1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/kernel.h> 18 #include <linux/page_counter.h> 19 #include <linux/vmpressure.h> 20 #include <linux/eventfd.h> 21 #include <linux/mm.h> 22 #include <linux/vmstat.h> 23 #include <linux/writeback.h> 24 #include <linux/page-flags.h> 25 #include <linux/shrinker.h> 26 27 struct mem_cgroup; 28 struct obj_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* Cgroup-specific page state, on top of universal node page state */ 34 enum memcg_stat_item { 35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 36 MEMCG_SOCK, 37 MEMCG_PERCPU_B, 38 MEMCG_VMALLOC, 39 MEMCG_KMEM, 40 MEMCG_ZSWAP_B, 41 MEMCG_ZSWAPPED, 42 MEMCG_NR_STAT, 43 }; 44 45 enum memcg_memory_event { 46 MEMCG_LOW, 47 MEMCG_HIGH, 48 MEMCG_MAX, 49 MEMCG_OOM, 50 MEMCG_OOM_KILL, 51 MEMCG_OOM_GROUP_KILL, 52 MEMCG_SWAP_HIGH, 53 MEMCG_SWAP_MAX, 54 MEMCG_SWAP_FAIL, 55 MEMCG_NR_MEMORY_EVENTS, 56 }; 57 58 struct mem_cgroup_reclaim_cookie { 59 pg_data_t *pgdat; 60 unsigned int generation; 61 }; 62 63 #ifdef CONFIG_MEMCG 64 65 #define MEM_CGROUP_ID_SHIFT 16 66 67 struct mem_cgroup_id { 68 int id; 69 refcount_t ref; 70 }; 71 72 /* 73 * Per memcg event counter is incremented at every pagein/pageout. With THP, 74 * it will be incremented by the number of pages. This counter is used 75 * to trigger some periodic events. This is straightforward and better 76 * than using jiffies etc. to handle periodic memcg event. 77 */ 78 enum mem_cgroup_events_target { 79 MEM_CGROUP_TARGET_THRESH, 80 MEM_CGROUP_TARGET_SOFTLIMIT, 81 MEM_CGROUP_NTARGETS, 82 }; 83 84 struct memcg_vmstats_percpu; 85 struct memcg_vmstats; 86 struct lruvec_stats_percpu; 87 struct lruvec_stats; 88 89 struct mem_cgroup_reclaim_iter { 90 struct mem_cgroup *position; 91 /* scan generation, increased every round-trip */ 92 unsigned int generation; 93 }; 94 95 /* 96 * per-node information in memory controller. 97 */ 98 struct mem_cgroup_per_node { 99 /* Keep the read-only fields at the start */ 100 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 101 /* use container_of */ 102 103 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 104 struct lruvec_stats *lruvec_stats; 105 struct shrinker_info __rcu *shrinker_info; 106 107 /* 108 * Memcg-v1 only stuff in middle as buffer between read mostly fields 109 * and update often fields to avoid false sharing. Once v1 stuff is 110 * moved in a separate struct, an explicit padding is needed. 111 */ 112 113 struct rb_node tree_node; /* RB tree node */ 114 unsigned long usage_in_excess;/* Set to the value by which */ 115 /* the soft limit is exceeded*/ 116 bool on_tree; 117 118 /* Fields which get updated often at the end. */ 119 struct lruvec lruvec; 120 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 121 struct mem_cgroup_reclaim_iter iter; 122 }; 123 124 struct mem_cgroup_threshold { 125 struct eventfd_ctx *eventfd; 126 unsigned long threshold; 127 }; 128 129 /* For threshold */ 130 struct mem_cgroup_threshold_ary { 131 /* An array index points to threshold just below or equal to usage. */ 132 int current_threshold; 133 /* Size of entries[] */ 134 unsigned int size; 135 /* Array of thresholds */ 136 struct mem_cgroup_threshold entries[] __counted_by(size); 137 }; 138 139 struct mem_cgroup_thresholds { 140 /* Primary thresholds array */ 141 struct mem_cgroup_threshold_ary *primary; 142 /* 143 * Spare threshold array. 144 * This is needed to make mem_cgroup_unregister_event() "never fail". 145 * It must be able to store at least primary->size - 1 entries. 146 */ 147 struct mem_cgroup_threshold_ary *spare; 148 }; 149 150 /* 151 * Remember four most recent foreign writebacks with dirty pages in this 152 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 153 * one in a given round, we're likely to catch it later if it keeps 154 * foreign-dirtying, so a fairly low count should be enough. 155 * 156 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 157 */ 158 #define MEMCG_CGWB_FRN_CNT 4 159 160 struct memcg_cgwb_frn { 161 u64 bdi_id; /* bdi->id of the foreign inode */ 162 int memcg_id; /* memcg->css.id of foreign inode */ 163 u64 at; /* jiffies_64 at the time of dirtying */ 164 struct wb_completion done; /* tracks in-flight foreign writebacks */ 165 }; 166 167 /* 168 * Bucket for arbitrarily byte-sized objects charged to a memory 169 * cgroup. The bucket can be reparented in one piece when the cgroup 170 * is destroyed, without having to round up the individual references 171 * of all live memory objects in the wild. 172 */ 173 struct obj_cgroup { 174 struct percpu_ref refcnt; 175 struct mem_cgroup *memcg; 176 atomic_t nr_charged_bytes; 177 union { 178 struct list_head list; /* protected by objcg_lock */ 179 struct rcu_head rcu; 180 }; 181 }; 182 183 /* 184 * The memory controller data structure. The memory controller controls both 185 * page cache and RSS per cgroup. We would eventually like to provide 186 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 187 * to help the administrator determine what knobs to tune. 188 */ 189 struct mem_cgroup { 190 struct cgroup_subsys_state css; 191 192 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 193 struct mem_cgroup_id id; 194 195 /* Accounted resources */ 196 struct page_counter memory; /* Both v1 & v2 */ 197 198 union { 199 struct page_counter swap; /* v2 only */ 200 struct page_counter memsw; /* v1 only */ 201 }; 202 203 /* Legacy consumer-oriented counters */ 204 struct page_counter kmem; /* v1 only */ 205 struct page_counter tcpmem; /* v1 only */ 206 207 /* Range enforcement for interrupt charges */ 208 struct work_struct high_work; 209 210 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 211 unsigned long zswap_max; 212 213 /* 214 * Prevent pages from this memcg from being written back from zswap to 215 * swap, and from being swapped out on zswap store failures. 216 */ 217 bool zswap_writeback; 218 #endif 219 220 unsigned long soft_limit; 221 222 /* vmpressure notifications */ 223 struct vmpressure vmpressure; 224 225 /* 226 * Should the OOM killer kill all belonging tasks, had it kill one? 227 */ 228 bool oom_group; 229 230 /* protected by memcg_oom_lock */ 231 bool oom_lock; 232 int under_oom; 233 234 int swappiness; 235 /* OOM-Killer disable */ 236 int oom_kill_disable; 237 238 /* memory.events and memory.events.local */ 239 struct cgroup_file events_file; 240 struct cgroup_file events_local_file; 241 242 /* handle for "memory.swap.events" */ 243 struct cgroup_file swap_events_file; 244 245 /* protect arrays of thresholds */ 246 struct mutex thresholds_lock; 247 248 /* thresholds for memory usage. RCU-protected */ 249 struct mem_cgroup_thresholds thresholds; 250 251 /* thresholds for mem+swap usage. RCU-protected */ 252 struct mem_cgroup_thresholds memsw_thresholds; 253 254 /* For oom notifier event fd */ 255 struct list_head oom_notify; 256 257 /* 258 * Should we move charges of a task when a task is moved into this 259 * mem_cgroup ? And what type of charges should we move ? 260 */ 261 unsigned long move_charge_at_immigrate; 262 /* taken only while moving_account > 0 */ 263 spinlock_t move_lock; 264 unsigned long move_lock_flags; 265 266 CACHELINE_PADDING(_pad1_); 267 268 /* memory.stat */ 269 struct memcg_vmstats *vmstats; 270 271 /* memory.events */ 272 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 273 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 274 275 /* 276 * Hint of reclaim pressure for socket memroy management. Note 277 * that this indicator should NOT be used in legacy cgroup mode 278 * where socket memory is accounted/charged separately. 279 */ 280 unsigned long socket_pressure; 281 282 /* Legacy tcp memory accounting */ 283 bool tcpmem_active; 284 int tcpmem_pressure; 285 286 #ifdef CONFIG_MEMCG_KMEM 287 int kmemcg_id; 288 /* 289 * memcg->objcg is wiped out as a part of the objcg repaprenting 290 * process. memcg->orig_objcg preserves a pointer (and a reference) 291 * to the original objcg until the end of live of memcg. 292 */ 293 struct obj_cgroup __rcu *objcg; 294 struct obj_cgroup *orig_objcg; 295 /* list of inherited objcgs, protected by objcg_lock */ 296 struct list_head objcg_list; 297 #endif 298 299 CACHELINE_PADDING(_pad2_); 300 301 /* 302 * set > 0 if pages under this cgroup are moving to other cgroup. 303 */ 304 atomic_t moving_account; 305 struct task_struct *move_lock_task; 306 307 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 308 309 #ifdef CONFIG_CGROUP_WRITEBACK 310 struct list_head cgwb_list; 311 struct wb_domain cgwb_domain; 312 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 313 #endif 314 315 /* List of events which userspace want to receive */ 316 struct list_head event_list; 317 spinlock_t event_list_lock; 318 319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 320 struct deferred_split deferred_split_queue; 321 #endif 322 323 #ifdef CONFIG_LRU_GEN_WALKS_MMU 324 /* per-memcg mm_struct list */ 325 struct lru_gen_mm_list mm_list; 326 #endif 327 328 struct mem_cgroup_per_node *nodeinfo[]; 329 }; 330 331 /* 332 * size of first charge trial. 333 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 334 * workload. 335 */ 336 #define MEMCG_CHARGE_BATCH 64U 337 338 extern struct mem_cgroup *root_mem_cgroup; 339 340 enum page_memcg_data_flags { 341 /* page->memcg_data is a pointer to an slabobj_ext vector */ 342 MEMCG_DATA_OBJEXTS = (1UL << 0), 343 /* page has been accounted as a non-slab kernel page */ 344 MEMCG_DATA_KMEM = (1UL << 1), 345 /* the next bit after the last actual flag */ 346 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 347 }; 348 349 #define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS 350 351 #else /* CONFIG_MEMCG */ 352 353 #define __FIRST_OBJEXT_FLAG (1UL << 0) 354 355 #endif /* CONFIG_MEMCG */ 356 357 enum objext_flags { 358 /* slabobj_ext vector failed to allocate */ 359 OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG, 360 /* the next bit after the last actual flag */ 361 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1), 362 }; 363 364 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1) 365 366 #ifdef CONFIG_MEMCG 367 368 static inline bool folio_memcg_kmem(struct folio *folio); 369 370 /* 371 * After the initialization objcg->memcg is always pointing at 372 * a valid memcg, but can be atomically swapped to the parent memcg. 373 * 374 * The caller must ensure that the returned memcg won't be released: 375 * e.g. acquire the rcu_read_lock or css_set_lock. 376 */ 377 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 378 { 379 return READ_ONCE(objcg->memcg); 380 } 381 382 /* 383 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 384 * @folio: Pointer to the folio. 385 * 386 * Returns a pointer to the memory cgroup associated with the folio, 387 * or NULL. This function assumes that the folio is known to have a 388 * proper memory cgroup pointer. It's not safe to call this function 389 * against some type of folios, e.g. slab folios or ex-slab folios or 390 * kmem folios. 391 */ 392 static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 393 { 394 unsigned long memcg_data = folio->memcg_data; 395 396 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 397 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 398 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 399 400 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 401 } 402 403 /* 404 * __folio_objcg - get the object cgroup associated with a kmem folio. 405 * @folio: Pointer to the folio. 406 * 407 * Returns a pointer to the object cgroup associated with the folio, 408 * or NULL. This function assumes that the folio is known to have a 409 * proper object cgroup pointer. It's not safe to call this function 410 * against some type of folios, e.g. slab folios or ex-slab folios or 411 * LRU folios. 412 */ 413 static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 414 { 415 unsigned long memcg_data = folio->memcg_data; 416 417 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 418 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 419 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 420 421 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 422 } 423 424 /* 425 * folio_memcg - Get the memory cgroup associated with a folio. 426 * @folio: Pointer to the folio. 427 * 428 * Returns a pointer to the memory cgroup associated with the folio, 429 * or NULL. This function assumes that the folio is known to have a 430 * proper memory cgroup pointer. It's not safe to call this function 431 * against some type of folios, e.g. slab folios or ex-slab folios. 432 * 433 * For a non-kmem folio any of the following ensures folio and memcg binding 434 * stability: 435 * 436 * - the folio lock 437 * - LRU isolation 438 * - folio_memcg_lock() 439 * - exclusive reference 440 * - mem_cgroup_trylock_pages() 441 * 442 * For a kmem folio a caller should hold an rcu read lock to protect memcg 443 * associated with a kmem folio from being released. 444 */ 445 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 446 { 447 if (folio_memcg_kmem(folio)) 448 return obj_cgroup_memcg(__folio_objcg(folio)); 449 return __folio_memcg(folio); 450 } 451 452 /** 453 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 454 * @folio: Pointer to the folio. 455 * 456 * This function assumes that the folio is known to have a 457 * proper memory cgroup pointer. It's not safe to call this function 458 * against some type of folios, e.g. slab folios or ex-slab folios. 459 * 460 * Return: A pointer to the memory cgroup associated with the folio, 461 * or NULL. 462 */ 463 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 464 { 465 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 466 467 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 468 WARN_ON_ONCE(!rcu_read_lock_held()); 469 470 if (memcg_data & MEMCG_DATA_KMEM) { 471 struct obj_cgroup *objcg; 472 473 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 474 return obj_cgroup_memcg(objcg); 475 } 476 477 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 478 } 479 480 /* 481 * folio_memcg_check - Get the memory cgroup associated with a folio. 482 * @folio: Pointer to the folio. 483 * 484 * Returns a pointer to the memory cgroup associated with the folio, 485 * or NULL. This function unlike folio_memcg() can take any folio 486 * as an argument. It has to be used in cases when it's not known if a folio 487 * has an associated memory cgroup pointer or an object cgroups vector or 488 * an object cgroup. 489 * 490 * For a non-kmem folio any of the following ensures folio and memcg binding 491 * stability: 492 * 493 * - the folio lock 494 * - LRU isolation 495 * - lock_folio_memcg() 496 * - exclusive reference 497 * - mem_cgroup_trylock_pages() 498 * 499 * For a kmem folio a caller should hold an rcu read lock to protect memcg 500 * associated with a kmem folio from being released. 501 */ 502 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 503 { 504 /* 505 * Because folio->memcg_data might be changed asynchronously 506 * for slabs, READ_ONCE() should be used here. 507 */ 508 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 509 510 if (memcg_data & MEMCG_DATA_OBJEXTS) 511 return NULL; 512 513 if (memcg_data & MEMCG_DATA_KMEM) { 514 struct obj_cgroup *objcg; 515 516 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 517 return obj_cgroup_memcg(objcg); 518 } 519 520 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 521 } 522 523 static inline struct mem_cgroup *page_memcg_check(struct page *page) 524 { 525 if (PageTail(page)) 526 return NULL; 527 return folio_memcg_check((struct folio *)page); 528 } 529 530 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 531 { 532 struct mem_cgroup *memcg; 533 534 rcu_read_lock(); 535 retry: 536 memcg = obj_cgroup_memcg(objcg); 537 if (unlikely(!css_tryget(&memcg->css))) 538 goto retry; 539 rcu_read_unlock(); 540 541 return memcg; 542 } 543 544 #ifdef CONFIG_MEMCG_KMEM 545 /* 546 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 547 * @folio: Pointer to the folio. 548 * 549 * Checks if the folio has MemcgKmem flag set. The caller must ensure 550 * that the folio has an associated memory cgroup. It's not safe to call 551 * this function against some types of folios, e.g. slab folios. 552 */ 553 static inline bool folio_memcg_kmem(struct folio *folio) 554 { 555 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 556 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio); 557 return folio->memcg_data & MEMCG_DATA_KMEM; 558 } 559 560 561 #else 562 static inline bool folio_memcg_kmem(struct folio *folio) 563 { 564 return false; 565 } 566 567 #endif 568 569 static inline bool PageMemcgKmem(struct page *page) 570 { 571 return folio_memcg_kmem(page_folio(page)); 572 } 573 574 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 575 { 576 return (memcg == root_mem_cgroup); 577 } 578 579 static inline bool mem_cgroup_disabled(void) 580 { 581 return !cgroup_subsys_enabled(memory_cgrp_subsys); 582 } 583 584 static inline void mem_cgroup_protection(struct mem_cgroup *root, 585 struct mem_cgroup *memcg, 586 unsigned long *min, 587 unsigned long *low) 588 { 589 *min = *low = 0; 590 591 if (mem_cgroup_disabled()) 592 return; 593 594 /* 595 * There is no reclaim protection applied to a targeted reclaim. 596 * We are special casing this specific case here because 597 * mem_cgroup_calculate_protection is not robust enough to keep 598 * the protection invariant for calculated effective values for 599 * parallel reclaimers with different reclaim target. This is 600 * especially a problem for tail memcgs (as they have pages on LRU) 601 * which would want to have effective values 0 for targeted reclaim 602 * but a different value for external reclaim. 603 * 604 * Example 605 * Let's have global and A's reclaim in parallel: 606 * | 607 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 608 * |\ 609 * | C (low = 1G, usage = 2.5G) 610 * B (low = 1G, usage = 0.5G) 611 * 612 * For the global reclaim 613 * A.elow = A.low 614 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 615 * C.elow = min(C.usage, C.low) 616 * 617 * With the effective values resetting we have A reclaim 618 * A.elow = 0 619 * B.elow = B.low 620 * C.elow = C.low 621 * 622 * If the global reclaim races with A's reclaim then 623 * B.elow = C.elow = 0 because children_low_usage > A.elow) 624 * is possible and reclaiming B would be violating the protection. 625 * 626 */ 627 if (root == memcg) 628 return; 629 630 *min = READ_ONCE(memcg->memory.emin); 631 *low = READ_ONCE(memcg->memory.elow); 632 } 633 634 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 635 struct mem_cgroup *memcg); 636 637 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 638 struct mem_cgroup *memcg) 639 { 640 /* 641 * The root memcg doesn't account charges, and doesn't support 642 * protection. The target memcg's protection is ignored, see 643 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 644 */ 645 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 646 memcg == target; 647 } 648 649 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 650 struct mem_cgroup *memcg) 651 { 652 if (mem_cgroup_unprotected(target, memcg)) 653 return false; 654 655 return READ_ONCE(memcg->memory.elow) >= 656 page_counter_read(&memcg->memory); 657 } 658 659 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 660 struct mem_cgroup *memcg) 661 { 662 if (mem_cgroup_unprotected(target, memcg)) 663 return false; 664 665 return READ_ONCE(memcg->memory.emin) >= 666 page_counter_read(&memcg->memory); 667 } 668 669 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg); 670 671 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 672 673 /** 674 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 675 * @folio: Folio to charge. 676 * @mm: mm context of the allocating task. 677 * @gfp: Reclaim mode. 678 * 679 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 680 * pages according to @gfp if necessary. If @mm is NULL, try to 681 * charge to the active memcg. 682 * 683 * Do not use this for folios allocated for swapin. 684 * 685 * Return: 0 on success. Otherwise, an error code is returned. 686 */ 687 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 688 gfp_t gfp) 689 { 690 if (mem_cgroup_disabled()) 691 return 0; 692 return __mem_cgroup_charge(folio, mm, gfp); 693 } 694 695 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 696 long nr_pages); 697 698 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 699 gfp_t gfp, swp_entry_t entry); 700 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 701 702 void __mem_cgroup_uncharge(struct folio *folio); 703 704 /** 705 * mem_cgroup_uncharge - Uncharge a folio. 706 * @folio: Folio to uncharge. 707 * 708 * Uncharge a folio previously charged with mem_cgroup_charge(). 709 */ 710 static inline void mem_cgroup_uncharge(struct folio *folio) 711 { 712 if (mem_cgroup_disabled()) 713 return; 714 __mem_cgroup_uncharge(folio); 715 } 716 717 void __mem_cgroup_uncharge_folios(struct folio_batch *folios); 718 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 719 { 720 if (mem_cgroup_disabled()) 721 return; 722 __mem_cgroup_uncharge_folios(folios); 723 } 724 725 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages); 726 void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 727 void mem_cgroup_migrate(struct folio *old, struct folio *new); 728 729 /** 730 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 731 * @memcg: memcg of the wanted lruvec 732 * @pgdat: pglist_data 733 * 734 * Returns the lru list vector holding pages for a given @memcg & 735 * @pgdat combination. This can be the node lruvec, if the memory 736 * controller is disabled. 737 */ 738 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 739 struct pglist_data *pgdat) 740 { 741 struct mem_cgroup_per_node *mz; 742 struct lruvec *lruvec; 743 744 if (mem_cgroup_disabled()) { 745 lruvec = &pgdat->__lruvec; 746 goto out; 747 } 748 749 if (!memcg) 750 memcg = root_mem_cgroup; 751 752 mz = memcg->nodeinfo[pgdat->node_id]; 753 lruvec = &mz->lruvec; 754 out: 755 /* 756 * Since a node can be onlined after the mem_cgroup was created, 757 * we have to be prepared to initialize lruvec->pgdat here; 758 * and if offlined then reonlined, we need to reinitialize it. 759 */ 760 if (unlikely(lruvec->pgdat != pgdat)) 761 lruvec->pgdat = pgdat; 762 return lruvec; 763 } 764 765 /** 766 * folio_lruvec - return lruvec for isolating/putting an LRU folio 767 * @folio: Pointer to the folio. 768 * 769 * This function relies on folio->mem_cgroup being stable. 770 */ 771 static inline struct lruvec *folio_lruvec(struct folio *folio) 772 { 773 struct mem_cgroup *memcg = folio_memcg(folio); 774 775 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 776 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 777 } 778 779 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 780 781 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 782 783 struct mem_cgroup *get_mem_cgroup_from_current(void); 784 785 struct lruvec *folio_lruvec_lock(struct folio *folio); 786 struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 787 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 788 unsigned long *flags); 789 790 #ifdef CONFIG_DEBUG_VM 791 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 792 #else 793 static inline 794 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 795 { 796 } 797 #endif 798 799 static inline 800 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 801 return css ? container_of(css, struct mem_cgroup, css) : NULL; 802 } 803 804 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 805 { 806 return percpu_ref_tryget(&objcg->refcnt); 807 } 808 809 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 810 { 811 percpu_ref_get(&objcg->refcnt); 812 } 813 814 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 815 unsigned long nr) 816 { 817 percpu_ref_get_many(&objcg->refcnt, nr); 818 } 819 820 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 821 { 822 if (objcg) 823 percpu_ref_put(&objcg->refcnt); 824 } 825 826 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 827 { 828 return !memcg || css_tryget(&memcg->css); 829 } 830 831 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 832 { 833 return !memcg || css_tryget_online(&memcg->css); 834 } 835 836 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 837 { 838 if (memcg) 839 css_put(&memcg->css); 840 } 841 842 #define mem_cgroup_from_counter(counter, member) \ 843 container_of(counter, struct mem_cgroup, member) 844 845 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 846 struct mem_cgroup *, 847 struct mem_cgroup_reclaim_cookie *); 848 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 849 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 850 int (*)(struct task_struct *, void *), void *arg); 851 852 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 853 { 854 if (mem_cgroup_disabled()) 855 return 0; 856 857 return memcg->id.id; 858 } 859 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 860 861 #ifdef CONFIG_SHRINKER_DEBUG 862 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 863 { 864 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 865 } 866 867 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 868 #endif 869 870 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 871 { 872 return mem_cgroup_from_css(seq_css(m)); 873 } 874 875 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 876 { 877 struct mem_cgroup_per_node *mz; 878 879 if (mem_cgroup_disabled()) 880 return NULL; 881 882 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 883 return mz->memcg; 884 } 885 886 /** 887 * parent_mem_cgroup - find the accounting parent of a memcg 888 * @memcg: memcg whose parent to find 889 * 890 * Returns the parent memcg, or NULL if this is the root. 891 */ 892 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 893 { 894 return mem_cgroup_from_css(memcg->css.parent); 895 } 896 897 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 898 struct mem_cgroup *root) 899 { 900 if (root == memcg) 901 return true; 902 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 903 } 904 905 static inline bool mm_match_cgroup(struct mm_struct *mm, 906 struct mem_cgroup *memcg) 907 { 908 struct mem_cgroup *task_memcg; 909 bool match = false; 910 911 rcu_read_lock(); 912 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 913 if (task_memcg) 914 match = mem_cgroup_is_descendant(task_memcg, memcg); 915 rcu_read_unlock(); 916 return match; 917 } 918 919 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 920 ino_t page_cgroup_ino(struct page *page); 921 922 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 923 { 924 if (mem_cgroup_disabled()) 925 return true; 926 return !!(memcg->css.flags & CSS_ONLINE); 927 } 928 929 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 930 int zid, int nr_pages); 931 932 static inline 933 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 934 enum lru_list lru, int zone_idx) 935 { 936 struct mem_cgroup_per_node *mz; 937 938 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 939 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 940 } 941 942 void mem_cgroup_handle_over_high(gfp_t gfp_mask); 943 944 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 945 946 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 947 948 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 949 struct task_struct *p); 950 951 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 952 953 static inline void mem_cgroup_enter_user_fault(void) 954 { 955 WARN_ON(current->in_user_fault); 956 current->in_user_fault = 1; 957 } 958 959 static inline void mem_cgroup_exit_user_fault(void) 960 { 961 WARN_ON(!current->in_user_fault); 962 current->in_user_fault = 0; 963 } 964 965 static inline bool task_in_memcg_oom(struct task_struct *p) 966 { 967 return p->memcg_in_oom; 968 } 969 970 bool mem_cgroup_oom_synchronize(bool wait); 971 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 972 struct mem_cgroup *oom_domain); 973 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 974 975 void folio_memcg_lock(struct folio *folio); 976 void folio_memcg_unlock(struct folio *folio); 977 978 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 979 int val); 980 981 /* try to stablize folio_memcg() for all the pages in a memcg */ 982 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 983 { 984 rcu_read_lock(); 985 986 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 987 return true; 988 989 rcu_read_unlock(); 990 return false; 991 } 992 993 static inline void mem_cgroup_unlock_pages(void) 994 { 995 rcu_read_unlock(); 996 } 997 998 /* idx can be of type enum memcg_stat_item or node_stat_item */ 999 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1000 enum memcg_stat_item idx, int val) 1001 { 1002 unsigned long flags; 1003 1004 local_irq_save(flags); 1005 __mod_memcg_state(memcg, idx, val); 1006 local_irq_restore(flags); 1007 } 1008 1009 static inline void mod_memcg_page_state(struct page *page, 1010 enum memcg_stat_item idx, int val) 1011 { 1012 struct mem_cgroup *memcg; 1013 1014 if (mem_cgroup_disabled()) 1015 return; 1016 1017 rcu_read_lock(); 1018 memcg = folio_memcg(page_folio(page)); 1019 if (memcg) 1020 mod_memcg_state(memcg, idx, val); 1021 rcu_read_unlock(); 1022 } 1023 1024 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 1025 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx); 1026 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1027 enum node_stat_item idx); 1028 1029 void mem_cgroup_flush_stats(struct mem_cgroup *memcg); 1030 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg); 1031 1032 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1033 1034 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1035 int val) 1036 { 1037 unsigned long flags; 1038 1039 local_irq_save(flags); 1040 __mod_lruvec_kmem_state(p, idx, val); 1041 local_irq_restore(flags); 1042 } 1043 1044 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1045 unsigned long count); 1046 1047 static inline void count_memcg_events(struct mem_cgroup *memcg, 1048 enum vm_event_item idx, 1049 unsigned long count) 1050 { 1051 unsigned long flags; 1052 1053 local_irq_save(flags); 1054 __count_memcg_events(memcg, idx, count); 1055 local_irq_restore(flags); 1056 } 1057 1058 static inline void count_memcg_folio_events(struct folio *folio, 1059 enum vm_event_item idx, unsigned long nr) 1060 { 1061 struct mem_cgroup *memcg = folio_memcg(folio); 1062 1063 if (memcg) 1064 count_memcg_events(memcg, idx, nr); 1065 } 1066 1067 static inline void count_memcg_event_mm(struct mm_struct *mm, 1068 enum vm_event_item idx) 1069 { 1070 struct mem_cgroup *memcg; 1071 1072 if (mem_cgroup_disabled()) 1073 return; 1074 1075 rcu_read_lock(); 1076 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1077 if (likely(memcg)) 1078 count_memcg_events(memcg, idx, 1); 1079 rcu_read_unlock(); 1080 } 1081 1082 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1083 enum memcg_memory_event event) 1084 { 1085 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1086 event == MEMCG_SWAP_FAIL; 1087 1088 atomic_long_inc(&memcg->memory_events_local[event]); 1089 if (!swap_event) 1090 cgroup_file_notify(&memcg->events_local_file); 1091 1092 do { 1093 atomic_long_inc(&memcg->memory_events[event]); 1094 if (swap_event) 1095 cgroup_file_notify(&memcg->swap_events_file); 1096 else 1097 cgroup_file_notify(&memcg->events_file); 1098 1099 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1100 break; 1101 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1102 break; 1103 } while ((memcg = parent_mem_cgroup(memcg)) && 1104 !mem_cgroup_is_root(memcg)); 1105 } 1106 1107 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1108 enum memcg_memory_event event) 1109 { 1110 struct mem_cgroup *memcg; 1111 1112 if (mem_cgroup_disabled()) 1113 return; 1114 1115 rcu_read_lock(); 1116 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1117 if (likely(memcg)) 1118 memcg_memory_event(memcg, event); 1119 rcu_read_unlock(); 1120 } 1121 1122 void split_page_memcg(struct page *head, int old_order, int new_order); 1123 1124 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1125 gfp_t gfp_mask, 1126 unsigned long *total_scanned); 1127 1128 #else /* CONFIG_MEMCG */ 1129 1130 #define MEM_CGROUP_ID_SHIFT 0 1131 1132 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1133 { 1134 return NULL; 1135 } 1136 1137 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1138 { 1139 WARN_ON_ONCE(!rcu_read_lock_held()); 1140 return NULL; 1141 } 1142 1143 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1144 { 1145 return NULL; 1146 } 1147 1148 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1149 { 1150 return NULL; 1151 } 1152 1153 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 1154 { 1155 return NULL; 1156 } 1157 1158 static inline bool folio_memcg_kmem(struct folio *folio) 1159 { 1160 return false; 1161 } 1162 1163 static inline bool PageMemcgKmem(struct page *page) 1164 { 1165 return false; 1166 } 1167 1168 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1169 { 1170 return true; 1171 } 1172 1173 static inline bool mem_cgroup_disabled(void) 1174 { 1175 return true; 1176 } 1177 1178 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1179 enum memcg_memory_event event) 1180 { 1181 } 1182 1183 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1184 enum memcg_memory_event event) 1185 { 1186 } 1187 1188 static inline void mem_cgroup_protection(struct mem_cgroup *root, 1189 struct mem_cgroup *memcg, 1190 unsigned long *min, 1191 unsigned long *low) 1192 { 1193 *min = *low = 0; 1194 } 1195 1196 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1197 struct mem_cgroup *memcg) 1198 { 1199 } 1200 1201 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1202 struct mem_cgroup *memcg) 1203 { 1204 return true; 1205 } 1206 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1207 struct mem_cgroup *memcg) 1208 { 1209 return false; 1210 } 1211 1212 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1213 struct mem_cgroup *memcg) 1214 { 1215 return false; 1216 } 1217 1218 static inline void mem_cgroup_commit_charge(struct folio *folio, 1219 struct mem_cgroup *memcg) 1220 { 1221 } 1222 1223 static inline int mem_cgroup_charge(struct folio *folio, 1224 struct mm_struct *mm, gfp_t gfp) 1225 { 1226 return 0; 1227 } 1228 1229 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, 1230 gfp_t gfp, long nr_pages) 1231 { 1232 return 0; 1233 } 1234 1235 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1236 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1237 { 1238 return 0; 1239 } 1240 1241 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1242 { 1243 } 1244 1245 static inline void mem_cgroup_uncharge(struct folio *folio) 1246 { 1247 } 1248 1249 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 1250 { 1251 } 1252 1253 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 1254 unsigned int nr_pages) 1255 { 1256 } 1257 1258 static inline void mem_cgroup_replace_folio(struct folio *old, 1259 struct folio *new) 1260 { 1261 } 1262 1263 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1264 { 1265 } 1266 1267 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1268 struct pglist_data *pgdat) 1269 { 1270 return &pgdat->__lruvec; 1271 } 1272 1273 static inline struct lruvec *folio_lruvec(struct folio *folio) 1274 { 1275 struct pglist_data *pgdat = folio_pgdat(folio); 1276 return &pgdat->__lruvec; 1277 } 1278 1279 static inline 1280 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1281 { 1282 } 1283 1284 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1285 { 1286 return NULL; 1287 } 1288 1289 static inline bool mm_match_cgroup(struct mm_struct *mm, 1290 struct mem_cgroup *memcg) 1291 { 1292 return true; 1293 } 1294 1295 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1296 { 1297 return NULL; 1298 } 1299 1300 static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1301 { 1302 return NULL; 1303 } 1304 1305 static inline 1306 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1307 { 1308 return NULL; 1309 } 1310 1311 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1312 { 1313 } 1314 1315 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1316 { 1317 return true; 1318 } 1319 1320 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 1321 { 1322 return true; 1323 } 1324 1325 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1326 { 1327 } 1328 1329 static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1330 { 1331 struct pglist_data *pgdat = folio_pgdat(folio); 1332 1333 spin_lock(&pgdat->__lruvec.lru_lock); 1334 return &pgdat->__lruvec; 1335 } 1336 1337 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1338 { 1339 struct pglist_data *pgdat = folio_pgdat(folio); 1340 1341 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1342 return &pgdat->__lruvec; 1343 } 1344 1345 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1346 unsigned long *flagsp) 1347 { 1348 struct pglist_data *pgdat = folio_pgdat(folio); 1349 1350 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1351 return &pgdat->__lruvec; 1352 } 1353 1354 static inline struct mem_cgroup * 1355 mem_cgroup_iter(struct mem_cgroup *root, 1356 struct mem_cgroup *prev, 1357 struct mem_cgroup_reclaim_cookie *reclaim) 1358 { 1359 return NULL; 1360 } 1361 1362 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1363 struct mem_cgroup *prev) 1364 { 1365 } 1366 1367 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1368 int (*fn)(struct task_struct *, void *), void *arg) 1369 { 1370 } 1371 1372 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1373 { 1374 return 0; 1375 } 1376 1377 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1378 { 1379 WARN_ON_ONCE(id); 1380 /* XXX: This should always return root_mem_cgroup */ 1381 return NULL; 1382 } 1383 1384 #ifdef CONFIG_SHRINKER_DEBUG 1385 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1386 { 1387 return 0; 1388 } 1389 1390 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1391 { 1392 return NULL; 1393 } 1394 #endif 1395 1396 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1397 { 1398 return NULL; 1399 } 1400 1401 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1402 { 1403 return NULL; 1404 } 1405 1406 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1407 { 1408 return true; 1409 } 1410 1411 static inline 1412 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1413 enum lru_list lru, int zone_idx) 1414 { 1415 return 0; 1416 } 1417 1418 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1419 { 1420 return 0; 1421 } 1422 1423 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1424 { 1425 return 0; 1426 } 1427 1428 static inline void 1429 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1430 { 1431 } 1432 1433 static inline void 1434 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1435 { 1436 } 1437 1438 static inline void folio_memcg_lock(struct folio *folio) 1439 { 1440 } 1441 1442 static inline void folio_memcg_unlock(struct folio *folio) 1443 { 1444 } 1445 1446 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1447 { 1448 /* to match folio_memcg_rcu() */ 1449 rcu_read_lock(); 1450 return true; 1451 } 1452 1453 static inline void mem_cgroup_unlock_pages(void) 1454 { 1455 rcu_read_unlock(); 1456 } 1457 1458 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1459 { 1460 } 1461 1462 static inline void mem_cgroup_enter_user_fault(void) 1463 { 1464 } 1465 1466 static inline void mem_cgroup_exit_user_fault(void) 1467 { 1468 } 1469 1470 static inline bool task_in_memcg_oom(struct task_struct *p) 1471 { 1472 return false; 1473 } 1474 1475 static inline bool mem_cgroup_oom_synchronize(bool wait) 1476 { 1477 return false; 1478 } 1479 1480 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1481 struct task_struct *victim, struct mem_cgroup *oom_domain) 1482 { 1483 return NULL; 1484 } 1485 1486 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1487 { 1488 } 1489 1490 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1491 enum memcg_stat_item idx, 1492 int nr) 1493 { 1494 } 1495 1496 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1497 enum memcg_stat_item idx, 1498 int nr) 1499 { 1500 } 1501 1502 static inline void mod_memcg_page_state(struct page *page, 1503 enum memcg_stat_item idx, int val) 1504 { 1505 } 1506 1507 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1508 { 1509 return 0; 1510 } 1511 1512 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1513 enum node_stat_item idx) 1514 { 1515 return node_page_state(lruvec_pgdat(lruvec), idx); 1516 } 1517 1518 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1519 enum node_stat_item idx) 1520 { 1521 return node_page_state(lruvec_pgdat(lruvec), idx); 1522 } 1523 1524 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 1525 { 1526 } 1527 1528 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 1529 { 1530 } 1531 1532 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1533 int val) 1534 { 1535 struct page *page = virt_to_head_page(p); 1536 1537 __mod_node_page_state(page_pgdat(page), idx, val); 1538 } 1539 1540 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1541 int val) 1542 { 1543 struct page *page = virt_to_head_page(p); 1544 1545 mod_node_page_state(page_pgdat(page), idx, val); 1546 } 1547 1548 static inline void count_memcg_events(struct mem_cgroup *memcg, 1549 enum vm_event_item idx, 1550 unsigned long count) 1551 { 1552 } 1553 1554 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1555 enum vm_event_item idx, 1556 unsigned long count) 1557 { 1558 } 1559 1560 static inline void count_memcg_folio_events(struct folio *folio, 1561 enum vm_event_item idx, unsigned long nr) 1562 { 1563 } 1564 1565 static inline 1566 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1567 { 1568 } 1569 1570 static inline void split_page_memcg(struct page *head, int old_order, int new_order) 1571 { 1572 } 1573 1574 static inline 1575 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1576 gfp_t gfp_mask, 1577 unsigned long *total_scanned) 1578 { 1579 return 0; 1580 } 1581 #endif /* CONFIG_MEMCG */ 1582 1583 /* 1584 * Extended information for slab objects stored as an array in page->memcg_data 1585 * if MEMCG_DATA_OBJEXTS is set. 1586 */ 1587 struct slabobj_ext { 1588 #ifdef CONFIG_MEMCG_KMEM 1589 struct obj_cgroup *objcg; 1590 #endif 1591 #ifdef CONFIG_MEM_ALLOC_PROFILING 1592 union codetag_ref ref; 1593 #endif 1594 } __aligned(8); 1595 1596 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1597 { 1598 __mod_lruvec_kmem_state(p, idx, 1); 1599 } 1600 1601 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1602 { 1603 __mod_lruvec_kmem_state(p, idx, -1); 1604 } 1605 1606 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1607 { 1608 struct mem_cgroup *memcg; 1609 1610 memcg = lruvec_memcg(lruvec); 1611 if (!memcg) 1612 return NULL; 1613 memcg = parent_mem_cgroup(memcg); 1614 if (!memcg) 1615 return NULL; 1616 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1617 } 1618 1619 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1620 { 1621 spin_unlock(&lruvec->lru_lock); 1622 } 1623 1624 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1625 { 1626 spin_unlock_irq(&lruvec->lru_lock); 1627 } 1628 1629 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1630 unsigned long flags) 1631 { 1632 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1633 } 1634 1635 /* Test requires a stable folio->memcg binding, see folio_memcg() */ 1636 static inline bool folio_matches_lruvec(struct folio *folio, 1637 struct lruvec *lruvec) 1638 { 1639 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1640 lruvec_memcg(lruvec) == folio_memcg(folio); 1641 } 1642 1643 /* Don't lock again iff page's lruvec locked */ 1644 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1645 struct lruvec *locked_lruvec) 1646 { 1647 if (locked_lruvec) { 1648 if (folio_matches_lruvec(folio, locked_lruvec)) 1649 return locked_lruvec; 1650 1651 unlock_page_lruvec_irq(locked_lruvec); 1652 } 1653 1654 return folio_lruvec_lock_irq(folio); 1655 } 1656 1657 /* Don't lock again iff folio's lruvec locked */ 1658 static inline void folio_lruvec_relock_irqsave(struct folio *folio, 1659 struct lruvec **lruvecp, unsigned long *flags) 1660 { 1661 if (*lruvecp) { 1662 if (folio_matches_lruvec(folio, *lruvecp)) 1663 return; 1664 1665 unlock_page_lruvec_irqrestore(*lruvecp, *flags); 1666 } 1667 1668 *lruvecp = folio_lruvec_lock_irqsave(folio, flags); 1669 } 1670 1671 #ifdef CONFIG_CGROUP_WRITEBACK 1672 1673 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1674 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1675 unsigned long *pheadroom, unsigned long *pdirty, 1676 unsigned long *pwriteback); 1677 1678 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1679 struct bdi_writeback *wb); 1680 1681 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1682 struct bdi_writeback *wb) 1683 { 1684 struct mem_cgroup *memcg; 1685 1686 if (mem_cgroup_disabled()) 1687 return; 1688 1689 memcg = folio_memcg(folio); 1690 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1691 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1692 } 1693 1694 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1695 1696 #else /* CONFIG_CGROUP_WRITEBACK */ 1697 1698 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1699 { 1700 return NULL; 1701 } 1702 1703 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1704 unsigned long *pfilepages, 1705 unsigned long *pheadroom, 1706 unsigned long *pdirty, 1707 unsigned long *pwriteback) 1708 { 1709 } 1710 1711 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1712 struct bdi_writeback *wb) 1713 { 1714 } 1715 1716 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1717 { 1718 } 1719 1720 #endif /* CONFIG_CGROUP_WRITEBACK */ 1721 1722 struct sock; 1723 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1724 gfp_t gfp_mask); 1725 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1726 #ifdef CONFIG_MEMCG 1727 extern struct static_key_false memcg_sockets_enabled_key; 1728 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1729 void mem_cgroup_sk_alloc(struct sock *sk); 1730 void mem_cgroup_sk_free(struct sock *sk); 1731 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1732 { 1733 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1734 return !!memcg->tcpmem_pressure; 1735 do { 1736 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1737 return true; 1738 } while ((memcg = parent_mem_cgroup(memcg))); 1739 return false; 1740 } 1741 1742 int alloc_shrinker_info(struct mem_cgroup *memcg); 1743 void free_shrinker_info(struct mem_cgroup *memcg); 1744 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1745 void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1746 #else 1747 #define mem_cgroup_sockets_enabled 0 1748 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1749 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1750 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1751 { 1752 return false; 1753 } 1754 1755 static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1756 int nid, int shrinker_id) 1757 { 1758 } 1759 #endif 1760 1761 #ifdef CONFIG_MEMCG_KMEM 1762 bool mem_cgroup_kmem_disabled(void); 1763 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1764 void __memcg_kmem_uncharge_page(struct page *page, int order); 1765 1766 /* 1767 * The returned objcg pointer is safe to use without additional 1768 * protection within a scope. The scope is defined either by 1769 * the current task (similar to the "current" global variable) 1770 * or by set_active_memcg() pair. 1771 * Please, use obj_cgroup_get() to get a reference if the pointer 1772 * needs to be used outside of the local scope. 1773 */ 1774 struct obj_cgroup *current_obj_cgroup(void); 1775 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1776 1777 static inline struct obj_cgroup *get_obj_cgroup_from_current(void) 1778 { 1779 struct obj_cgroup *objcg = current_obj_cgroup(); 1780 1781 if (objcg) 1782 obj_cgroup_get(objcg); 1783 1784 return objcg; 1785 } 1786 1787 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1788 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1789 1790 extern struct static_key_false memcg_bpf_enabled_key; 1791 static inline bool memcg_bpf_enabled(void) 1792 { 1793 return static_branch_likely(&memcg_bpf_enabled_key); 1794 } 1795 1796 extern struct static_key_false memcg_kmem_online_key; 1797 1798 static inline bool memcg_kmem_online(void) 1799 { 1800 return static_branch_likely(&memcg_kmem_online_key); 1801 } 1802 1803 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1804 int order) 1805 { 1806 if (memcg_kmem_online()) 1807 return __memcg_kmem_charge_page(page, gfp, order); 1808 return 0; 1809 } 1810 1811 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1812 { 1813 if (memcg_kmem_online()) 1814 __memcg_kmem_uncharge_page(page, order); 1815 } 1816 1817 /* 1818 * A helper for accessing memcg's kmem_id, used for getting 1819 * corresponding LRU lists. 1820 */ 1821 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1822 { 1823 return memcg ? memcg->kmemcg_id : -1; 1824 } 1825 1826 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1827 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1828 1829 static inline void count_objcg_event(struct obj_cgroup *objcg, 1830 enum vm_event_item idx) 1831 { 1832 struct mem_cgroup *memcg; 1833 1834 if (!memcg_kmem_online()) 1835 return; 1836 1837 rcu_read_lock(); 1838 memcg = obj_cgroup_memcg(objcg); 1839 count_memcg_events(memcg, idx, 1); 1840 rcu_read_unlock(); 1841 } 1842 1843 #else 1844 static inline bool mem_cgroup_kmem_disabled(void) 1845 { 1846 return true; 1847 } 1848 1849 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1850 int order) 1851 { 1852 return 0; 1853 } 1854 1855 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1856 { 1857 } 1858 1859 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1860 int order) 1861 { 1862 return 0; 1863 } 1864 1865 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1866 { 1867 } 1868 1869 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1870 { 1871 return NULL; 1872 } 1873 1874 static inline bool memcg_bpf_enabled(void) 1875 { 1876 return false; 1877 } 1878 1879 static inline bool memcg_kmem_online(void) 1880 { 1881 return false; 1882 } 1883 1884 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1885 { 1886 return -1; 1887 } 1888 1889 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1890 { 1891 return NULL; 1892 } 1893 1894 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1895 { 1896 return NULL; 1897 } 1898 1899 static inline void count_objcg_event(struct obj_cgroup *objcg, 1900 enum vm_event_item idx) 1901 { 1902 } 1903 1904 #endif /* CONFIG_MEMCG_KMEM */ 1905 1906 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1907 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1908 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1909 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1910 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg); 1911 #else 1912 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1913 { 1914 return true; 1915 } 1916 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1917 size_t size) 1918 { 1919 } 1920 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1921 size_t size) 1922 { 1923 } 1924 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 1925 { 1926 /* if zswap is disabled, do not block pages going to the swapping device */ 1927 return true; 1928 } 1929 #endif 1930 1931 #endif /* _LINUX_MEMCONTROL_H */ 1932