1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 25 struct mem_cgroup; 26 struct page; 27 struct mm_struct; 28 struct kmem_cache; 29 30 /* Cgroup-specific page state, on top of universal node page state */ 31 enum memcg_stat_item { 32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 33 MEMCG_RSS, 34 MEMCG_RSS_HUGE, 35 MEMCG_SWAP, 36 MEMCG_SOCK, 37 /* XXX: why are these zone and not node counters? */ 38 MEMCG_KERNEL_STACK_KB, 39 MEMCG_NR_STAT, 40 }; 41 42 enum memcg_memory_event { 43 MEMCG_LOW, 44 MEMCG_HIGH, 45 MEMCG_MAX, 46 MEMCG_OOM, 47 MEMCG_OOM_KILL, 48 MEMCG_SWAP_MAX, 49 MEMCG_SWAP_FAIL, 50 MEMCG_NR_MEMORY_EVENTS, 51 }; 52 53 enum mem_cgroup_protection { 54 MEMCG_PROT_NONE, 55 MEMCG_PROT_LOW, 56 MEMCG_PROT_MIN, 57 }; 58 59 struct mem_cgroup_reclaim_cookie { 60 pg_data_t *pgdat; 61 unsigned int generation; 62 }; 63 64 #ifdef CONFIG_MEMCG 65 66 #define MEM_CGROUP_ID_SHIFT 16 67 #define MEM_CGROUP_ID_MAX USHRT_MAX 68 69 struct mem_cgroup_id { 70 int id; 71 refcount_t ref; 72 }; 73 74 /* 75 * Per memcg event counter is incremented at every pagein/pageout. With THP, 76 * it will be incremated by the number of pages. This counter is used for 77 * for trigger some periodic events. This is straightforward and better 78 * than using jiffies etc. to handle periodic memcg event. 79 */ 80 enum mem_cgroup_events_target { 81 MEM_CGROUP_TARGET_THRESH, 82 MEM_CGROUP_TARGET_SOFTLIMIT, 83 MEM_CGROUP_NTARGETS, 84 }; 85 86 struct memcg_vmstats_percpu { 87 long stat[MEMCG_NR_STAT]; 88 unsigned long events[NR_VM_EVENT_ITEMS]; 89 unsigned long nr_page_events; 90 unsigned long targets[MEM_CGROUP_NTARGETS]; 91 }; 92 93 struct mem_cgroup_reclaim_iter { 94 struct mem_cgroup *position; 95 /* scan generation, increased every round-trip */ 96 unsigned int generation; 97 }; 98 99 struct lruvec_stat { 100 long count[NR_VM_NODE_STAT_ITEMS]; 101 }; 102 103 /* 104 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 105 * which have elements charged to this memcg. 106 */ 107 struct memcg_shrinker_map { 108 struct rcu_head rcu; 109 unsigned long map[]; 110 }; 111 112 /* 113 * per-node information in memory controller. 114 */ 115 struct mem_cgroup_per_node { 116 struct lruvec lruvec; 117 118 /* Legacy local VM stats */ 119 struct lruvec_stat __percpu *lruvec_stat_local; 120 121 /* Subtree VM stats (batched updates) */ 122 struct lruvec_stat __percpu *lruvec_stat_cpu; 123 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 124 125 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 126 127 struct mem_cgroup_reclaim_iter iter; 128 129 struct memcg_shrinker_map __rcu *shrinker_map; 130 131 struct rb_node tree_node; /* RB tree node */ 132 unsigned long usage_in_excess;/* Set to the value by which */ 133 /* the soft limit is exceeded*/ 134 bool on_tree; 135 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 136 /* use container_of */ 137 }; 138 139 struct mem_cgroup_threshold { 140 struct eventfd_ctx *eventfd; 141 unsigned long threshold; 142 }; 143 144 /* For threshold */ 145 struct mem_cgroup_threshold_ary { 146 /* An array index points to threshold just below or equal to usage. */ 147 int current_threshold; 148 /* Size of entries[] */ 149 unsigned int size; 150 /* Array of thresholds */ 151 struct mem_cgroup_threshold entries[]; 152 }; 153 154 struct mem_cgroup_thresholds { 155 /* Primary thresholds array */ 156 struct mem_cgroup_threshold_ary *primary; 157 /* 158 * Spare threshold array. 159 * This is needed to make mem_cgroup_unregister_event() "never fail". 160 * It must be able to store at least primary->size - 1 entries. 161 */ 162 struct mem_cgroup_threshold_ary *spare; 163 }; 164 165 enum memcg_kmem_state { 166 KMEM_NONE, 167 KMEM_ALLOCATED, 168 KMEM_ONLINE, 169 }; 170 171 #if defined(CONFIG_SMP) 172 struct memcg_padding { 173 char x[0]; 174 } ____cacheline_internodealigned_in_smp; 175 #define MEMCG_PADDING(name) struct memcg_padding name; 176 #else 177 #define MEMCG_PADDING(name) 178 #endif 179 180 /* 181 * Remember four most recent foreign writebacks with dirty pages in this 182 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 183 * one in a given round, we're likely to catch it later if it keeps 184 * foreign-dirtying, so a fairly low count should be enough. 185 * 186 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 187 */ 188 #define MEMCG_CGWB_FRN_CNT 4 189 190 struct memcg_cgwb_frn { 191 u64 bdi_id; /* bdi->id of the foreign inode */ 192 int memcg_id; /* memcg->css.id of foreign inode */ 193 u64 at; /* jiffies_64 at the time of dirtying */ 194 struct wb_completion done; /* tracks in-flight foreign writebacks */ 195 }; 196 197 /* 198 * The memory controller data structure. The memory controller controls both 199 * page cache and RSS per cgroup. We would eventually like to provide 200 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 201 * to help the administrator determine what knobs to tune. 202 */ 203 struct mem_cgroup { 204 struct cgroup_subsys_state css; 205 206 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 207 struct mem_cgroup_id id; 208 209 /* Accounted resources */ 210 struct page_counter memory; 211 struct page_counter swap; 212 213 /* Legacy consumer-oriented counters */ 214 struct page_counter memsw; 215 struct page_counter kmem; 216 struct page_counter tcpmem; 217 218 /* Upper bound of normal memory consumption range */ 219 unsigned long high; 220 221 /* Range enforcement for interrupt charges */ 222 struct work_struct high_work; 223 224 unsigned long soft_limit; 225 226 /* vmpressure notifications */ 227 struct vmpressure vmpressure; 228 229 /* 230 * Should the accounting and control be hierarchical, per subtree? 231 */ 232 bool use_hierarchy; 233 234 /* 235 * Should the OOM killer kill all belonging tasks, had it kill one? 236 */ 237 bool oom_group; 238 239 /* protected by memcg_oom_lock */ 240 bool oom_lock; 241 int under_oom; 242 243 int swappiness; 244 /* OOM-Killer disable */ 245 int oom_kill_disable; 246 247 /* memory.events and memory.events.local */ 248 struct cgroup_file events_file; 249 struct cgroup_file events_local_file; 250 251 /* handle for "memory.swap.events" */ 252 struct cgroup_file swap_events_file; 253 254 /* protect arrays of thresholds */ 255 struct mutex thresholds_lock; 256 257 /* thresholds for memory usage. RCU-protected */ 258 struct mem_cgroup_thresholds thresholds; 259 260 /* thresholds for mem+swap usage. RCU-protected */ 261 struct mem_cgroup_thresholds memsw_thresholds; 262 263 /* For oom notifier event fd */ 264 struct list_head oom_notify; 265 266 /* 267 * Should we move charges of a task when a task is moved into this 268 * mem_cgroup ? And what type of charges should we move ? 269 */ 270 unsigned long move_charge_at_immigrate; 271 /* taken only while moving_account > 0 */ 272 spinlock_t move_lock; 273 unsigned long move_lock_flags; 274 275 MEMCG_PADDING(_pad1_); 276 277 /* 278 * set > 0 if pages under this cgroup are moving to other cgroup. 279 */ 280 atomic_t moving_account; 281 struct task_struct *move_lock_task; 282 283 /* Legacy local VM stats and events */ 284 struct memcg_vmstats_percpu __percpu *vmstats_local; 285 286 /* Subtree VM stats and events (batched updates) */ 287 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 288 289 MEMCG_PADDING(_pad2_); 290 291 atomic_long_t vmstats[MEMCG_NR_STAT]; 292 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 293 294 /* memory.events */ 295 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 296 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 297 298 unsigned long socket_pressure; 299 300 /* Legacy tcp memory accounting */ 301 bool tcpmem_active; 302 int tcpmem_pressure; 303 304 #ifdef CONFIG_MEMCG_KMEM 305 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 306 int kmemcg_id; 307 enum memcg_kmem_state kmem_state; 308 struct list_head kmem_caches; 309 #endif 310 311 #ifdef CONFIG_CGROUP_WRITEBACK 312 struct list_head cgwb_list; 313 struct wb_domain cgwb_domain; 314 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 315 #endif 316 317 /* List of events which userspace want to receive */ 318 struct list_head event_list; 319 spinlock_t event_list_lock; 320 321 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 322 struct deferred_split deferred_split_queue; 323 #endif 324 325 struct mem_cgroup_per_node *nodeinfo[0]; 326 /* WARNING: nodeinfo must be the last member here */ 327 }; 328 329 /* 330 * size of first charge trial. "32" comes from vmscan.c's magic value. 331 * TODO: maybe necessary to use big numbers in big irons. 332 */ 333 #define MEMCG_CHARGE_BATCH 32U 334 335 extern struct mem_cgroup *root_mem_cgroup; 336 337 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 338 { 339 return (memcg == root_mem_cgroup); 340 } 341 342 static inline bool mem_cgroup_disabled(void) 343 { 344 return !cgroup_subsys_enabled(memory_cgrp_subsys); 345 } 346 347 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg, 348 bool in_low_reclaim) 349 { 350 if (mem_cgroup_disabled()) 351 return 0; 352 353 if (in_low_reclaim) 354 return READ_ONCE(memcg->memory.emin); 355 356 return max(READ_ONCE(memcg->memory.emin), 357 READ_ONCE(memcg->memory.elow)); 358 } 359 360 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 361 struct mem_cgroup *memcg); 362 363 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 364 gfp_t gfp_mask, struct mem_cgroup **memcgp, 365 bool compound); 366 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 367 gfp_t gfp_mask, struct mem_cgroup **memcgp, 368 bool compound); 369 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 370 bool lrucare, bool compound); 371 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 372 bool compound); 373 void mem_cgroup_uncharge(struct page *page); 374 void mem_cgroup_uncharge_list(struct list_head *page_list); 375 376 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 377 378 static struct mem_cgroup_per_node * 379 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 380 { 381 return memcg->nodeinfo[nid]; 382 } 383 384 /** 385 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 386 * @memcg: memcg of the wanted lruvec 387 * 388 * Returns the lru list vector holding pages for a given @memcg & 389 * @node combination. This can be the node lruvec, if the memory 390 * controller is disabled. 391 */ 392 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 393 struct pglist_data *pgdat) 394 { 395 struct mem_cgroup_per_node *mz; 396 struct lruvec *lruvec; 397 398 if (mem_cgroup_disabled()) { 399 lruvec = &pgdat->__lruvec; 400 goto out; 401 } 402 403 if (!memcg) 404 memcg = root_mem_cgroup; 405 406 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 407 lruvec = &mz->lruvec; 408 out: 409 /* 410 * Since a node can be onlined after the mem_cgroup was created, 411 * we have to be prepared to initialize lruvec->pgdat here; 412 * and if offlined then reonlined, we need to reinitialize it. 413 */ 414 if (unlikely(lruvec->pgdat != pgdat)) 415 lruvec->pgdat = pgdat; 416 return lruvec; 417 } 418 419 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 420 421 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 422 423 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 424 425 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 426 427 static inline 428 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 429 return css ? container_of(css, struct mem_cgroup, css) : NULL; 430 } 431 432 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 433 { 434 if (memcg) 435 css_put(&memcg->css); 436 } 437 438 #define mem_cgroup_from_counter(counter, member) \ 439 container_of(counter, struct mem_cgroup, member) 440 441 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 442 struct mem_cgroup *, 443 struct mem_cgroup_reclaim_cookie *); 444 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 445 int mem_cgroup_scan_tasks(struct mem_cgroup *, 446 int (*)(struct task_struct *, void *), void *); 447 448 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 449 { 450 if (mem_cgroup_disabled()) 451 return 0; 452 453 return memcg->id.id; 454 } 455 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 456 457 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 458 { 459 return mem_cgroup_from_css(seq_css(m)); 460 } 461 462 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 463 { 464 struct mem_cgroup_per_node *mz; 465 466 if (mem_cgroup_disabled()) 467 return NULL; 468 469 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 470 return mz->memcg; 471 } 472 473 /** 474 * parent_mem_cgroup - find the accounting parent of a memcg 475 * @memcg: memcg whose parent to find 476 * 477 * Returns the parent memcg, or NULL if this is the root or the memory 478 * controller is in legacy no-hierarchy mode. 479 */ 480 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 481 { 482 if (!memcg->memory.parent) 483 return NULL; 484 return mem_cgroup_from_counter(memcg->memory.parent, memory); 485 } 486 487 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 488 struct mem_cgroup *root) 489 { 490 if (root == memcg) 491 return true; 492 if (!root->use_hierarchy) 493 return false; 494 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 495 } 496 497 static inline bool mm_match_cgroup(struct mm_struct *mm, 498 struct mem_cgroup *memcg) 499 { 500 struct mem_cgroup *task_memcg; 501 bool match = false; 502 503 rcu_read_lock(); 504 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 505 if (task_memcg) 506 match = mem_cgroup_is_descendant(task_memcg, memcg); 507 rcu_read_unlock(); 508 return match; 509 } 510 511 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 512 ino_t page_cgroup_ino(struct page *page); 513 514 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 515 { 516 if (mem_cgroup_disabled()) 517 return true; 518 return !!(memcg->css.flags & CSS_ONLINE); 519 } 520 521 /* 522 * For memory reclaim. 523 */ 524 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 525 526 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 527 int zid, int nr_pages); 528 529 static inline 530 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 531 enum lru_list lru, int zone_idx) 532 { 533 struct mem_cgroup_per_node *mz; 534 535 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 536 return mz->lru_zone_size[zone_idx][lru]; 537 } 538 539 void mem_cgroup_handle_over_high(void); 540 541 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 542 543 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 544 545 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 546 struct task_struct *p); 547 548 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 549 550 static inline void mem_cgroup_enter_user_fault(void) 551 { 552 WARN_ON(current->in_user_fault); 553 current->in_user_fault = 1; 554 } 555 556 static inline void mem_cgroup_exit_user_fault(void) 557 { 558 WARN_ON(!current->in_user_fault); 559 current->in_user_fault = 0; 560 } 561 562 static inline bool task_in_memcg_oom(struct task_struct *p) 563 { 564 return p->memcg_in_oom; 565 } 566 567 bool mem_cgroup_oom_synchronize(bool wait); 568 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 569 struct mem_cgroup *oom_domain); 570 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 571 572 #ifdef CONFIG_MEMCG_SWAP 573 extern int do_swap_account; 574 #endif 575 576 struct mem_cgroup *lock_page_memcg(struct page *page); 577 void __unlock_page_memcg(struct mem_cgroup *memcg); 578 void unlock_page_memcg(struct page *page); 579 580 /* 581 * idx can be of type enum memcg_stat_item or node_stat_item. 582 * Keep in sync with memcg_exact_page_state(). 583 */ 584 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 585 { 586 long x = atomic_long_read(&memcg->vmstats[idx]); 587 #ifdef CONFIG_SMP 588 if (x < 0) 589 x = 0; 590 #endif 591 return x; 592 } 593 594 /* 595 * idx can be of type enum memcg_stat_item or node_stat_item. 596 * Keep in sync with memcg_exact_page_state(). 597 */ 598 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 599 int idx) 600 { 601 long x = 0; 602 int cpu; 603 604 for_each_possible_cpu(cpu) 605 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 606 #ifdef CONFIG_SMP 607 if (x < 0) 608 x = 0; 609 #endif 610 return x; 611 } 612 613 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 614 615 /* idx can be of type enum memcg_stat_item or node_stat_item */ 616 static inline void mod_memcg_state(struct mem_cgroup *memcg, 617 int idx, int val) 618 { 619 unsigned long flags; 620 621 local_irq_save(flags); 622 __mod_memcg_state(memcg, idx, val); 623 local_irq_restore(flags); 624 } 625 626 /** 627 * mod_memcg_page_state - update page state statistics 628 * @page: the page 629 * @idx: page state item to account 630 * @val: number of pages (positive or negative) 631 * 632 * The @page must be locked or the caller must use lock_page_memcg() 633 * to prevent double accounting when the page is concurrently being 634 * moved to another memcg: 635 * 636 * lock_page(page) or lock_page_memcg(page) 637 * if (TestClearPageState(page)) 638 * mod_memcg_page_state(page, state, -1); 639 * unlock_page(page) or unlock_page_memcg(page) 640 * 641 * Kernel pages are an exception to this, since they'll never move. 642 */ 643 static inline void __mod_memcg_page_state(struct page *page, 644 int idx, int val) 645 { 646 if (page->mem_cgroup) 647 __mod_memcg_state(page->mem_cgroup, idx, val); 648 } 649 650 static inline void mod_memcg_page_state(struct page *page, 651 int idx, int val) 652 { 653 if (page->mem_cgroup) 654 mod_memcg_state(page->mem_cgroup, idx, val); 655 } 656 657 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 658 enum node_stat_item idx) 659 { 660 struct mem_cgroup_per_node *pn; 661 long x; 662 663 if (mem_cgroup_disabled()) 664 return node_page_state(lruvec_pgdat(lruvec), idx); 665 666 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 667 x = atomic_long_read(&pn->lruvec_stat[idx]); 668 #ifdef CONFIG_SMP 669 if (x < 0) 670 x = 0; 671 #endif 672 return x; 673 } 674 675 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 676 enum node_stat_item idx) 677 { 678 struct mem_cgroup_per_node *pn; 679 long x = 0; 680 int cpu; 681 682 if (mem_cgroup_disabled()) 683 return node_page_state(lruvec_pgdat(lruvec), idx); 684 685 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 686 for_each_possible_cpu(cpu) 687 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 688 #ifdef CONFIG_SMP 689 if (x < 0) 690 x = 0; 691 #endif 692 return x; 693 } 694 695 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 696 int val); 697 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); 698 void mod_memcg_obj_state(void *p, int idx, int val); 699 700 static inline void mod_lruvec_state(struct lruvec *lruvec, 701 enum node_stat_item idx, int val) 702 { 703 unsigned long flags; 704 705 local_irq_save(flags); 706 __mod_lruvec_state(lruvec, idx, val); 707 local_irq_restore(flags); 708 } 709 710 static inline void __mod_lruvec_page_state(struct page *page, 711 enum node_stat_item idx, int val) 712 { 713 pg_data_t *pgdat = page_pgdat(page); 714 struct lruvec *lruvec; 715 716 /* Untracked pages have no memcg, no lruvec. Update only the node */ 717 if (!page->mem_cgroup) { 718 __mod_node_page_state(pgdat, idx, val); 719 return; 720 } 721 722 lruvec = mem_cgroup_lruvec(page->mem_cgroup, pgdat); 723 __mod_lruvec_state(lruvec, idx, val); 724 } 725 726 static inline void mod_lruvec_page_state(struct page *page, 727 enum node_stat_item idx, int val) 728 { 729 unsigned long flags; 730 731 local_irq_save(flags); 732 __mod_lruvec_page_state(page, idx, val); 733 local_irq_restore(flags); 734 } 735 736 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 737 gfp_t gfp_mask, 738 unsigned long *total_scanned); 739 740 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 741 unsigned long count); 742 743 static inline void count_memcg_events(struct mem_cgroup *memcg, 744 enum vm_event_item idx, 745 unsigned long count) 746 { 747 unsigned long flags; 748 749 local_irq_save(flags); 750 __count_memcg_events(memcg, idx, count); 751 local_irq_restore(flags); 752 } 753 754 static inline void count_memcg_page_event(struct page *page, 755 enum vm_event_item idx) 756 { 757 if (page->mem_cgroup) 758 count_memcg_events(page->mem_cgroup, idx, 1); 759 } 760 761 static inline void count_memcg_event_mm(struct mm_struct *mm, 762 enum vm_event_item idx) 763 { 764 struct mem_cgroup *memcg; 765 766 if (mem_cgroup_disabled()) 767 return; 768 769 rcu_read_lock(); 770 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 771 if (likely(memcg)) 772 count_memcg_events(memcg, idx, 1); 773 rcu_read_unlock(); 774 } 775 776 static inline void memcg_memory_event(struct mem_cgroup *memcg, 777 enum memcg_memory_event event) 778 { 779 atomic_long_inc(&memcg->memory_events_local[event]); 780 cgroup_file_notify(&memcg->events_local_file); 781 782 do { 783 atomic_long_inc(&memcg->memory_events[event]); 784 cgroup_file_notify(&memcg->events_file); 785 786 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 787 break; 788 } while ((memcg = parent_mem_cgroup(memcg)) && 789 !mem_cgroup_is_root(memcg)); 790 } 791 792 static inline void memcg_memory_event_mm(struct mm_struct *mm, 793 enum memcg_memory_event event) 794 { 795 struct mem_cgroup *memcg; 796 797 if (mem_cgroup_disabled()) 798 return; 799 800 rcu_read_lock(); 801 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 802 if (likely(memcg)) 803 memcg_memory_event(memcg, event); 804 rcu_read_unlock(); 805 } 806 807 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 808 void mem_cgroup_split_huge_fixup(struct page *head); 809 #endif 810 811 #else /* CONFIG_MEMCG */ 812 813 #define MEM_CGROUP_ID_SHIFT 0 814 #define MEM_CGROUP_ID_MAX 0 815 816 struct mem_cgroup; 817 818 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 819 { 820 return true; 821 } 822 823 static inline bool mem_cgroup_disabled(void) 824 { 825 return true; 826 } 827 828 static inline void memcg_memory_event(struct mem_cgroup *memcg, 829 enum memcg_memory_event event) 830 { 831 } 832 833 static inline void memcg_memory_event_mm(struct mm_struct *mm, 834 enum memcg_memory_event event) 835 { 836 } 837 838 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg, 839 bool in_low_reclaim) 840 { 841 return 0; 842 } 843 844 static inline enum mem_cgroup_protection mem_cgroup_protected( 845 struct mem_cgroup *root, struct mem_cgroup *memcg) 846 { 847 return MEMCG_PROT_NONE; 848 } 849 850 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 851 gfp_t gfp_mask, 852 struct mem_cgroup **memcgp, 853 bool compound) 854 { 855 *memcgp = NULL; 856 return 0; 857 } 858 859 static inline int mem_cgroup_try_charge_delay(struct page *page, 860 struct mm_struct *mm, 861 gfp_t gfp_mask, 862 struct mem_cgroup **memcgp, 863 bool compound) 864 { 865 *memcgp = NULL; 866 return 0; 867 } 868 869 static inline void mem_cgroup_commit_charge(struct page *page, 870 struct mem_cgroup *memcg, 871 bool lrucare, bool compound) 872 { 873 } 874 875 static inline void mem_cgroup_cancel_charge(struct page *page, 876 struct mem_cgroup *memcg, 877 bool compound) 878 { 879 } 880 881 static inline void mem_cgroup_uncharge(struct page *page) 882 { 883 } 884 885 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 886 { 887 } 888 889 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 890 { 891 } 892 893 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 894 struct pglist_data *pgdat) 895 { 896 return &pgdat->__lruvec; 897 } 898 899 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 900 struct pglist_data *pgdat) 901 { 902 return &pgdat->__lruvec; 903 } 904 905 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 906 { 907 return NULL; 908 } 909 910 static inline bool mm_match_cgroup(struct mm_struct *mm, 911 struct mem_cgroup *memcg) 912 { 913 return true; 914 } 915 916 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 917 { 918 return NULL; 919 } 920 921 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 922 { 923 return NULL; 924 } 925 926 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 927 { 928 } 929 930 static inline struct mem_cgroup * 931 mem_cgroup_iter(struct mem_cgroup *root, 932 struct mem_cgroup *prev, 933 struct mem_cgroup_reclaim_cookie *reclaim) 934 { 935 return NULL; 936 } 937 938 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 939 struct mem_cgroup *prev) 940 { 941 } 942 943 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 944 int (*fn)(struct task_struct *, void *), void *arg) 945 { 946 return 0; 947 } 948 949 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 950 { 951 return 0; 952 } 953 954 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 955 { 956 WARN_ON_ONCE(id); 957 /* XXX: This should always return root_mem_cgroup */ 958 return NULL; 959 } 960 961 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 962 { 963 return NULL; 964 } 965 966 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 967 { 968 return NULL; 969 } 970 971 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 972 { 973 return true; 974 } 975 976 static inline 977 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 978 enum lru_list lru, int zone_idx) 979 { 980 return 0; 981 } 982 983 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 984 { 985 return 0; 986 } 987 988 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 989 { 990 return 0; 991 } 992 993 static inline void 994 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 995 { 996 } 997 998 static inline void 999 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1000 { 1001 } 1002 1003 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 1004 { 1005 return NULL; 1006 } 1007 1008 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 1009 { 1010 } 1011 1012 static inline void unlock_page_memcg(struct page *page) 1013 { 1014 } 1015 1016 static inline void mem_cgroup_handle_over_high(void) 1017 { 1018 } 1019 1020 static inline void mem_cgroup_enter_user_fault(void) 1021 { 1022 } 1023 1024 static inline void mem_cgroup_exit_user_fault(void) 1025 { 1026 } 1027 1028 static inline bool task_in_memcg_oom(struct task_struct *p) 1029 { 1030 return false; 1031 } 1032 1033 static inline bool mem_cgroup_oom_synchronize(bool wait) 1034 { 1035 return false; 1036 } 1037 1038 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1039 struct task_struct *victim, struct mem_cgroup *oom_domain) 1040 { 1041 return NULL; 1042 } 1043 1044 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1045 { 1046 } 1047 1048 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1049 { 1050 return 0; 1051 } 1052 1053 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1054 int idx) 1055 { 1056 return 0; 1057 } 1058 1059 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1060 int idx, 1061 int nr) 1062 { 1063 } 1064 1065 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1066 int idx, 1067 int nr) 1068 { 1069 } 1070 1071 static inline void __mod_memcg_page_state(struct page *page, 1072 int idx, 1073 int nr) 1074 { 1075 } 1076 1077 static inline void mod_memcg_page_state(struct page *page, 1078 int idx, 1079 int nr) 1080 { 1081 } 1082 1083 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1084 enum node_stat_item idx) 1085 { 1086 return node_page_state(lruvec_pgdat(lruvec), idx); 1087 } 1088 1089 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1090 enum node_stat_item idx) 1091 { 1092 return node_page_state(lruvec_pgdat(lruvec), idx); 1093 } 1094 1095 static inline void __mod_lruvec_state(struct lruvec *lruvec, 1096 enum node_stat_item idx, int val) 1097 { 1098 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1099 } 1100 1101 static inline void mod_lruvec_state(struct lruvec *lruvec, 1102 enum node_stat_item idx, int val) 1103 { 1104 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1105 } 1106 1107 static inline void __mod_lruvec_page_state(struct page *page, 1108 enum node_stat_item idx, int val) 1109 { 1110 __mod_node_page_state(page_pgdat(page), idx, val); 1111 } 1112 1113 static inline void mod_lruvec_page_state(struct page *page, 1114 enum node_stat_item idx, int val) 1115 { 1116 mod_node_page_state(page_pgdat(page), idx, val); 1117 } 1118 1119 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1120 int val) 1121 { 1122 struct page *page = virt_to_head_page(p); 1123 1124 __mod_node_page_state(page_pgdat(page), idx, val); 1125 } 1126 1127 static inline void mod_memcg_obj_state(void *p, int idx, int val) 1128 { 1129 } 1130 1131 static inline 1132 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1133 gfp_t gfp_mask, 1134 unsigned long *total_scanned) 1135 { 1136 return 0; 1137 } 1138 1139 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1140 { 1141 } 1142 1143 static inline void count_memcg_events(struct mem_cgroup *memcg, 1144 enum vm_event_item idx, 1145 unsigned long count) 1146 { 1147 } 1148 1149 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1150 enum vm_event_item idx, 1151 unsigned long count) 1152 { 1153 } 1154 1155 static inline void count_memcg_page_event(struct page *page, 1156 int idx) 1157 { 1158 } 1159 1160 static inline 1161 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1162 { 1163 } 1164 #endif /* CONFIG_MEMCG */ 1165 1166 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1167 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1168 int idx) 1169 { 1170 __mod_memcg_state(memcg, idx, 1); 1171 } 1172 1173 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1174 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1175 int idx) 1176 { 1177 __mod_memcg_state(memcg, idx, -1); 1178 } 1179 1180 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1181 static inline void __inc_memcg_page_state(struct page *page, 1182 int idx) 1183 { 1184 __mod_memcg_page_state(page, idx, 1); 1185 } 1186 1187 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1188 static inline void __dec_memcg_page_state(struct page *page, 1189 int idx) 1190 { 1191 __mod_memcg_page_state(page, idx, -1); 1192 } 1193 1194 static inline void __inc_lruvec_state(struct lruvec *lruvec, 1195 enum node_stat_item idx) 1196 { 1197 __mod_lruvec_state(lruvec, idx, 1); 1198 } 1199 1200 static inline void __dec_lruvec_state(struct lruvec *lruvec, 1201 enum node_stat_item idx) 1202 { 1203 __mod_lruvec_state(lruvec, idx, -1); 1204 } 1205 1206 static inline void __inc_lruvec_page_state(struct page *page, 1207 enum node_stat_item idx) 1208 { 1209 __mod_lruvec_page_state(page, idx, 1); 1210 } 1211 1212 static inline void __dec_lruvec_page_state(struct page *page, 1213 enum node_stat_item idx) 1214 { 1215 __mod_lruvec_page_state(page, idx, -1); 1216 } 1217 1218 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) 1219 { 1220 __mod_lruvec_slab_state(p, idx, 1); 1221 } 1222 1223 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) 1224 { 1225 __mod_lruvec_slab_state(p, idx, -1); 1226 } 1227 1228 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1229 static inline void inc_memcg_state(struct mem_cgroup *memcg, 1230 int idx) 1231 { 1232 mod_memcg_state(memcg, idx, 1); 1233 } 1234 1235 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1236 static inline void dec_memcg_state(struct mem_cgroup *memcg, 1237 int idx) 1238 { 1239 mod_memcg_state(memcg, idx, -1); 1240 } 1241 1242 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1243 static inline void inc_memcg_page_state(struct page *page, 1244 int idx) 1245 { 1246 mod_memcg_page_state(page, idx, 1); 1247 } 1248 1249 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1250 static inline void dec_memcg_page_state(struct page *page, 1251 int idx) 1252 { 1253 mod_memcg_page_state(page, idx, -1); 1254 } 1255 1256 static inline void inc_lruvec_state(struct lruvec *lruvec, 1257 enum node_stat_item idx) 1258 { 1259 mod_lruvec_state(lruvec, idx, 1); 1260 } 1261 1262 static inline void dec_lruvec_state(struct lruvec *lruvec, 1263 enum node_stat_item idx) 1264 { 1265 mod_lruvec_state(lruvec, idx, -1); 1266 } 1267 1268 static inline void inc_lruvec_page_state(struct page *page, 1269 enum node_stat_item idx) 1270 { 1271 mod_lruvec_page_state(page, idx, 1); 1272 } 1273 1274 static inline void dec_lruvec_page_state(struct page *page, 1275 enum node_stat_item idx) 1276 { 1277 mod_lruvec_page_state(page, idx, -1); 1278 } 1279 1280 #ifdef CONFIG_CGROUP_WRITEBACK 1281 1282 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1283 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1284 unsigned long *pheadroom, unsigned long *pdirty, 1285 unsigned long *pwriteback); 1286 1287 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1288 struct bdi_writeback *wb); 1289 1290 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1291 struct bdi_writeback *wb) 1292 { 1293 if (mem_cgroup_disabled()) 1294 return; 1295 1296 if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) 1297 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1298 } 1299 1300 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1301 1302 #else /* CONFIG_CGROUP_WRITEBACK */ 1303 1304 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1305 { 1306 return NULL; 1307 } 1308 1309 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1310 unsigned long *pfilepages, 1311 unsigned long *pheadroom, 1312 unsigned long *pdirty, 1313 unsigned long *pwriteback) 1314 { 1315 } 1316 1317 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1318 struct bdi_writeback *wb) 1319 { 1320 } 1321 1322 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1323 { 1324 } 1325 1326 #endif /* CONFIG_CGROUP_WRITEBACK */ 1327 1328 struct sock; 1329 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1330 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1331 #ifdef CONFIG_MEMCG 1332 extern struct static_key_false memcg_sockets_enabled_key; 1333 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1334 void mem_cgroup_sk_alloc(struct sock *sk); 1335 void mem_cgroup_sk_free(struct sock *sk); 1336 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1337 { 1338 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1339 return true; 1340 do { 1341 if (time_before(jiffies, memcg->socket_pressure)) 1342 return true; 1343 } while ((memcg = parent_mem_cgroup(memcg))); 1344 return false; 1345 } 1346 1347 extern int memcg_expand_shrinker_maps(int new_id); 1348 1349 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1350 int nid, int shrinker_id); 1351 #else 1352 #define mem_cgroup_sockets_enabled 0 1353 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1354 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1355 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1356 { 1357 return false; 1358 } 1359 1360 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1361 int nid, int shrinker_id) 1362 { 1363 } 1364 #endif 1365 1366 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1367 void memcg_kmem_put_cache(struct kmem_cache *cachep); 1368 1369 #ifdef CONFIG_MEMCG_KMEM 1370 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1371 unsigned int nr_pages); 1372 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 1373 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1374 void __memcg_kmem_uncharge_page(struct page *page, int order); 1375 1376 extern struct static_key_false memcg_kmem_enabled_key; 1377 extern struct workqueue_struct *memcg_kmem_cache_wq; 1378 1379 extern int memcg_nr_cache_ids; 1380 void memcg_get_cache_ids(void); 1381 void memcg_put_cache_ids(void); 1382 1383 /* 1384 * Helper macro to loop through all memcg-specific caches. Callers must still 1385 * check if the cache is valid (it is either valid or NULL). 1386 * the slab_mutex must be held when looping through those caches 1387 */ 1388 #define for_each_memcg_cache_index(_idx) \ 1389 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1390 1391 static inline bool memcg_kmem_enabled(void) 1392 { 1393 return static_branch_unlikely(&memcg_kmem_enabled_key); 1394 } 1395 1396 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1397 int order) 1398 { 1399 if (memcg_kmem_enabled()) 1400 return __memcg_kmem_charge_page(page, gfp, order); 1401 return 0; 1402 } 1403 1404 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1405 { 1406 if (memcg_kmem_enabled()) 1407 __memcg_kmem_uncharge_page(page, order); 1408 } 1409 1410 static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1411 unsigned int nr_pages) 1412 { 1413 if (memcg_kmem_enabled()) 1414 return __memcg_kmem_charge(memcg, gfp, nr_pages); 1415 return 0; 1416 } 1417 1418 static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg, 1419 unsigned int nr_pages) 1420 { 1421 if (memcg_kmem_enabled()) 1422 __memcg_kmem_uncharge(memcg, nr_pages); 1423 } 1424 1425 /* 1426 * helper for accessing a memcg's index. It will be used as an index in the 1427 * child cache array in kmem_cache, and also to derive its name. This function 1428 * will return -1 when this is not a kmem-limited memcg. 1429 */ 1430 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1431 { 1432 return memcg ? memcg->kmemcg_id : -1; 1433 } 1434 1435 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1436 1437 #else 1438 1439 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1440 int order) 1441 { 1442 return 0; 1443 } 1444 1445 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1446 { 1447 } 1448 1449 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1450 int order) 1451 { 1452 return 0; 1453 } 1454 1455 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1456 { 1457 } 1458 1459 #define for_each_memcg_cache_index(_idx) \ 1460 for (; NULL; ) 1461 1462 static inline bool memcg_kmem_enabled(void) 1463 { 1464 return false; 1465 } 1466 1467 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1468 { 1469 return -1; 1470 } 1471 1472 static inline void memcg_get_cache_ids(void) 1473 { 1474 } 1475 1476 static inline void memcg_put_cache_ids(void) 1477 { 1478 } 1479 1480 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1481 { 1482 return NULL; 1483 } 1484 1485 #endif /* CONFIG_MEMCG_KMEM */ 1486 1487 #endif /* _LINUX_MEMCONTROL_H */ 1488