xref: /linux-6.15/include/linux/memcontrol.h (revision 82d00a93)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct page;
27 struct mm_struct;
28 struct kmem_cache;
29 
30 /* Cgroup-specific page state, on top of universal node page state */
31 enum memcg_stat_item {
32 	MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
33 	MEMCG_RSS,
34 	MEMCG_RSS_HUGE,
35 	MEMCG_SWAP,
36 	MEMCG_SOCK,
37 	/* XXX: why are these zone and not node counters? */
38 	MEMCG_KERNEL_STACK_KB,
39 	MEMCG_NR_STAT,
40 };
41 
42 enum memcg_memory_event {
43 	MEMCG_LOW,
44 	MEMCG_HIGH,
45 	MEMCG_MAX,
46 	MEMCG_OOM,
47 	MEMCG_OOM_KILL,
48 	MEMCG_SWAP_MAX,
49 	MEMCG_SWAP_FAIL,
50 	MEMCG_NR_MEMORY_EVENTS,
51 };
52 
53 enum mem_cgroup_protection {
54 	MEMCG_PROT_NONE,
55 	MEMCG_PROT_LOW,
56 	MEMCG_PROT_MIN,
57 };
58 
59 struct mem_cgroup_reclaim_cookie {
60 	pg_data_t *pgdat;
61 	unsigned int generation;
62 };
63 
64 #ifdef CONFIG_MEMCG
65 
66 #define MEM_CGROUP_ID_SHIFT	16
67 #define MEM_CGROUP_ID_MAX	USHRT_MAX
68 
69 struct mem_cgroup_id {
70 	int id;
71 	refcount_t ref;
72 };
73 
74 /*
75  * Per memcg event counter is incremented at every pagein/pageout. With THP,
76  * it will be incremated by the number of pages. This counter is used for
77  * for trigger some periodic events. This is straightforward and better
78  * than using jiffies etc. to handle periodic memcg event.
79  */
80 enum mem_cgroup_events_target {
81 	MEM_CGROUP_TARGET_THRESH,
82 	MEM_CGROUP_TARGET_SOFTLIMIT,
83 	MEM_CGROUP_NTARGETS,
84 };
85 
86 struct memcg_vmstats_percpu {
87 	long stat[MEMCG_NR_STAT];
88 	unsigned long events[NR_VM_EVENT_ITEMS];
89 	unsigned long nr_page_events;
90 	unsigned long targets[MEM_CGROUP_NTARGETS];
91 };
92 
93 struct mem_cgroup_reclaim_iter {
94 	struct mem_cgroup *position;
95 	/* scan generation, increased every round-trip */
96 	unsigned int generation;
97 };
98 
99 struct lruvec_stat {
100 	long count[NR_VM_NODE_STAT_ITEMS];
101 };
102 
103 /*
104  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
105  * which have elements charged to this memcg.
106  */
107 struct memcg_shrinker_map {
108 	struct rcu_head rcu;
109 	unsigned long map[];
110 };
111 
112 /*
113  * per-node information in memory controller.
114  */
115 struct mem_cgroup_per_node {
116 	struct lruvec		lruvec;
117 
118 	/* Legacy local VM stats */
119 	struct lruvec_stat __percpu *lruvec_stat_local;
120 
121 	/* Subtree VM stats (batched updates) */
122 	struct lruvec_stat __percpu *lruvec_stat_cpu;
123 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
124 
125 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
126 
127 	struct mem_cgroup_reclaim_iter	iter;
128 
129 	struct memcg_shrinker_map __rcu	*shrinker_map;
130 
131 	struct rb_node		tree_node;	/* RB tree node */
132 	unsigned long		usage_in_excess;/* Set to the value by which */
133 						/* the soft limit is exceeded*/
134 	bool			on_tree;
135 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
136 						/* use container_of	   */
137 };
138 
139 struct mem_cgroup_threshold {
140 	struct eventfd_ctx *eventfd;
141 	unsigned long threshold;
142 };
143 
144 /* For threshold */
145 struct mem_cgroup_threshold_ary {
146 	/* An array index points to threshold just below or equal to usage. */
147 	int current_threshold;
148 	/* Size of entries[] */
149 	unsigned int size;
150 	/* Array of thresholds */
151 	struct mem_cgroup_threshold entries[];
152 };
153 
154 struct mem_cgroup_thresholds {
155 	/* Primary thresholds array */
156 	struct mem_cgroup_threshold_ary *primary;
157 	/*
158 	 * Spare threshold array.
159 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
160 	 * It must be able to store at least primary->size - 1 entries.
161 	 */
162 	struct mem_cgroup_threshold_ary *spare;
163 };
164 
165 enum memcg_kmem_state {
166 	KMEM_NONE,
167 	KMEM_ALLOCATED,
168 	KMEM_ONLINE,
169 };
170 
171 #if defined(CONFIG_SMP)
172 struct memcg_padding {
173 	char x[0];
174 } ____cacheline_internodealigned_in_smp;
175 #define MEMCG_PADDING(name)      struct memcg_padding name;
176 #else
177 #define MEMCG_PADDING(name)
178 #endif
179 
180 /*
181  * Remember four most recent foreign writebacks with dirty pages in this
182  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
183  * one in a given round, we're likely to catch it later if it keeps
184  * foreign-dirtying, so a fairly low count should be enough.
185  *
186  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
187  */
188 #define MEMCG_CGWB_FRN_CNT	4
189 
190 struct memcg_cgwb_frn {
191 	u64 bdi_id;			/* bdi->id of the foreign inode */
192 	int memcg_id;			/* memcg->css.id of foreign inode */
193 	u64 at;				/* jiffies_64 at the time of dirtying */
194 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
195 };
196 
197 /*
198  * The memory controller data structure. The memory controller controls both
199  * page cache and RSS per cgroup. We would eventually like to provide
200  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
201  * to help the administrator determine what knobs to tune.
202  */
203 struct mem_cgroup {
204 	struct cgroup_subsys_state css;
205 
206 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
207 	struct mem_cgroup_id id;
208 
209 	/* Accounted resources */
210 	struct page_counter memory;
211 	struct page_counter swap;
212 
213 	/* Legacy consumer-oriented counters */
214 	struct page_counter memsw;
215 	struct page_counter kmem;
216 	struct page_counter tcpmem;
217 
218 	/* Upper bound of normal memory consumption range */
219 	unsigned long high;
220 
221 	/* Range enforcement for interrupt charges */
222 	struct work_struct high_work;
223 
224 	unsigned long soft_limit;
225 
226 	/* vmpressure notifications */
227 	struct vmpressure vmpressure;
228 
229 	/*
230 	 * Should the accounting and control be hierarchical, per subtree?
231 	 */
232 	bool use_hierarchy;
233 
234 	/*
235 	 * Should the OOM killer kill all belonging tasks, had it kill one?
236 	 */
237 	bool oom_group;
238 
239 	/* protected by memcg_oom_lock */
240 	bool		oom_lock;
241 	int		under_oom;
242 
243 	int	swappiness;
244 	/* OOM-Killer disable */
245 	int		oom_kill_disable;
246 
247 	/* memory.events and memory.events.local */
248 	struct cgroup_file events_file;
249 	struct cgroup_file events_local_file;
250 
251 	/* handle for "memory.swap.events" */
252 	struct cgroup_file swap_events_file;
253 
254 	/* protect arrays of thresholds */
255 	struct mutex thresholds_lock;
256 
257 	/* thresholds for memory usage. RCU-protected */
258 	struct mem_cgroup_thresholds thresholds;
259 
260 	/* thresholds for mem+swap usage. RCU-protected */
261 	struct mem_cgroup_thresholds memsw_thresholds;
262 
263 	/* For oom notifier event fd */
264 	struct list_head oom_notify;
265 
266 	/*
267 	 * Should we move charges of a task when a task is moved into this
268 	 * mem_cgroup ? And what type of charges should we move ?
269 	 */
270 	unsigned long move_charge_at_immigrate;
271 	/* taken only while moving_account > 0 */
272 	spinlock_t		move_lock;
273 	unsigned long		move_lock_flags;
274 
275 	MEMCG_PADDING(_pad1_);
276 
277 	/*
278 	 * set > 0 if pages under this cgroup are moving to other cgroup.
279 	 */
280 	atomic_t		moving_account;
281 	struct task_struct	*move_lock_task;
282 
283 	/* Legacy local VM stats and events */
284 	struct memcg_vmstats_percpu __percpu *vmstats_local;
285 
286 	/* Subtree VM stats and events (batched updates) */
287 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
288 
289 	MEMCG_PADDING(_pad2_);
290 
291 	atomic_long_t		vmstats[MEMCG_NR_STAT];
292 	atomic_long_t		vmevents[NR_VM_EVENT_ITEMS];
293 
294 	/* memory.events */
295 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
296 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
297 
298 	unsigned long		socket_pressure;
299 
300 	/* Legacy tcp memory accounting */
301 	bool			tcpmem_active;
302 	int			tcpmem_pressure;
303 
304 #ifdef CONFIG_MEMCG_KMEM
305         /* Index in the kmem_cache->memcg_params.memcg_caches array */
306 	int kmemcg_id;
307 	enum memcg_kmem_state kmem_state;
308 	struct list_head kmem_caches;
309 #endif
310 
311 #ifdef CONFIG_CGROUP_WRITEBACK
312 	struct list_head cgwb_list;
313 	struct wb_domain cgwb_domain;
314 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
315 #endif
316 
317 	/* List of events which userspace want to receive */
318 	struct list_head event_list;
319 	spinlock_t event_list_lock;
320 
321 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
322 	struct deferred_split deferred_split_queue;
323 #endif
324 
325 	struct mem_cgroup_per_node *nodeinfo[0];
326 	/* WARNING: nodeinfo must be the last member here */
327 };
328 
329 /*
330  * size of first charge trial. "32" comes from vmscan.c's magic value.
331  * TODO: maybe necessary to use big numbers in big irons.
332  */
333 #define MEMCG_CHARGE_BATCH 32U
334 
335 extern struct mem_cgroup *root_mem_cgroup;
336 
337 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
338 {
339 	return (memcg == root_mem_cgroup);
340 }
341 
342 static inline bool mem_cgroup_disabled(void)
343 {
344 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
345 }
346 
347 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg,
348 						  bool in_low_reclaim)
349 {
350 	if (mem_cgroup_disabled())
351 		return 0;
352 
353 	if (in_low_reclaim)
354 		return READ_ONCE(memcg->memory.emin);
355 
356 	return max(READ_ONCE(memcg->memory.emin),
357 		   READ_ONCE(memcg->memory.elow));
358 }
359 
360 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
361 						struct mem_cgroup *memcg);
362 
363 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
364 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
365 			  bool compound);
366 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
367 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
368 			  bool compound);
369 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
370 			      bool lrucare, bool compound);
371 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
372 		bool compound);
373 void mem_cgroup_uncharge(struct page *page);
374 void mem_cgroup_uncharge_list(struct list_head *page_list);
375 
376 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
377 
378 static struct mem_cgroup_per_node *
379 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
380 {
381 	return memcg->nodeinfo[nid];
382 }
383 
384 /**
385  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
386  * @memcg: memcg of the wanted lruvec
387  *
388  * Returns the lru list vector holding pages for a given @memcg &
389  * @node combination. This can be the node lruvec, if the memory
390  * controller is disabled.
391  */
392 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
393 					       struct pglist_data *pgdat)
394 {
395 	struct mem_cgroup_per_node *mz;
396 	struct lruvec *lruvec;
397 
398 	if (mem_cgroup_disabled()) {
399 		lruvec = &pgdat->__lruvec;
400 		goto out;
401 	}
402 
403 	if (!memcg)
404 		memcg = root_mem_cgroup;
405 
406 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
407 	lruvec = &mz->lruvec;
408 out:
409 	/*
410 	 * Since a node can be onlined after the mem_cgroup was created,
411 	 * we have to be prepared to initialize lruvec->pgdat here;
412 	 * and if offlined then reonlined, we need to reinitialize it.
413 	 */
414 	if (unlikely(lruvec->pgdat != pgdat))
415 		lruvec->pgdat = pgdat;
416 	return lruvec;
417 }
418 
419 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
420 
421 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
422 
423 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
424 
425 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
426 
427 static inline
428 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
429 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
430 }
431 
432 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
433 {
434 	if (memcg)
435 		css_put(&memcg->css);
436 }
437 
438 #define mem_cgroup_from_counter(counter, member)	\
439 	container_of(counter, struct mem_cgroup, member)
440 
441 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
442 				   struct mem_cgroup *,
443 				   struct mem_cgroup_reclaim_cookie *);
444 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
445 int mem_cgroup_scan_tasks(struct mem_cgroup *,
446 			  int (*)(struct task_struct *, void *), void *);
447 
448 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
449 {
450 	if (mem_cgroup_disabled())
451 		return 0;
452 
453 	return memcg->id.id;
454 }
455 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
456 
457 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
458 {
459 	return mem_cgroup_from_css(seq_css(m));
460 }
461 
462 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
463 {
464 	struct mem_cgroup_per_node *mz;
465 
466 	if (mem_cgroup_disabled())
467 		return NULL;
468 
469 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
470 	return mz->memcg;
471 }
472 
473 /**
474  * parent_mem_cgroup - find the accounting parent of a memcg
475  * @memcg: memcg whose parent to find
476  *
477  * Returns the parent memcg, or NULL if this is the root or the memory
478  * controller is in legacy no-hierarchy mode.
479  */
480 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
481 {
482 	if (!memcg->memory.parent)
483 		return NULL;
484 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
485 }
486 
487 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
488 			      struct mem_cgroup *root)
489 {
490 	if (root == memcg)
491 		return true;
492 	if (!root->use_hierarchy)
493 		return false;
494 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
495 }
496 
497 static inline bool mm_match_cgroup(struct mm_struct *mm,
498 				   struct mem_cgroup *memcg)
499 {
500 	struct mem_cgroup *task_memcg;
501 	bool match = false;
502 
503 	rcu_read_lock();
504 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
505 	if (task_memcg)
506 		match = mem_cgroup_is_descendant(task_memcg, memcg);
507 	rcu_read_unlock();
508 	return match;
509 }
510 
511 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
512 ino_t page_cgroup_ino(struct page *page);
513 
514 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
515 {
516 	if (mem_cgroup_disabled())
517 		return true;
518 	return !!(memcg->css.flags & CSS_ONLINE);
519 }
520 
521 /*
522  * For memory reclaim.
523  */
524 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
525 
526 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
527 		int zid, int nr_pages);
528 
529 static inline
530 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
531 		enum lru_list lru, int zone_idx)
532 {
533 	struct mem_cgroup_per_node *mz;
534 
535 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
536 	return mz->lru_zone_size[zone_idx][lru];
537 }
538 
539 void mem_cgroup_handle_over_high(void);
540 
541 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
542 
543 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
544 
545 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
546 				struct task_struct *p);
547 
548 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
549 
550 static inline void mem_cgroup_enter_user_fault(void)
551 {
552 	WARN_ON(current->in_user_fault);
553 	current->in_user_fault = 1;
554 }
555 
556 static inline void mem_cgroup_exit_user_fault(void)
557 {
558 	WARN_ON(!current->in_user_fault);
559 	current->in_user_fault = 0;
560 }
561 
562 static inline bool task_in_memcg_oom(struct task_struct *p)
563 {
564 	return p->memcg_in_oom;
565 }
566 
567 bool mem_cgroup_oom_synchronize(bool wait);
568 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
569 					    struct mem_cgroup *oom_domain);
570 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
571 
572 #ifdef CONFIG_MEMCG_SWAP
573 extern int do_swap_account;
574 #endif
575 
576 struct mem_cgroup *lock_page_memcg(struct page *page);
577 void __unlock_page_memcg(struct mem_cgroup *memcg);
578 void unlock_page_memcg(struct page *page);
579 
580 /*
581  * idx can be of type enum memcg_stat_item or node_stat_item.
582  * Keep in sync with memcg_exact_page_state().
583  */
584 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
585 {
586 	long x = atomic_long_read(&memcg->vmstats[idx]);
587 #ifdef CONFIG_SMP
588 	if (x < 0)
589 		x = 0;
590 #endif
591 	return x;
592 }
593 
594 /*
595  * idx can be of type enum memcg_stat_item or node_stat_item.
596  * Keep in sync with memcg_exact_page_state().
597  */
598 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
599 						   int idx)
600 {
601 	long x = 0;
602 	int cpu;
603 
604 	for_each_possible_cpu(cpu)
605 		x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
606 #ifdef CONFIG_SMP
607 	if (x < 0)
608 		x = 0;
609 #endif
610 	return x;
611 }
612 
613 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
614 
615 /* idx can be of type enum memcg_stat_item or node_stat_item */
616 static inline void mod_memcg_state(struct mem_cgroup *memcg,
617 				   int idx, int val)
618 {
619 	unsigned long flags;
620 
621 	local_irq_save(flags);
622 	__mod_memcg_state(memcg, idx, val);
623 	local_irq_restore(flags);
624 }
625 
626 /**
627  * mod_memcg_page_state - update page state statistics
628  * @page: the page
629  * @idx: page state item to account
630  * @val: number of pages (positive or negative)
631  *
632  * The @page must be locked or the caller must use lock_page_memcg()
633  * to prevent double accounting when the page is concurrently being
634  * moved to another memcg:
635  *
636  *   lock_page(page) or lock_page_memcg(page)
637  *   if (TestClearPageState(page))
638  *     mod_memcg_page_state(page, state, -1);
639  *   unlock_page(page) or unlock_page_memcg(page)
640  *
641  * Kernel pages are an exception to this, since they'll never move.
642  */
643 static inline void __mod_memcg_page_state(struct page *page,
644 					  int idx, int val)
645 {
646 	if (page->mem_cgroup)
647 		__mod_memcg_state(page->mem_cgroup, idx, val);
648 }
649 
650 static inline void mod_memcg_page_state(struct page *page,
651 					int idx, int val)
652 {
653 	if (page->mem_cgroup)
654 		mod_memcg_state(page->mem_cgroup, idx, val);
655 }
656 
657 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
658 					      enum node_stat_item idx)
659 {
660 	struct mem_cgroup_per_node *pn;
661 	long x;
662 
663 	if (mem_cgroup_disabled())
664 		return node_page_state(lruvec_pgdat(lruvec), idx);
665 
666 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
667 	x = atomic_long_read(&pn->lruvec_stat[idx]);
668 #ifdef CONFIG_SMP
669 	if (x < 0)
670 		x = 0;
671 #endif
672 	return x;
673 }
674 
675 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
676 						    enum node_stat_item idx)
677 {
678 	struct mem_cgroup_per_node *pn;
679 	long x = 0;
680 	int cpu;
681 
682 	if (mem_cgroup_disabled())
683 		return node_page_state(lruvec_pgdat(lruvec), idx);
684 
685 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
686 	for_each_possible_cpu(cpu)
687 		x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
688 #ifdef CONFIG_SMP
689 	if (x < 0)
690 		x = 0;
691 #endif
692 	return x;
693 }
694 
695 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
696 			int val);
697 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
698 void mod_memcg_obj_state(void *p, int idx, int val);
699 
700 static inline void mod_lruvec_state(struct lruvec *lruvec,
701 				    enum node_stat_item idx, int val)
702 {
703 	unsigned long flags;
704 
705 	local_irq_save(flags);
706 	__mod_lruvec_state(lruvec, idx, val);
707 	local_irq_restore(flags);
708 }
709 
710 static inline void __mod_lruvec_page_state(struct page *page,
711 					   enum node_stat_item idx, int val)
712 {
713 	pg_data_t *pgdat = page_pgdat(page);
714 	struct lruvec *lruvec;
715 
716 	/* Untracked pages have no memcg, no lruvec. Update only the node */
717 	if (!page->mem_cgroup) {
718 		__mod_node_page_state(pgdat, idx, val);
719 		return;
720 	}
721 
722 	lruvec = mem_cgroup_lruvec(page->mem_cgroup, pgdat);
723 	__mod_lruvec_state(lruvec, idx, val);
724 }
725 
726 static inline void mod_lruvec_page_state(struct page *page,
727 					 enum node_stat_item idx, int val)
728 {
729 	unsigned long flags;
730 
731 	local_irq_save(flags);
732 	__mod_lruvec_page_state(page, idx, val);
733 	local_irq_restore(flags);
734 }
735 
736 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
737 						gfp_t gfp_mask,
738 						unsigned long *total_scanned);
739 
740 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
741 			  unsigned long count);
742 
743 static inline void count_memcg_events(struct mem_cgroup *memcg,
744 				      enum vm_event_item idx,
745 				      unsigned long count)
746 {
747 	unsigned long flags;
748 
749 	local_irq_save(flags);
750 	__count_memcg_events(memcg, idx, count);
751 	local_irq_restore(flags);
752 }
753 
754 static inline void count_memcg_page_event(struct page *page,
755 					  enum vm_event_item idx)
756 {
757 	if (page->mem_cgroup)
758 		count_memcg_events(page->mem_cgroup, idx, 1);
759 }
760 
761 static inline void count_memcg_event_mm(struct mm_struct *mm,
762 					enum vm_event_item idx)
763 {
764 	struct mem_cgroup *memcg;
765 
766 	if (mem_cgroup_disabled())
767 		return;
768 
769 	rcu_read_lock();
770 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
771 	if (likely(memcg))
772 		count_memcg_events(memcg, idx, 1);
773 	rcu_read_unlock();
774 }
775 
776 static inline void memcg_memory_event(struct mem_cgroup *memcg,
777 				      enum memcg_memory_event event)
778 {
779 	atomic_long_inc(&memcg->memory_events_local[event]);
780 	cgroup_file_notify(&memcg->events_local_file);
781 
782 	do {
783 		atomic_long_inc(&memcg->memory_events[event]);
784 		cgroup_file_notify(&memcg->events_file);
785 
786 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
787 			break;
788 	} while ((memcg = parent_mem_cgroup(memcg)) &&
789 		 !mem_cgroup_is_root(memcg));
790 }
791 
792 static inline void memcg_memory_event_mm(struct mm_struct *mm,
793 					 enum memcg_memory_event event)
794 {
795 	struct mem_cgroup *memcg;
796 
797 	if (mem_cgroup_disabled())
798 		return;
799 
800 	rcu_read_lock();
801 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
802 	if (likely(memcg))
803 		memcg_memory_event(memcg, event);
804 	rcu_read_unlock();
805 }
806 
807 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
808 void mem_cgroup_split_huge_fixup(struct page *head);
809 #endif
810 
811 #else /* CONFIG_MEMCG */
812 
813 #define MEM_CGROUP_ID_SHIFT	0
814 #define MEM_CGROUP_ID_MAX	0
815 
816 struct mem_cgroup;
817 
818 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
819 {
820 	return true;
821 }
822 
823 static inline bool mem_cgroup_disabled(void)
824 {
825 	return true;
826 }
827 
828 static inline void memcg_memory_event(struct mem_cgroup *memcg,
829 				      enum memcg_memory_event event)
830 {
831 }
832 
833 static inline void memcg_memory_event_mm(struct mm_struct *mm,
834 					 enum memcg_memory_event event)
835 {
836 }
837 
838 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg,
839 						  bool in_low_reclaim)
840 {
841 	return 0;
842 }
843 
844 static inline enum mem_cgroup_protection mem_cgroup_protected(
845 	struct mem_cgroup *root, struct mem_cgroup *memcg)
846 {
847 	return MEMCG_PROT_NONE;
848 }
849 
850 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
851 					gfp_t gfp_mask,
852 					struct mem_cgroup **memcgp,
853 					bool compound)
854 {
855 	*memcgp = NULL;
856 	return 0;
857 }
858 
859 static inline int mem_cgroup_try_charge_delay(struct page *page,
860 					      struct mm_struct *mm,
861 					      gfp_t gfp_mask,
862 					      struct mem_cgroup **memcgp,
863 					      bool compound)
864 {
865 	*memcgp = NULL;
866 	return 0;
867 }
868 
869 static inline void mem_cgroup_commit_charge(struct page *page,
870 					    struct mem_cgroup *memcg,
871 					    bool lrucare, bool compound)
872 {
873 }
874 
875 static inline void mem_cgroup_cancel_charge(struct page *page,
876 					    struct mem_cgroup *memcg,
877 					    bool compound)
878 {
879 }
880 
881 static inline void mem_cgroup_uncharge(struct page *page)
882 {
883 }
884 
885 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
886 {
887 }
888 
889 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
890 {
891 }
892 
893 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
894 					       struct pglist_data *pgdat)
895 {
896 	return &pgdat->__lruvec;
897 }
898 
899 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
900 						    struct pglist_data *pgdat)
901 {
902 	return &pgdat->__lruvec;
903 }
904 
905 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
906 {
907 	return NULL;
908 }
909 
910 static inline bool mm_match_cgroup(struct mm_struct *mm,
911 		struct mem_cgroup *memcg)
912 {
913 	return true;
914 }
915 
916 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
917 {
918 	return NULL;
919 }
920 
921 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
922 {
923 	return NULL;
924 }
925 
926 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
927 {
928 }
929 
930 static inline struct mem_cgroup *
931 mem_cgroup_iter(struct mem_cgroup *root,
932 		struct mem_cgroup *prev,
933 		struct mem_cgroup_reclaim_cookie *reclaim)
934 {
935 	return NULL;
936 }
937 
938 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
939 					 struct mem_cgroup *prev)
940 {
941 }
942 
943 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
944 		int (*fn)(struct task_struct *, void *), void *arg)
945 {
946 	return 0;
947 }
948 
949 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
950 {
951 	return 0;
952 }
953 
954 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
955 {
956 	WARN_ON_ONCE(id);
957 	/* XXX: This should always return root_mem_cgroup */
958 	return NULL;
959 }
960 
961 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
962 {
963 	return NULL;
964 }
965 
966 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
967 {
968 	return NULL;
969 }
970 
971 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
972 {
973 	return true;
974 }
975 
976 static inline
977 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
978 		enum lru_list lru, int zone_idx)
979 {
980 	return 0;
981 }
982 
983 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
984 {
985 	return 0;
986 }
987 
988 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
989 {
990 	return 0;
991 }
992 
993 static inline void
994 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
995 {
996 }
997 
998 static inline void
999 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1000 {
1001 }
1002 
1003 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1004 {
1005 	return NULL;
1006 }
1007 
1008 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1009 {
1010 }
1011 
1012 static inline void unlock_page_memcg(struct page *page)
1013 {
1014 }
1015 
1016 static inline void mem_cgroup_handle_over_high(void)
1017 {
1018 }
1019 
1020 static inline void mem_cgroup_enter_user_fault(void)
1021 {
1022 }
1023 
1024 static inline void mem_cgroup_exit_user_fault(void)
1025 {
1026 }
1027 
1028 static inline bool task_in_memcg_oom(struct task_struct *p)
1029 {
1030 	return false;
1031 }
1032 
1033 static inline bool mem_cgroup_oom_synchronize(bool wait)
1034 {
1035 	return false;
1036 }
1037 
1038 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1039 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1040 {
1041 	return NULL;
1042 }
1043 
1044 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1045 {
1046 }
1047 
1048 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1054 						   int idx)
1055 {
1056 	return 0;
1057 }
1058 
1059 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1060 				     int idx,
1061 				     int nr)
1062 {
1063 }
1064 
1065 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1066 				   int idx,
1067 				   int nr)
1068 {
1069 }
1070 
1071 static inline void __mod_memcg_page_state(struct page *page,
1072 					  int idx,
1073 					  int nr)
1074 {
1075 }
1076 
1077 static inline void mod_memcg_page_state(struct page *page,
1078 					int idx,
1079 					int nr)
1080 {
1081 }
1082 
1083 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1084 					      enum node_stat_item idx)
1085 {
1086 	return node_page_state(lruvec_pgdat(lruvec), idx);
1087 }
1088 
1089 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1090 						    enum node_stat_item idx)
1091 {
1092 	return node_page_state(lruvec_pgdat(lruvec), idx);
1093 }
1094 
1095 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1096 				      enum node_stat_item idx, int val)
1097 {
1098 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1099 }
1100 
1101 static inline void mod_lruvec_state(struct lruvec *lruvec,
1102 				    enum node_stat_item idx, int val)
1103 {
1104 	mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1105 }
1106 
1107 static inline void __mod_lruvec_page_state(struct page *page,
1108 					   enum node_stat_item idx, int val)
1109 {
1110 	__mod_node_page_state(page_pgdat(page), idx, val);
1111 }
1112 
1113 static inline void mod_lruvec_page_state(struct page *page,
1114 					 enum node_stat_item idx, int val)
1115 {
1116 	mod_node_page_state(page_pgdat(page), idx, val);
1117 }
1118 
1119 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1120 					   int val)
1121 {
1122 	struct page *page = virt_to_head_page(p);
1123 
1124 	__mod_node_page_state(page_pgdat(page), idx, val);
1125 }
1126 
1127 static inline void mod_memcg_obj_state(void *p, int idx, int val)
1128 {
1129 }
1130 
1131 static inline
1132 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1133 					    gfp_t gfp_mask,
1134 					    unsigned long *total_scanned)
1135 {
1136 	return 0;
1137 }
1138 
1139 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1140 {
1141 }
1142 
1143 static inline void count_memcg_events(struct mem_cgroup *memcg,
1144 				      enum vm_event_item idx,
1145 				      unsigned long count)
1146 {
1147 }
1148 
1149 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1150 					enum vm_event_item idx,
1151 					unsigned long count)
1152 {
1153 }
1154 
1155 static inline void count_memcg_page_event(struct page *page,
1156 					  int idx)
1157 {
1158 }
1159 
1160 static inline
1161 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1162 {
1163 }
1164 #endif /* CONFIG_MEMCG */
1165 
1166 /* idx can be of type enum memcg_stat_item or node_stat_item */
1167 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1168 				     int idx)
1169 {
1170 	__mod_memcg_state(memcg, idx, 1);
1171 }
1172 
1173 /* idx can be of type enum memcg_stat_item or node_stat_item */
1174 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1175 				     int idx)
1176 {
1177 	__mod_memcg_state(memcg, idx, -1);
1178 }
1179 
1180 /* idx can be of type enum memcg_stat_item or node_stat_item */
1181 static inline void __inc_memcg_page_state(struct page *page,
1182 					  int idx)
1183 {
1184 	__mod_memcg_page_state(page, idx, 1);
1185 }
1186 
1187 /* idx can be of type enum memcg_stat_item or node_stat_item */
1188 static inline void __dec_memcg_page_state(struct page *page,
1189 					  int idx)
1190 {
1191 	__mod_memcg_page_state(page, idx, -1);
1192 }
1193 
1194 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1195 				      enum node_stat_item idx)
1196 {
1197 	__mod_lruvec_state(lruvec, idx, 1);
1198 }
1199 
1200 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1201 				      enum node_stat_item idx)
1202 {
1203 	__mod_lruvec_state(lruvec, idx, -1);
1204 }
1205 
1206 static inline void __inc_lruvec_page_state(struct page *page,
1207 					   enum node_stat_item idx)
1208 {
1209 	__mod_lruvec_page_state(page, idx, 1);
1210 }
1211 
1212 static inline void __dec_lruvec_page_state(struct page *page,
1213 					   enum node_stat_item idx)
1214 {
1215 	__mod_lruvec_page_state(page, idx, -1);
1216 }
1217 
1218 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1219 {
1220 	__mod_lruvec_slab_state(p, idx, 1);
1221 }
1222 
1223 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1224 {
1225 	__mod_lruvec_slab_state(p, idx, -1);
1226 }
1227 
1228 /* idx can be of type enum memcg_stat_item or node_stat_item */
1229 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1230 				   int idx)
1231 {
1232 	mod_memcg_state(memcg, idx, 1);
1233 }
1234 
1235 /* idx can be of type enum memcg_stat_item or node_stat_item */
1236 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1237 				   int idx)
1238 {
1239 	mod_memcg_state(memcg, idx, -1);
1240 }
1241 
1242 /* idx can be of type enum memcg_stat_item or node_stat_item */
1243 static inline void inc_memcg_page_state(struct page *page,
1244 					int idx)
1245 {
1246 	mod_memcg_page_state(page, idx, 1);
1247 }
1248 
1249 /* idx can be of type enum memcg_stat_item or node_stat_item */
1250 static inline void dec_memcg_page_state(struct page *page,
1251 					int idx)
1252 {
1253 	mod_memcg_page_state(page, idx, -1);
1254 }
1255 
1256 static inline void inc_lruvec_state(struct lruvec *lruvec,
1257 				    enum node_stat_item idx)
1258 {
1259 	mod_lruvec_state(lruvec, idx, 1);
1260 }
1261 
1262 static inline void dec_lruvec_state(struct lruvec *lruvec,
1263 				    enum node_stat_item idx)
1264 {
1265 	mod_lruvec_state(lruvec, idx, -1);
1266 }
1267 
1268 static inline void inc_lruvec_page_state(struct page *page,
1269 					 enum node_stat_item idx)
1270 {
1271 	mod_lruvec_page_state(page, idx, 1);
1272 }
1273 
1274 static inline void dec_lruvec_page_state(struct page *page,
1275 					 enum node_stat_item idx)
1276 {
1277 	mod_lruvec_page_state(page, idx, -1);
1278 }
1279 
1280 #ifdef CONFIG_CGROUP_WRITEBACK
1281 
1282 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1283 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1284 			 unsigned long *pheadroom, unsigned long *pdirty,
1285 			 unsigned long *pwriteback);
1286 
1287 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1288 					     struct bdi_writeback *wb);
1289 
1290 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1291 						  struct bdi_writeback *wb)
1292 {
1293 	if (mem_cgroup_disabled())
1294 		return;
1295 
1296 	if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1297 		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1298 }
1299 
1300 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1301 
1302 #else	/* CONFIG_CGROUP_WRITEBACK */
1303 
1304 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1305 {
1306 	return NULL;
1307 }
1308 
1309 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1310 				       unsigned long *pfilepages,
1311 				       unsigned long *pheadroom,
1312 				       unsigned long *pdirty,
1313 				       unsigned long *pwriteback)
1314 {
1315 }
1316 
1317 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1318 						  struct bdi_writeback *wb)
1319 {
1320 }
1321 
1322 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1323 {
1324 }
1325 
1326 #endif	/* CONFIG_CGROUP_WRITEBACK */
1327 
1328 struct sock;
1329 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1330 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1331 #ifdef CONFIG_MEMCG
1332 extern struct static_key_false memcg_sockets_enabled_key;
1333 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1334 void mem_cgroup_sk_alloc(struct sock *sk);
1335 void mem_cgroup_sk_free(struct sock *sk);
1336 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1337 {
1338 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1339 		return true;
1340 	do {
1341 		if (time_before(jiffies, memcg->socket_pressure))
1342 			return true;
1343 	} while ((memcg = parent_mem_cgroup(memcg)));
1344 	return false;
1345 }
1346 
1347 extern int memcg_expand_shrinker_maps(int new_id);
1348 
1349 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1350 				   int nid, int shrinker_id);
1351 #else
1352 #define mem_cgroup_sockets_enabled 0
1353 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1354 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1355 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1356 {
1357 	return false;
1358 }
1359 
1360 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1361 					  int nid, int shrinker_id)
1362 {
1363 }
1364 #endif
1365 
1366 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1367 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1368 
1369 #ifdef CONFIG_MEMCG_KMEM
1370 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1371 			unsigned int nr_pages);
1372 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1373 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1374 void __memcg_kmem_uncharge_page(struct page *page, int order);
1375 
1376 extern struct static_key_false memcg_kmem_enabled_key;
1377 extern struct workqueue_struct *memcg_kmem_cache_wq;
1378 
1379 extern int memcg_nr_cache_ids;
1380 void memcg_get_cache_ids(void);
1381 void memcg_put_cache_ids(void);
1382 
1383 /*
1384  * Helper macro to loop through all memcg-specific caches. Callers must still
1385  * check if the cache is valid (it is either valid or NULL).
1386  * the slab_mutex must be held when looping through those caches
1387  */
1388 #define for_each_memcg_cache_index(_idx)	\
1389 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1390 
1391 static inline bool memcg_kmem_enabled(void)
1392 {
1393 	return static_branch_unlikely(&memcg_kmem_enabled_key);
1394 }
1395 
1396 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1397 					 int order)
1398 {
1399 	if (memcg_kmem_enabled())
1400 		return __memcg_kmem_charge_page(page, gfp, order);
1401 	return 0;
1402 }
1403 
1404 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1405 {
1406 	if (memcg_kmem_enabled())
1407 		__memcg_kmem_uncharge_page(page, order);
1408 }
1409 
1410 static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1411 				    unsigned int nr_pages)
1412 {
1413 	if (memcg_kmem_enabled())
1414 		return __memcg_kmem_charge(memcg, gfp, nr_pages);
1415 	return 0;
1416 }
1417 
1418 static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
1419 				       unsigned int nr_pages)
1420 {
1421 	if (memcg_kmem_enabled())
1422 		__memcg_kmem_uncharge(memcg, nr_pages);
1423 }
1424 
1425 /*
1426  * helper for accessing a memcg's index. It will be used as an index in the
1427  * child cache array in kmem_cache, and also to derive its name. This function
1428  * will return -1 when this is not a kmem-limited memcg.
1429  */
1430 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1431 {
1432 	return memcg ? memcg->kmemcg_id : -1;
1433 }
1434 
1435 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1436 
1437 #else
1438 
1439 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1440 					 int order)
1441 {
1442 	return 0;
1443 }
1444 
1445 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1446 {
1447 }
1448 
1449 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1450 					   int order)
1451 {
1452 	return 0;
1453 }
1454 
1455 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1456 {
1457 }
1458 
1459 #define for_each_memcg_cache_index(_idx)	\
1460 	for (; NULL; )
1461 
1462 static inline bool memcg_kmem_enabled(void)
1463 {
1464 	return false;
1465 }
1466 
1467 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1468 {
1469 	return -1;
1470 }
1471 
1472 static inline void memcg_get_cache_ids(void)
1473 {
1474 }
1475 
1476 static inline void memcg_put_cache_ids(void)
1477 {
1478 }
1479 
1480 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1481 {
1482        return NULL;
1483 }
1484 
1485 #endif /* CONFIG_MEMCG_KMEM */
1486 
1487 #endif /* _LINUX_MEMCONTROL_H */
1488