 * | 586 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 587 * |\ 588 * | C (low = 1G, usage = 2.5G) 589 * B (low = 1G, usage = 0.5G) 590 * 591 * For the global reclaim 592 * A.elow = A.low 593 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 594 * C.elow = min(C.usage, C.low) 595 * 596 * With the effective values resetting we have A reclaim 597 * A.elow = 0 598 * B.elow = B.low 599 * C.elow = C.low 600 * 601 * If the global reclaim races with A's reclaim then 602 * B.elow = C.elow = 0 because children_low_usage > A.elow) 603 * is possible and reclaiming B would be violating the protection. 604 * 605 */ 606 if (root == memcg) 607 return; 608 609 *min = READ_ONCE(memcg->memory.emin); 610 *low = READ_ONCE(memcg->memory.elow); 611 } 612 613 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 614 struct mem_cgroup *memcg); 615 616 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 617 struct mem_cgroup *memcg) 618 { 619 /* 620 * The root memcg doesn't account charges, and doesn't support 621 * protection. The target memcg's protection is ignored, see 622 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 623 */ 624 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 625 memcg == target; 626 } 627 628 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 629 struct mem_cgroup *memcg) 630 { 631 if (mem_cgroup_unprotected(target, memcg)) 632 return false; 633 634 return READ_ONCE(memcg->memory.elow) >= 635 page_counter_read(&memcg->memory); 636 } 637 638 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 639 struct mem_cgroup *memcg) 640 { 641 if (mem_cgroup_unprotected(target, memcg)) 642 return false; 643 644 return READ_ONCE(memcg->memory.emin) >= 645 page_counter_read(&memcg->memory); 646 } 647 648 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg); 649 650 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 651 652 /** 653 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 654 * @folio: Folio to charge. 655 * @mm: mm context of the allocating task. 656 * @gfp: Reclaim mode. 657 * 658 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 659 * pages according to @gfp if necessary. If @mm is NULL, try to 660 * charge to the active memcg. 661 * 662 * Do not use this for folios allocated for swapin. 663 * 664 * Return: 0 on success. Otherwise, an error code is returned. 665 */ 666 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 667 gfp_t gfp) 668 { 669 if (mem_cgroup_disabled()) 670 return 0; 671 return __mem_cgroup_charge(folio, mm, gfp); 672 } 673 674 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 675 long nr_pages); 676 677 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 678 gfp_t gfp, swp_entry_t entry); 679 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 680 681 void __mem_cgroup_uncharge(struct folio *folio); 682 683 /** 684 * mem_cgroup_uncharge - Uncharge a folio. 685 * @folio: Folio to uncharge. 686 * 687 * Uncharge a folio previously charged with mem_cgroup_charge(). 688 */ 689 static inline void mem_cgroup_uncharge(struct folio *folio) 690 { 691 if (mem_cgroup_disabled()) 692 return; 693 __mem_cgroup_uncharge(folio); 694 } 695 696 void __mem_cgroup_uncharge_folios(struct folio_batch *folios); 697 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 698 { 699 if (mem_cgroup_disabled()) 700 return; 701 __mem_cgroup_uncharge_folios(folios); 702 } 703 704 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages); 705 void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 706 void mem_cgroup_migrate(struct folio *old, struct folio *new); 707 708 /** 709 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 710 * @memcg: memcg of the wanted lruvec 711 * @pgdat: pglist_data 712 * 713 * Returns the lru list vector holding pages for a given @memcg & 714 * @pgdat combination. This can be the node lruvec, if the memory 715 * controller is disabled. 716 */ 717 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 718 struct pglist_data *pgdat) 719 { 720 struct mem_cgroup_per_node *mz; 721 struct lruvec *lruvec; 722 723 if (mem_cgroup_disabled()) { 724 lruvec = &pgdat->__lruvec; 725 goto out; 726 } 727 728 if (!memcg) 729 memcg = root_mem_cgroup; 730 731 mz = memcg->nodeinfo[pgdat->node_id]; 732 lruvec = &mz->lruvec; 733 out: 734 /* 735 * Since a node can be onlined after the mem_cgroup was created, 736 * we have to be prepared to initialize lruvec->pgdat here; 737 * and if offlined then reonlined, we need to reinitialize it. 738 */ 739 if (unlikely(lruvec->pgdat != pgdat)) 740 lruvec->pgdat = pgdat; 741 return lruvec; 742 } 743 744 /** 745 * folio_lruvec - return lruvec for isolating/putting an LRU folio 746 * @folio: Pointer to the folio. 747 * 748 * This function relies on folio->mem_cgroup being stable. 749 */ 750 static inline struct lruvec *folio_lruvec(struct folio *folio) 751 { 752 struct mem_cgroup *memcg = folio_memcg(folio); 753 754 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 755 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 756 } 757 758 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 759 760 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 761 762 struct mem_cgroup *get_mem_cgroup_from_current(void); 763 764 struct lruvec *folio_lruvec_lock(struct folio *folio); 765 struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 766 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 767 unsigned long *flags); 768 769 #ifdef CONFIG_DEBUG_VM 770 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 771 #else 772 static inline 773 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 774 { 775 } 776 #endif 777 778 static inline 779 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 780 return css ? container_of(css, struct mem_cgroup, css) : NULL; 781 } 782 783 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 784 { 785 return percpu_ref_tryget(&objcg->refcnt); 786 } 787 788 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 789 { 790 percpu_ref_get(&objcg->refcnt); 791 } 792 793 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 794 unsigned long nr) 795 { 796 percpu_ref_get_many(&objcg->refcnt, nr); 797 } 798 799 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 800 { 801 if (objcg) 802 percpu_ref_put(&objcg->refcnt); 803 } 804 805 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 806 { 807 return !memcg || css_tryget(&memcg->css); 808 } 809 810 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 811 { 812 return !memcg || css_tryget_online(&memcg->css); 813 } 814 815 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 816 { 817 if (memcg) 818 css_put(&memcg->css); 819 } 820 821 #define mem_cgroup_from_counter(counter, member) \ 822 container_of(counter, struct mem_cgroup, member) 823 824 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 825 struct mem_cgroup *, 826 struct mem_cgroup_reclaim_cookie *); 827 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 828 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 829 int (*)(struct task_struct *, void *), void *arg); 830 831 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 832 { 833 if (mem_cgroup_disabled()) 834 return 0; 835 836 return memcg->id.id; 837 } 838 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 839 840 #ifdef CONFIG_SHRINKER_DEBUG 841 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 842 { 843 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 844 } 845 846 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 847 #endif 848 849 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 850 { 851 return mem_cgroup_from_css(seq_css(m)); 852 } 853 854 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 855 { 856 struct mem_cgroup_per_node *mz; 857 858 if (mem_cgroup_disabled()) 859 return NULL; 860 861 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 862 return mz->memcg; 863 } 864 865 /** 866 * parent_mem_cgroup - find the accounting parent of a memcg 867 * @memcg: memcg whose parent to find 868 * 869 * Returns the parent memcg, or NULL if this is the root. 870 */ 871 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 872 { 873 return mem_cgroup_from_css(memcg->css.parent); 874 } 875 876 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 877 struct mem_cgroup *root) 878 { 879 if (root == memcg) 880 return true; 881 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 882 } 883 884 static inline bool mm_match_cgroup(struct mm_struct *mm, 885 struct mem_cgroup *memcg) 886 { 887 struct mem_cgroup *task_memcg; 888 bool match = false; 889 890 rcu_read_lock(); 891 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 892 if (task_memcg) 893 match = mem_cgroup_is_descendant(task_memcg, memcg); 894 rcu_read_unlock(); 895 return match; 896 } 897 898 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 899 ino_t page_cgroup_ino(struct page *page); 900 901 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 902 { 903 if (mem_cgroup_disabled()) 904 return true; 905 return !!(memcg->css.flags & CSS_ONLINE); 906 } 907 908 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 909 int zid, int nr_pages); 910 911 static inline 912 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 913 enum lru_list lru, int zone_idx) 914 { 915 struct mem_cgroup_per_node *mz; 916 917 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 918 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 919 } 920 921 void mem_cgroup_handle_over_high(gfp_t gfp_mask); 922 923 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 924 925 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 926 927 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 928 struct task_struct *p); 929 930 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 931 932 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 933 struct mem_cgroup *oom_domain); 934 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 935 936 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 937 int val); 938 939 /* idx can be of type enum memcg_stat_item or node_stat_item */ 940 static inline void mod_memcg_state(struct mem_cgroup *memcg, 941 enum memcg_stat_item idx, int val) 942 { 943 unsigned long flags; 944 945 local_irq_save(flags); 946 __mod_memcg_state(memcg, idx, val); 947 local_irq_restore(flags); 948 } 949 950 static inline void mod_memcg_page_state(struct page *page, 951 enum memcg_stat_item idx, int val) 952 { 953 struct mem_cgroup *memcg; 954 955 if (mem_cgroup_disabled()) 956 return; 957 958 rcu_read_lock(); 959 memcg = folio_memcg(page_folio(page)); 960 if (memcg) 961 mod_memcg_state(memcg, idx, val); 962 rcu_read_unlock(); 963 } 964 965 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 966 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx); 967 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 968 enum node_stat_item idx); 969 970 void mem_cgroup_flush_stats(struct mem_cgroup *memcg); 971 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg); 972 973 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 974 975 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 976 int val) 977 { 978 unsigned long flags; 979 980 local_irq_save(flags); 981 __mod_lruvec_kmem_state(p, idx, val); 982 local_irq_restore(flags); 983 } 984 985 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 986 unsigned long count); 987 988 static inline void count_memcg_events(struct mem_cgroup *memcg, 989 enum vm_event_item idx, 990 unsigned long count) 991 { 992 unsigned long flags; 993 994 local_irq_save(flags); 995 __count_memcg_events(memcg, idx, count); 996 local_irq_restore(flags); 997 } 998 999 static inline void count_memcg_folio_events(struct folio *folio, 1000 enum vm_event_item idx, unsigned long nr) 1001 { 1002 struct mem_cgroup *memcg = folio_memcg(folio); 1003 1004 if (memcg) 1005 count_memcg_events(memcg, idx, nr); 1006 } 1007 1008 static inline void count_memcg_event_mm(struct mm_struct *mm, 1009 enum vm_event_item idx) 1010 { 1011 struct mem_cgroup *memcg; 1012 1013 if (mem_cgroup_disabled()) 1014 return; 1015 1016 rcu_read_lock(); 1017 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1018 if (likely(memcg)) 1019 count_memcg_events(memcg, idx, 1); 1020 rcu_read_unlock(); 1021 } 1022 1023 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1024 enum memcg_memory_event event) 1025 { 1026 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1027 event == MEMCG_SWAP_FAIL; 1028 1029 atomic_long_inc(&memcg->memory_events_local[event]); 1030 if (!swap_event) 1031 cgroup_file_notify(&memcg->events_local_file); 1032 1033 do { 1034 atomic_long_inc(&memcg->memory_events[event]); 1035 if (swap_event) 1036 cgroup_file_notify(&memcg->swap_events_file); 1037 else 1038 cgroup_file_notify(&memcg->events_file); 1039 1040 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1041 break; 1042 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1043 break; 1044 } while ((memcg = parent_mem_cgroup(memcg)) && 1045 !mem_cgroup_is_root(memcg)); 1046 } 1047 1048 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1049 enum memcg_memory_event event) 1050 { 1051 struct mem_cgroup *memcg; 1052 1053 if (mem_cgroup_disabled()) 1054 return; 1055 1056 rcu_read_lock(); 1057 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1058 if (likely(memcg)) 1059 memcg_memory_event(memcg, event); 1060 rcu_read_unlock(); 1061 } 1062 1063 void split_page_memcg(struct page *head, int old_order, int new_order); 1064 1065 #else /* CONFIG_MEMCG */ 1066 1067 #define MEM_CGROUP_ID_SHIFT 0 1068 1069 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1070 { 1071 return NULL; 1072 } 1073 1074 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1075 { 1076 WARN_ON_ONCE(!rcu_read_lock_held()); 1077 return NULL; 1078 } 1079 1080 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1081 { 1082 return NULL; 1083 } 1084 1085 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1086 { 1087 return NULL; 1088 } 1089 1090 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 1091 { 1092 return NULL; 1093 } 1094 1095 static inline bool folio_memcg_kmem(struct folio *folio) 1096 { 1097 return false; 1098 } 1099 1100 static inline bool PageMemcgKmem(struct page *page) 1101 { 1102 return false; 1103 } 1104 1105 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1106 { 1107 return true; 1108 } 1109 1110 static inline bool mem_cgroup_disabled(void) 1111 { 1112 return true; 1113 } 1114 1115 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1116 enum memcg_memory_event event) 1117 { 1118 } 1119 1120 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1121 enum memcg_memory_event event) 1122 { 1123 } 1124 1125 static inline void mem_cgroup_protection(struct mem_cgroup *root, 1126 struct mem_cgroup *memcg, 1127 unsigned long *min, 1128 unsigned long *low) 1129 { 1130 *min = *low = 0; 1131 } 1132 1133 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1134 struct mem_cgroup *memcg) 1135 { 1136 } 1137 1138 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1139 struct mem_cgroup *memcg) 1140 { 1141 return true; 1142 } 1143 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1144 struct mem_cgroup *memcg) 1145 { 1146 return false; 1147 } 1148 1149 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1150 struct mem_cgroup *memcg) 1151 { 1152 return false; 1153 } 1154 1155 static inline void mem_cgroup_commit_charge(struct folio *folio, 1156 struct mem_cgroup *memcg) 1157 { 1158 } 1159 1160 static inline int mem_cgroup_charge(struct folio *folio, 1161 struct mm_struct *mm, gfp_t gfp) 1162 { 1163 return 0; 1164 } 1165 1166 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, 1167 gfp_t gfp, long nr_pages) 1168 { 1169 return 0; 1170 } 1171 1172 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1173 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1174 { 1175 return 0; 1176 } 1177 1178 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1179 { 1180 } 1181 1182 static inline void mem_cgroup_uncharge(struct folio *folio) 1183 { 1184 } 1185 1186 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 1187 { 1188 } 1189 1190 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 1191 unsigned int nr_pages) 1192 { 1193 } 1194 1195 static inline void mem_cgroup_replace_folio(struct folio *old, 1196 struct folio *new) 1197 { 1198 } 1199 1200 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1201 { 1202 } 1203 1204 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1205 struct pglist_data *pgdat) 1206 { 1207 return &pgdat->__lruvec; 1208 } 1209 1210 static inline struct lruvec *folio_lruvec(struct folio *folio) 1211 { 1212 struct pglist_data *pgdat = folio_pgdat(folio); 1213 return &pgdat->__lruvec; 1214 } 1215 1216 static inline 1217 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1218 { 1219 } 1220 1221 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1222 { 1223 return NULL; 1224 } 1225 1226 static inline bool mm_match_cgroup(struct mm_struct *mm, 1227 struct mem_cgroup *memcg) 1228 { 1229 return true; 1230 } 1231 1232 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1233 { 1234 return NULL; 1235 } 1236 1237 static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1238 { 1239 return NULL; 1240 } 1241 1242 static inline 1243 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1244 { 1245 return NULL; 1246 } 1247 1248 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1249 { 1250 } 1251 1252 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1253 { 1254 return true; 1255 } 1256 1257 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 1258 { 1259 return true; 1260 } 1261 1262 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1263 { 1264 } 1265 1266 static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1267 { 1268 struct pglist_data *pgdat = folio_pgdat(folio); 1269 1270 spin_lock(&pgdat->__lruvec.lru_lock); 1271 return &pgdat->__lruvec; 1272 } 1273 1274 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1275 { 1276 struct pglist_data *pgdat = folio_pgdat(folio); 1277 1278 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1279 return &pgdat->__lruvec; 1280 } 1281 1282 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1283 unsigned long *flagsp) 1284 { 1285 struct pglist_data *pgdat = folio_pgdat(folio); 1286 1287 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1288 return &pgdat->__lruvec; 1289 } 1290 1291 static inline struct mem_cgroup * 1292 mem_cgroup_iter(struct mem_cgroup *root, 1293 struct mem_cgroup *prev, 1294 struct mem_cgroup_reclaim_cookie *reclaim) 1295 { 1296 return NULL; 1297 } 1298 1299 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1300 struct mem_cgroup *prev) 1301 { 1302 } 1303 1304 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1305 int (*fn)(struct task_struct *, void *), void *arg) 1306 { 1307 } 1308 1309 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1310 { 1311 return 0; 1312 } 1313 1314 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1315 { 1316 WARN_ON_ONCE(id); 1317 /* XXX: This should always return root_mem_cgroup */ 1318 return NULL; 1319 } 1320 1321 #ifdef CONFIG_SHRINKER_DEBUG 1322 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1323 { 1324 return 0; 1325 } 1326 1327 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1328 { 1329 return NULL; 1330 } 1331 #endif 1332 1333 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1334 { 1335 return NULL; 1336 } 1337 1338 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1339 { 1340 return NULL; 1341 } 1342 1343 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1344 { 1345 return true; 1346 } 1347 1348 static inline 1349 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1350 enum lru_list lru, int zone_idx) 1351 { 1352 return 0; 1353 } 1354 1355 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1356 { 1357 return 0; 1358 } 1359 1360 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1361 { 1362 return 0; 1363 } 1364 1365 static inline void 1366 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1367 { 1368 } 1369 1370 static inline void 1371 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1372 { 1373 } 1374 1375 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1376 { 1377 } 1378 1379 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1380 struct task_struct *victim, struct mem_cgroup *oom_domain) 1381 { 1382 return NULL; 1383 } 1384 1385 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1386 { 1387 } 1388 1389 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1390 enum memcg_stat_item idx, 1391 int nr) 1392 { 1393 } 1394 1395 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1396 enum memcg_stat_item idx, 1397 int nr) 1398 { 1399 } 1400 1401 static inline void mod_memcg_page_state(struct page *page, 1402 enum memcg_stat_item idx, int val) 1403 { 1404 } 1405 1406 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1407 { 1408 return 0; 1409 } 1410 1411 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1412 enum node_stat_item idx) 1413 { 1414 return node_page_state(lruvec_pgdat(lruvec), idx); 1415 } 1416 1417 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1418 enum node_stat_item idx) 1419 { 1420 return node_page_state(lruvec_pgdat(lruvec), idx); 1421 } 1422 1423 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 1424 { 1425 } 1426 1427 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 1428 { 1429 } 1430 1431 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1432 int val) 1433 { 1434 struct page *page = virt_to_head_page(p); 1435 1436 __mod_node_page_state(page_pgdat(page), idx, val); 1437 } 1438 1439 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1440 int val) 1441 { 1442 struct page *page = virt_to_head_page(p); 1443 1444 mod_node_page_state(page_pgdat(page), idx, val); 1445 } 1446 1447 static inline void count_memcg_events(struct mem_cgroup *memcg, 1448 enum vm_event_item idx, 1449 unsigned long count) 1450 { 1451 } 1452 1453 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1454 enum vm_event_item idx, 1455 unsigned long count) 1456 { 1457 } 1458 1459 static inline void count_memcg_folio_events(struct folio *folio, 1460 enum vm_event_item idx, unsigned long nr) 1461 { 1462 } 1463 1464 static inline 1465 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1466 { 1467 } 1468 1469 static inline void split_page_memcg(struct page *head, int old_order, int new_order) 1470 { 1471 } 1472 #endif /* CONFIG_MEMCG */ 1473 1474 /* 1475 * Extended information for slab objects stored as an array in page->memcg_data 1476 * if MEMCG_DATA_OBJEXTS is set. 1477 */ 1478 struct slabobj_ext { 1479 #ifdef CONFIG_MEMCG 1480 struct obj_cgroup *objcg; 1481 #endif 1482 #ifdef CONFIG_MEM_ALLOC_PROFILING 1483 union codetag_ref ref; 1484 #endif 1485 } __aligned(8); 1486 1487 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1488 { 1489 __mod_lruvec_kmem_state(p, idx, 1); 1490 } 1491 1492 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1493 { 1494 __mod_lruvec_kmem_state(p, idx, -1); 1495 } 1496 1497 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1498 { 1499 struct mem_cgroup *memcg; 1500 1501 memcg = lruvec_memcg(lruvec); 1502 if (!memcg) 1503 return NULL; 1504 memcg = parent_mem_cgroup(memcg); 1505 if (!memcg) 1506 return NULL; 1507 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1508 } 1509 1510 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1511 { 1512 spin_unlock(&lruvec->lru_lock); 1513 } 1514 1515 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1516 { 1517 spin_unlock_irq(&lruvec->lru_lock); 1518 } 1519 1520 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1521 unsigned long flags) 1522 { 1523 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1524 } 1525 1526 /* Test requires a stable folio->memcg binding, see folio_memcg() */ 1527 static inline bool folio_matches_lruvec(struct folio *folio, 1528 struct lruvec *lruvec) 1529 { 1530 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1531 lruvec_memcg(lruvec) == folio_memcg(folio); 1532 } 1533 1534 /* Don't lock again iff page's lruvec locked */ 1535 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1536 struct lruvec *locked_lruvec) 1537 { 1538 if (locked_lruvec) { 1539 if (folio_matches_lruvec(folio, locked_lruvec)) 1540 return locked_lruvec; 1541 1542 unlock_page_lruvec_irq(locked_lruvec); 1543 } 1544 1545 return folio_lruvec_lock_irq(folio); 1546 } 1547 1548 /* Don't lock again iff folio's lruvec locked */ 1549 static inline void folio_lruvec_relock_irqsave(struct folio *folio, 1550 struct lruvec **lruvecp, unsigned long *flags) 1551 { 1552 if (*lruvecp) { 1553 if (folio_matches_lruvec(folio, *lruvecp)) 1554 return; 1555 1556 unlock_page_lruvec_irqrestore(*lruvecp, *flags); 1557 } 1558 1559 *lruvecp = folio_lruvec_lock_irqsave(folio, flags); 1560 } 1561 1562 #ifdef CONFIG_CGROUP_WRITEBACK 1563 1564 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1565 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1566 unsigned long *pheadroom, unsigned long *pdirty, 1567 unsigned long *pwriteback); 1568 1569 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1570 struct bdi_writeback *wb); 1571 1572 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1573 struct bdi_writeback *wb) 1574 { 1575 struct mem_cgroup *memcg; 1576 1577 if (mem_cgroup_disabled()) 1578 return; 1579 1580 memcg = folio_memcg(folio); 1581 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1582 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1583 } 1584 1585 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1586 1587 #else /* CONFIG_CGROUP_WRITEBACK */ 1588 1589 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1590 { 1591 return NULL; 1592 } 1593 1594 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1595 unsigned long *pfilepages, 1596 unsigned long *pheadroom, 1597 unsigned long *pdirty, 1598 unsigned long *pwriteback) 1599 { 1600 } 1601 1602 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1603 struct bdi_writeback *wb) 1604 { 1605 } 1606 1607 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1608 { 1609 } 1610 1611 #endif /* CONFIG_CGROUP_WRITEBACK */ 1612 1613 struct sock; 1614 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1615 gfp_t gfp_mask); 1616 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1617 #ifdef CONFIG_MEMCG 1618 extern struct static_key_false memcg_sockets_enabled_key; 1619 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1620 void mem_cgroup_sk_alloc(struct sock *sk); 1621 void mem_cgroup_sk_free(struct sock *sk); 1622 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1623 { 1624 #ifdef CONFIG_MEMCG_V1 1625 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1626 return !!memcg->tcpmem_pressure; 1627 #endif /* CONFIG_MEMCG_V1 */ 1628 do { 1629 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1630 return true; 1631 } while ((memcg = parent_mem_cgroup(memcg))); 1632 return false; 1633 } 1634 1635 int alloc_shrinker_info(struct mem_cgroup *memcg); 1636 void free_shrinker_info(struct mem_cgroup *memcg); 1637 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1638 void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1639 #else 1640 #define mem_cgroup_sockets_enabled 0 1641 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1642 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1643 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1644 { 1645 return false; 1646 } 1647 1648 static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1649 int nid, int shrinker_id) 1650 { 1651 } 1652 #endif 1653 1654 #ifdef CONFIG_MEMCG 1655 bool mem_cgroup_kmem_disabled(void); 1656 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1657 void __memcg_kmem_uncharge_page(struct page *page, int order); 1658 1659 /* 1660 * The returned objcg pointer is safe to use without additional 1661 * protection within a scope. The scope is defined either by 1662 * the current task (similar to the "current" global variable) 1663 * or by set_active_memcg() pair. 1664 * Please, use obj_cgroup_get() to get a reference if the pointer 1665 * needs to be used outside of the local scope. 1666 */ 1667 struct obj_cgroup *current_obj_cgroup(void); 1668 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1669 1670 static inline struct obj_cgroup *get_obj_cgroup_from_current(void) 1671 { 1672 struct obj_cgroup *objcg = current_obj_cgroup(); 1673 1674 if (objcg) 1675 obj_cgroup_get(objcg); 1676 1677 return objcg; 1678 } 1679 1680 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1681 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1682 1683 extern struct static_key_false memcg_bpf_enabled_key; 1684 static inline bool memcg_bpf_enabled(void) 1685 { 1686 return static_branch_likely(&memcg_bpf_enabled_key); 1687 } 1688 1689 extern struct static_key_false memcg_kmem_online_key; 1690 1691 static inline bool memcg_kmem_online(void) 1692 { 1693 return static_branch_likely(&memcg_kmem_online_key); 1694 } 1695 1696 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1697 int order) 1698 { 1699 if (memcg_kmem_online()) 1700 return __memcg_kmem_charge_page(page, gfp, order); 1701 return 0; 1702 } 1703 1704 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1705 { 1706 if (memcg_kmem_online()) 1707 __memcg_kmem_uncharge_page(page, order); 1708 } 1709 1710 /* 1711 * A helper for accessing memcg's kmem_id, used for getting 1712 * corresponding LRU lists. 1713 */ 1714 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1715 { 1716 return memcg ? memcg->kmemcg_id : -1; 1717 } 1718 1719 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1720 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1721 1722 static inline void count_objcg_event(struct obj_cgroup *objcg, 1723 enum vm_event_item idx) 1724 { 1725 struct mem_cgroup *memcg; 1726 1727 if (!memcg_kmem_online()) 1728 return; 1729 1730 rcu_read_lock(); 1731 memcg = obj_cgroup_memcg(objcg); 1732 count_memcg_events(memcg, idx, 1); 1733 rcu_read_unlock(); 1734 } 1735 1736 #else 1737 static inline bool mem_cgroup_kmem_disabled(void) 1738 { 1739 return true; 1740 } 1741 1742 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1743 int order) 1744 { 1745 return 0; 1746 } 1747 1748 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1749 { 1750 } 1751 1752 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1753 int order) 1754 { 1755 return 0; 1756 } 1757 1758 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1759 { 1760 } 1761 1762 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1763 { 1764 return NULL; 1765 } 1766 1767 static inline bool memcg_bpf_enabled(void) 1768 { 1769 return false; 1770 } 1771 1772 static inline bool memcg_kmem_online(void) 1773 { 1774 return false; 1775 } 1776 1777 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1778 { 1779 return -1; 1780 } 1781 1782 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1783 { 1784 return NULL; 1785 } 1786 1787 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1788 { 1789 return NULL; 1790 } 1791 1792 static inline void count_objcg_event(struct obj_cgroup *objcg, 1793 enum vm_event_item idx) 1794 { 1795 } 1796 1797 #endif /* CONFIG_MEMCG */ 1798 1799 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP) 1800 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1801 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1802 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1803 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg); 1804 #else 1805 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1806 { 1807 return true; 1808 } 1809 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1810 size_t size) 1811 { 1812 } 1813 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1814 size_t size) 1815 { 1816 } 1817 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 1818 { 1819 /* if zswap is disabled, do not block pages going to the swapping device */ 1820 return true; 1821 } 1822 #endif 1823 1824 1825 /* Cgroup v1-related declarations */ 1826 1827 #ifdef CONFIG_MEMCG_V1 1828 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1829 gfp_t gfp_mask, 1830 unsigned long *total_scanned); 1831 1832 bool mem_cgroup_oom_synchronize(bool wait); 1833 1834 static inline bool task_in_memcg_oom(struct task_struct *p) 1835 { 1836 return p->memcg_in_oom; 1837 } 1838 1839 void folio_memcg_lock(struct folio *folio); 1840 void folio_memcg_unlock(struct folio *folio); 1841 1842 /* try to stablize folio_memcg() for all the pages in a memcg */ 1843 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1844 { 1845 rcu_read_lock(); 1846 1847 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 1848 return true; 1849 1850 rcu_read_unlock(); 1851 return false; 1852 } 1853 1854 static inline void mem_cgroup_unlock_pages(void) 1855 { 1856 rcu_read_unlock(); 1857 } 1858 1859 static inline void mem_cgroup_enter_user_fault(void) 1860 { 1861 WARN_ON(current->in_user_fault); 1862 current->in_user_fault = 1; 1863 } 1864 1865 static inline void mem_cgroup_exit_user_fault(void) 1866 { 1867 WARN_ON(!current->in_user_fault); 1868 current->in_user_fault = 0; 1869 } 1870 1871 #else /* CONFIG_MEMCG_V1 */ 1872 static inline 1873 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1874 gfp_t gfp_mask, 1875 unsigned long *total_scanned) 1876 { 1877 return 0; 1878 } 1879 1880 static inline void folio_memcg_lock(struct folio *folio) 1881 { 1882 } 1883 1884 static inline void folio_memcg_unlock(struct folio *folio) 1885 { 1886 } 1887 1888 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1889 { 1890 /* to match folio_memcg_rcu() */ 1891 rcu_read_lock(); 1892 return true; 1893 } 1894 1895 static inline void mem_cgroup_unlock_pages(void) 1896 { 1897 rcu_read_unlock(); 1898 } 1899 1900 static inline bool task_in_memcg_oom(struct task_struct *p) 1901 { 1902 return false; 1903 } 1904 1905 static inline bool mem_cgroup_oom_synchronize(bool wait) 1906 { 1907 return false; 1908 } 1909 1910 static inline void mem_cgroup_enter_user_fault(void) 1911 { 1912 } 1913 1914 static inline void mem_cgroup_exit_user_fault(void) 1915 { 1916 } 1917 1918 #endif /* CONFIG_MEMCG_V1 */ 1919 1920 #endif /* _LINUX_MEMCONTROL_H */ 1921