1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 #include <linux/page_counter.h> 27 #include <linux/vmpressure.h> 28 #include <linux/eventfd.h> 29 #include <linux/mm.h> 30 #include <linux/vmstat.h> 31 #include <linux/writeback.h> 32 #include <linux/page-flags.h> 33 34 struct mem_cgroup; 35 struct page; 36 struct mm_struct; 37 struct kmem_cache; 38 39 /* Cgroup-specific page state, on top of universal node page state */ 40 enum memcg_stat_item { 41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 42 MEMCG_RSS, 43 MEMCG_RSS_HUGE, 44 MEMCG_SWAP, 45 MEMCG_SOCK, 46 /* XXX: why are these zone and not node counters? */ 47 MEMCG_KERNEL_STACK_KB, 48 MEMCG_NR_STAT, 49 }; 50 51 /* Cgroup-specific events, on top of universal VM events */ 52 enum memcg_event_item { 53 MEMCG_LOW = NR_VM_EVENT_ITEMS, 54 MEMCG_HIGH, 55 MEMCG_MAX, 56 MEMCG_OOM, 57 MEMCG_NR_EVENTS, 58 }; 59 60 struct mem_cgroup_reclaim_cookie { 61 pg_data_t *pgdat; 62 int priority; 63 unsigned int generation; 64 }; 65 66 #ifdef CONFIG_MEMCG 67 68 #define MEM_CGROUP_ID_SHIFT 16 69 #define MEM_CGROUP_ID_MAX USHRT_MAX 70 71 struct mem_cgroup_id { 72 int id; 73 atomic_t ref; 74 }; 75 76 /* 77 * Per memcg event counter is incremented at every pagein/pageout. With THP, 78 * it will be incremated by the number of pages. This counter is used for 79 * for trigger some periodic events. This is straightforward and better 80 * than using jiffies etc. to handle periodic memcg event. 81 */ 82 enum mem_cgroup_events_target { 83 MEM_CGROUP_TARGET_THRESH, 84 MEM_CGROUP_TARGET_SOFTLIMIT, 85 MEM_CGROUP_TARGET_NUMAINFO, 86 MEM_CGROUP_NTARGETS, 87 }; 88 89 struct mem_cgroup_stat_cpu { 90 long count[MEMCG_NR_STAT]; 91 unsigned long events[MEMCG_NR_EVENTS]; 92 unsigned long nr_page_events; 93 unsigned long targets[MEM_CGROUP_NTARGETS]; 94 }; 95 96 struct mem_cgroup_reclaim_iter { 97 struct mem_cgroup *position; 98 /* scan generation, increased every round-trip */ 99 unsigned int generation; 100 }; 101 102 struct lruvec_stat { 103 long count[NR_VM_NODE_STAT_ITEMS]; 104 }; 105 106 /* 107 * per-zone information in memory controller. 108 */ 109 struct mem_cgroup_per_node { 110 struct lruvec lruvec; 111 struct lruvec_stat __percpu *lruvec_stat; 112 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 113 114 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 115 116 struct rb_node tree_node; /* RB tree node */ 117 unsigned long usage_in_excess;/* Set to the value by which */ 118 /* the soft limit is exceeded*/ 119 bool on_tree; 120 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 121 /* use container_of */ 122 }; 123 124 struct mem_cgroup_threshold { 125 struct eventfd_ctx *eventfd; 126 unsigned long threshold; 127 }; 128 129 /* For threshold */ 130 struct mem_cgroup_threshold_ary { 131 /* An array index points to threshold just below or equal to usage. */ 132 int current_threshold; 133 /* Size of entries[] */ 134 unsigned int size; 135 /* Array of thresholds */ 136 struct mem_cgroup_threshold entries[0]; 137 }; 138 139 struct mem_cgroup_thresholds { 140 /* Primary thresholds array */ 141 struct mem_cgroup_threshold_ary *primary; 142 /* 143 * Spare threshold array. 144 * This is needed to make mem_cgroup_unregister_event() "never fail". 145 * It must be able to store at least primary->size - 1 entries. 146 */ 147 struct mem_cgroup_threshold_ary *spare; 148 }; 149 150 enum memcg_kmem_state { 151 KMEM_NONE, 152 KMEM_ALLOCATED, 153 KMEM_ONLINE, 154 }; 155 156 /* 157 * The memory controller data structure. The memory controller controls both 158 * page cache and RSS per cgroup. We would eventually like to provide 159 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 160 * to help the administrator determine what knobs to tune. 161 */ 162 struct mem_cgroup { 163 struct cgroup_subsys_state css; 164 165 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 166 struct mem_cgroup_id id; 167 168 /* Accounted resources */ 169 struct page_counter memory; 170 struct page_counter swap; 171 172 /* Legacy consumer-oriented counters */ 173 struct page_counter memsw; 174 struct page_counter kmem; 175 struct page_counter tcpmem; 176 177 /* Normal memory consumption range */ 178 unsigned long low; 179 unsigned long high; 180 181 /* Range enforcement for interrupt charges */ 182 struct work_struct high_work; 183 184 unsigned long soft_limit; 185 186 /* vmpressure notifications */ 187 struct vmpressure vmpressure; 188 189 /* 190 * Should the accounting and control be hierarchical, per subtree? 191 */ 192 bool use_hierarchy; 193 194 /* protected by memcg_oom_lock */ 195 bool oom_lock; 196 int under_oom; 197 198 int swappiness; 199 /* OOM-Killer disable */ 200 int oom_kill_disable; 201 202 /* handle for "memory.events" */ 203 struct cgroup_file events_file; 204 205 /* protect arrays of thresholds */ 206 struct mutex thresholds_lock; 207 208 /* thresholds for memory usage. RCU-protected */ 209 struct mem_cgroup_thresholds thresholds; 210 211 /* thresholds for mem+swap usage. RCU-protected */ 212 struct mem_cgroup_thresholds memsw_thresholds; 213 214 /* For oom notifier event fd */ 215 struct list_head oom_notify; 216 217 /* 218 * Should we move charges of a task when a task is moved into this 219 * mem_cgroup ? And what type of charges should we move ? 220 */ 221 unsigned long move_charge_at_immigrate; 222 /* 223 * set > 0 if pages under this cgroup are moving to other cgroup. 224 */ 225 atomic_t moving_account; 226 /* taken only while moving_account > 0 */ 227 spinlock_t move_lock; 228 struct task_struct *move_lock_task; 229 unsigned long move_lock_flags; 230 /* 231 * percpu counter. 232 */ 233 struct mem_cgroup_stat_cpu __percpu *stat; 234 235 unsigned long socket_pressure; 236 237 /* Legacy tcp memory accounting */ 238 bool tcpmem_active; 239 int tcpmem_pressure; 240 241 #ifndef CONFIG_SLOB 242 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 243 int kmemcg_id; 244 enum memcg_kmem_state kmem_state; 245 struct list_head kmem_caches; 246 #endif 247 248 int last_scanned_node; 249 #if MAX_NUMNODES > 1 250 nodemask_t scan_nodes; 251 atomic_t numainfo_events; 252 atomic_t numainfo_updating; 253 #endif 254 255 #ifdef CONFIG_CGROUP_WRITEBACK 256 struct list_head cgwb_list; 257 struct wb_domain cgwb_domain; 258 #endif 259 260 /* List of events which userspace want to receive */ 261 struct list_head event_list; 262 spinlock_t event_list_lock; 263 264 struct mem_cgroup_per_node *nodeinfo[0]; 265 /* WARNING: nodeinfo must be the last member here */ 266 }; 267 268 extern struct mem_cgroup *root_mem_cgroup; 269 270 static inline bool mem_cgroup_disabled(void) 271 { 272 return !cgroup_subsys_enabled(memory_cgrp_subsys); 273 } 274 275 static inline void mem_cgroup_event(struct mem_cgroup *memcg, 276 enum memcg_event_item event) 277 { 278 this_cpu_inc(memcg->stat->events[event]); 279 cgroup_file_notify(&memcg->events_file); 280 } 281 282 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg); 283 284 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 285 gfp_t gfp_mask, struct mem_cgroup **memcgp, 286 bool compound); 287 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 288 bool lrucare, bool compound); 289 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 290 bool compound); 291 void mem_cgroup_uncharge(struct page *page); 292 void mem_cgroup_uncharge_list(struct list_head *page_list); 293 294 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 295 296 static struct mem_cgroup_per_node * 297 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 298 { 299 return memcg->nodeinfo[nid]; 300 } 301 302 /** 303 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 304 * @node: node of the wanted lruvec 305 * @memcg: memcg of the wanted lruvec 306 * 307 * Returns the lru list vector holding pages for a given @node or a given 308 * @memcg and @zone. This can be the node lruvec, if the memory controller 309 * is disabled. 310 */ 311 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 312 struct mem_cgroup *memcg) 313 { 314 struct mem_cgroup_per_node *mz; 315 struct lruvec *lruvec; 316 317 if (mem_cgroup_disabled()) { 318 lruvec = node_lruvec(pgdat); 319 goto out; 320 } 321 322 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 323 lruvec = &mz->lruvec; 324 out: 325 /* 326 * Since a node can be onlined after the mem_cgroup was created, 327 * we have to be prepared to initialize lruvec->pgdat here; 328 * and if offlined then reonlined, we need to reinitialize it. 329 */ 330 if (unlikely(lruvec->pgdat != pgdat)) 331 lruvec->pgdat = pgdat; 332 return lruvec; 333 } 334 335 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 336 337 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 338 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 339 340 static inline 341 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 342 return css ? container_of(css, struct mem_cgroup, css) : NULL; 343 } 344 345 #define mem_cgroup_from_counter(counter, member) \ 346 container_of(counter, struct mem_cgroup, member) 347 348 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 349 struct mem_cgroup *, 350 struct mem_cgroup_reclaim_cookie *); 351 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 352 int mem_cgroup_scan_tasks(struct mem_cgroup *, 353 int (*)(struct task_struct *, void *), void *); 354 355 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 356 { 357 if (mem_cgroup_disabled()) 358 return 0; 359 360 return memcg->id.id; 361 } 362 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 363 364 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 365 { 366 struct mem_cgroup_per_node *mz; 367 368 if (mem_cgroup_disabled()) 369 return NULL; 370 371 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 372 return mz->memcg; 373 } 374 375 /** 376 * parent_mem_cgroup - find the accounting parent of a memcg 377 * @memcg: memcg whose parent to find 378 * 379 * Returns the parent memcg, or NULL if this is the root or the memory 380 * controller is in legacy no-hierarchy mode. 381 */ 382 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 383 { 384 if (!memcg->memory.parent) 385 return NULL; 386 return mem_cgroup_from_counter(memcg->memory.parent, memory); 387 } 388 389 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 390 struct mem_cgroup *root) 391 { 392 if (root == memcg) 393 return true; 394 if (!root->use_hierarchy) 395 return false; 396 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 397 } 398 399 static inline bool mm_match_cgroup(struct mm_struct *mm, 400 struct mem_cgroup *memcg) 401 { 402 struct mem_cgroup *task_memcg; 403 bool match = false; 404 405 rcu_read_lock(); 406 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 407 if (task_memcg) 408 match = mem_cgroup_is_descendant(task_memcg, memcg); 409 rcu_read_unlock(); 410 return match; 411 } 412 413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 414 ino_t page_cgroup_ino(struct page *page); 415 416 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 417 { 418 if (mem_cgroup_disabled()) 419 return true; 420 return !!(memcg->css.flags & CSS_ONLINE); 421 } 422 423 /* 424 * For memory reclaim. 425 */ 426 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 427 428 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 429 int zid, int nr_pages); 430 431 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 432 int nid, unsigned int lru_mask); 433 434 static inline 435 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 436 { 437 struct mem_cgroup_per_node *mz; 438 unsigned long nr_pages = 0; 439 int zid; 440 441 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 442 for (zid = 0; zid < MAX_NR_ZONES; zid++) 443 nr_pages += mz->lru_zone_size[zid][lru]; 444 return nr_pages; 445 } 446 447 static inline 448 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 449 enum lru_list lru, int zone_idx) 450 { 451 struct mem_cgroup_per_node *mz; 452 453 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 454 return mz->lru_zone_size[zone_idx][lru]; 455 } 456 457 void mem_cgroup_handle_over_high(void); 458 459 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg); 460 461 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 462 struct task_struct *p); 463 464 static inline void mem_cgroup_oom_enable(void) 465 { 466 WARN_ON(current->memcg_may_oom); 467 current->memcg_may_oom = 1; 468 } 469 470 static inline void mem_cgroup_oom_disable(void) 471 { 472 WARN_ON(!current->memcg_may_oom); 473 current->memcg_may_oom = 0; 474 } 475 476 static inline bool task_in_memcg_oom(struct task_struct *p) 477 { 478 return p->memcg_in_oom; 479 } 480 481 bool mem_cgroup_oom_synchronize(bool wait); 482 483 #ifdef CONFIG_MEMCG_SWAP 484 extern int do_swap_account; 485 #endif 486 487 struct mem_cgroup *lock_page_memcg(struct page *page); 488 void __unlock_page_memcg(struct mem_cgroup *memcg); 489 void unlock_page_memcg(struct page *page); 490 491 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 492 enum memcg_stat_item idx) 493 { 494 long val = 0; 495 int cpu; 496 497 for_each_possible_cpu(cpu) 498 val += per_cpu(memcg->stat->count[idx], cpu); 499 500 if (val < 0) 501 val = 0; 502 503 return val; 504 } 505 506 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 507 enum memcg_stat_item idx, int val) 508 { 509 if (!mem_cgroup_disabled()) 510 __this_cpu_add(memcg->stat->count[idx], val); 511 } 512 513 static inline void mod_memcg_state(struct mem_cgroup *memcg, 514 enum memcg_stat_item idx, int val) 515 { 516 if (!mem_cgroup_disabled()) 517 this_cpu_add(memcg->stat->count[idx], val); 518 } 519 520 /** 521 * mod_memcg_page_state - update page state statistics 522 * @page: the page 523 * @idx: page state item to account 524 * @val: number of pages (positive or negative) 525 * 526 * The @page must be locked or the caller must use lock_page_memcg() 527 * to prevent double accounting when the page is concurrently being 528 * moved to another memcg: 529 * 530 * lock_page(page) or lock_page_memcg(page) 531 * if (TestClearPageState(page)) 532 * mod_memcg_page_state(page, state, -1); 533 * unlock_page(page) or unlock_page_memcg(page) 534 * 535 * Kernel pages are an exception to this, since they'll never move. 536 */ 537 static inline void __mod_memcg_page_state(struct page *page, 538 enum memcg_stat_item idx, int val) 539 { 540 if (page->mem_cgroup) 541 __mod_memcg_state(page->mem_cgroup, idx, val); 542 } 543 544 static inline void mod_memcg_page_state(struct page *page, 545 enum memcg_stat_item idx, int val) 546 { 547 if (page->mem_cgroup) 548 mod_memcg_state(page->mem_cgroup, idx, val); 549 } 550 551 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 552 enum node_stat_item idx) 553 { 554 struct mem_cgroup_per_node *pn; 555 long val = 0; 556 int cpu; 557 558 if (mem_cgroup_disabled()) 559 return node_page_state(lruvec_pgdat(lruvec), idx); 560 561 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 562 for_each_possible_cpu(cpu) 563 val += per_cpu(pn->lruvec_stat->count[idx], cpu); 564 565 if (val < 0) 566 val = 0; 567 568 return val; 569 } 570 571 static inline void __mod_lruvec_state(struct lruvec *lruvec, 572 enum node_stat_item idx, int val) 573 { 574 struct mem_cgroup_per_node *pn; 575 576 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 577 if (mem_cgroup_disabled()) 578 return; 579 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 580 __mod_memcg_state(pn->memcg, idx, val); 581 __this_cpu_add(pn->lruvec_stat->count[idx], val); 582 } 583 584 static inline void mod_lruvec_state(struct lruvec *lruvec, 585 enum node_stat_item idx, int val) 586 { 587 struct mem_cgroup_per_node *pn; 588 589 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 590 if (mem_cgroup_disabled()) 591 return; 592 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 593 mod_memcg_state(pn->memcg, idx, val); 594 this_cpu_add(pn->lruvec_stat->count[idx], val); 595 } 596 597 static inline void __mod_lruvec_page_state(struct page *page, 598 enum node_stat_item idx, int val) 599 { 600 struct mem_cgroup_per_node *pn; 601 602 __mod_node_page_state(page_pgdat(page), idx, val); 603 if (mem_cgroup_disabled() || !page->mem_cgroup) 604 return; 605 __mod_memcg_state(page->mem_cgroup, idx, val); 606 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)]; 607 __this_cpu_add(pn->lruvec_stat->count[idx], val); 608 } 609 610 static inline void mod_lruvec_page_state(struct page *page, 611 enum node_stat_item idx, int val) 612 { 613 struct mem_cgroup_per_node *pn; 614 615 mod_node_page_state(page_pgdat(page), idx, val); 616 if (mem_cgroup_disabled() || !page->mem_cgroup) 617 return; 618 mod_memcg_state(page->mem_cgroup, idx, val); 619 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)]; 620 this_cpu_add(pn->lruvec_stat->count[idx], val); 621 } 622 623 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 624 gfp_t gfp_mask, 625 unsigned long *total_scanned); 626 627 static inline void count_memcg_events(struct mem_cgroup *memcg, 628 enum vm_event_item idx, 629 unsigned long count) 630 { 631 if (!mem_cgroup_disabled()) 632 this_cpu_add(memcg->stat->events[idx], count); 633 } 634 635 static inline void count_memcg_page_event(struct page *page, 636 enum memcg_stat_item idx) 637 { 638 if (page->mem_cgroup) 639 count_memcg_events(page->mem_cgroup, idx, 1); 640 } 641 642 static inline void count_memcg_event_mm(struct mm_struct *mm, 643 enum vm_event_item idx) 644 { 645 struct mem_cgroup *memcg; 646 647 if (mem_cgroup_disabled()) 648 return; 649 650 rcu_read_lock(); 651 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 652 if (likely(memcg)) { 653 this_cpu_inc(memcg->stat->events[idx]); 654 if (idx == OOM_KILL) 655 cgroup_file_notify(&memcg->events_file); 656 } 657 rcu_read_unlock(); 658 } 659 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 660 void mem_cgroup_split_huge_fixup(struct page *head); 661 #endif 662 663 #else /* CONFIG_MEMCG */ 664 665 #define MEM_CGROUP_ID_SHIFT 0 666 #define MEM_CGROUP_ID_MAX 0 667 668 struct mem_cgroup; 669 670 static inline bool mem_cgroup_disabled(void) 671 { 672 return true; 673 } 674 675 static inline void mem_cgroup_event(struct mem_cgroup *memcg, 676 enum memcg_event_item event) 677 { 678 } 679 680 static inline bool mem_cgroup_low(struct mem_cgroup *root, 681 struct mem_cgroup *memcg) 682 { 683 return false; 684 } 685 686 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 687 gfp_t gfp_mask, 688 struct mem_cgroup **memcgp, 689 bool compound) 690 { 691 *memcgp = NULL; 692 return 0; 693 } 694 695 static inline void mem_cgroup_commit_charge(struct page *page, 696 struct mem_cgroup *memcg, 697 bool lrucare, bool compound) 698 { 699 } 700 701 static inline void mem_cgroup_cancel_charge(struct page *page, 702 struct mem_cgroup *memcg, 703 bool compound) 704 { 705 } 706 707 static inline void mem_cgroup_uncharge(struct page *page) 708 { 709 } 710 711 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 712 { 713 } 714 715 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 716 { 717 } 718 719 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 720 struct mem_cgroup *memcg) 721 { 722 return node_lruvec(pgdat); 723 } 724 725 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 726 struct pglist_data *pgdat) 727 { 728 return &pgdat->lruvec; 729 } 730 731 static inline bool mm_match_cgroup(struct mm_struct *mm, 732 struct mem_cgroup *memcg) 733 { 734 return true; 735 } 736 737 static inline bool task_in_mem_cgroup(struct task_struct *task, 738 const struct mem_cgroup *memcg) 739 { 740 return true; 741 } 742 743 static inline struct mem_cgroup * 744 mem_cgroup_iter(struct mem_cgroup *root, 745 struct mem_cgroup *prev, 746 struct mem_cgroup_reclaim_cookie *reclaim) 747 { 748 return NULL; 749 } 750 751 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 752 struct mem_cgroup *prev) 753 { 754 } 755 756 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 757 int (*fn)(struct task_struct *, void *), void *arg) 758 { 759 return 0; 760 } 761 762 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 763 { 764 return 0; 765 } 766 767 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 768 { 769 WARN_ON_ONCE(id); 770 /* XXX: This should always return root_mem_cgroup */ 771 return NULL; 772 } 773 774 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 775 { 776 return NULL; 777 } 778 779 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 780 { 781 return true; 782 } 783 784 static inline unsigned long 785 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 786 { 787 return 0; 788 } 789 static inline 790 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 791 enum lru_list lru, int zone_idx) 792 { 793 return 0; 794 } 795 796 static inline unsigned long 797 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 798 int nid, unsigned int lru_mask) 799 { 800 return 0; 801 } 802 803 static inline unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 804 { 805 return 0; 806 } 807 808 static inline void 809 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 810 { 811 } 812 813 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 814 { 815 return NULL; 816 } 817 818 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 819 { 820 } 821 822 static inline void unlock_page_memcg(struct page *page) 823 { 824 } 825 826 static inline void mem_cgroup_handle_over_high(void) 827 { 828 } 829 830 static inline void mem_cgroup_oom_enable(void) 831 { 832 } 833 834 static inline void mem_cgroup_oom_disable(void) 835 { 836 } 837 838 static inline bool task_in_memcg_oom(struct task_struct *p) 839 { 840 return false; 841 } 842 843 static inline bool mem_cgroup_oom_synchronize(bool wait) 844 { 845 return false; 846 } 847 848 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 849 enum memcg_stat_item idx) 850 { 851 return 0; 852 } 853 854 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 855 enum memcg_stat_item idx, 856 int nr) 857 { 858 } 859 860 static inline void mod_memcg_state(struct mem_cgroup *memcg, 861 enum memcg_stat_item idx, 862 int nr) 863 { 864 } 865 866 static inline void __mod_memcg_page_state(struct page *page, 867 enum memcg_stat_item idx, 868 int nr) 869 { 870 } 871 872 static inline void mod_memcg_page_state(struct page *page, 873 enum memcg_stat_item idx, 874 int nr) 875 { 876 } 877 878 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 879 enum node_stat_item idx) 880 { 881 return node_page_state(lruvec_pgdat(lruvec), idx); 882 } 883 884 static inline void __mod_lruvec_state(struct lruvec *lruvec, 885 enum node_stat_item idx, int val) 886 { 887 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 888 } 889 890 static inline void mod_lruvec_state(struct lruvec *lruvec, 891 enum node_stat_item idx, int val) 892 { 893 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 894 } 895 896 static inline void __mod_lruvec_page_state(struct page *page, 897 enum node_stat_item idx, int val) 898 { 899 __mod_node_page_state(page_pgdat(page), idx, val); 900 } 901 902 static inline void mod_lruvec_page_state(struct page *page, 903 enum node_stat_item idx, int val) 904 { 905 mod_node_page_state(page_pgdat(page), idx, val); 906 } 907 908 static inline 909 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 910 gfp_t gfp_mask, 911 unsigned long *total_scanned) 912 { 913 return 0; 914 } 915 916 static inline void mem_cgroup_split_huge_fixup(struct page *head) 917 { 918 } 919 920 static inline void count_memcg_events(struct mem_cgroup *memcg, 921 enum vm_event_item idx, 922 unsigned long count) 923 { 924 } 925 926 static inline void count_memcg_page_event(struct page *page, 927 enum memcg_stat_item idx) 928 { 929 } 930 931 static inline 932 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 933 { 934 } 935 #endif /* CONFIG_MEMCG */ 936 937 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 938 enum memcg_stat_item idx) 939 { 940 __mod_memcg_state(memcg, idx, 1); 941 } 942 943 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 944 enum memcg_stat_item idx) 945 { 946 __mod_memcg_state(memcg, idx, -1); 947 } 948 949 static inline void __inc_memcg_page_state(struct page *page, 950 enum memcg_stat_item idx) 951 { 952 __mod_memcg_page_state(page, idx, 1); 953 } 954 955 static inline void __dec_memcg_page_state(struct page *page, 956 enum memcg_stat_item idx) 957 { 958 __mod_memcg_page_state(page, idx, -1); 959 } 960 961 static inline void __inc_lruvec_state(struct lruvec *lruvec, 962 enum node_stat_item idx) 963 { 964 __mod_lruvec_state(lruvec, idx, 1); 965 } 966 967 static inline void __dec_lruvec_state(struct lruvec *lruvec, 968 enum node_stat_item idx) 969 { 970 __mod_lruvec_state(lruvec, idx, -1); 971 } 972 973 static inline void __inc_lruvec_page_state(struct page *page, 974 enum node_stat_item idx) 975 { 976 __mod_lruvec_page_state(page, idx, 1); 977 } 978 979 static inline void __dec_lruvec_page_state(struct page *page, 980 enum node_stat_item idx) 981 { 982 __mod_lruvec_page_state(page, idx, -1); 983 } 984 985 static inline void inc_memcg_state(struct mem_cgroup *memcg, 986 enum memcg_stat_item idx) 987 { 988 mod_memcg_state(memcg, idx, 1); 989 } 990 991 static inline void dec_memcg_state(struct mem_cgroup *memcg, 992 enum memcg_stat_item idx) 993 { 994 mod_memcg_state(memcg, idx, -1); 995 } 996 997 static inline void inc_memcg_page_state(struct page *page, 998 enum memcg_stat_item idx) 999 { 1000 mod_memcg_page_state(page, idx, 1); 1001 } 1002 1003 static inline void dec_memcg_page_state(struct page *page, 1004 enum memcg_stat_item idx) 1005 { 1006 mod_memcg_page_state(page, idx, -1); 1007 } 1008 1009 static inline void inc_lruvec_state(struct lruvec *lruvec, 1010 enum node_stat_item idx) 1011 { 1012 mod_lruvec_state(lruvec, idx, 1); 1013 } 1014 1015 static inline void dec_lruvec_state(struct lruvec *lruvec, 1016 enum node_stat_item idx) 1017 { 1018 mod_lruvec_state(lruvec, idx, -1); 1019 } 1020 1021 static inline void inc_lruvec_page_state(struct page *page, 1022 enum node_stat_item idx) 1023 { 1024 mod_lruvec_page_state(page, idx, 1); 1025 } 1026 1027 static inline void dec_lruvec_page_state(struct page *page, 1028 enum node_stat_item idx) 1029 { 1030 mod_lruvec_page_state(page, idx, -1); 1031 } 1032 1033 #ifdef CONFIG_CGROUP_WRITEBACK 1034 1035 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg); 1036 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1037 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1038 unsigned long *pheadroom, unsigned long *pdirty, 1039 unsigned long *pwriteback); 1040 1041 #else /* CONFIG_CGROUP_WRITEBACK */ 1042 1043 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1044 { 1045 return NULL; 1046 } 1047 1048 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1049 unsigned long *pfilepages, 1050 unsigned long *pheadroom, 1051 unsigned long *pdirty, 1052 unsigned long *pwriteback) 1053 { 1054 } 1055 1056 #endif /* CONFIG_CGROUP_WRITEBACK */ 1057 1058 struct sock; 1059 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1060 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1061 #ifdef CONFIG_MEMCG 1062 extern struct static_key_false memcg_sockets_enabled_key; 1063 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1064 void mem_cgroup_sk_alloc(struct sock *sk); 1065 void mem_cgroup_sk_free(struct sock *sk); 1066 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1067 { 1068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1069 return true; 1070 do { 1071 if (time_before(jiffies, memcg->socket_pressure)) 1072 return true; 1073 } while ((memcg = parent_mem_cgroup(memcg))); 1074 return false; 1075 } 1076 #else 1077 #define mem_cgroup_sockets_enabled 0 1078 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1079 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1080 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1081 { 1082 return false; 1083 } 1084 #endif 1085 1086 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1087 void memcg_kmem_put_cache(struct kmem_cache *cachep); 1088 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1089 struct mem_cgroup *memcg); 1090 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1091 void memcg_kmem_uncharge(struct page *page, int order); 1092 1093 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 1094 extern struct static_key_false memcg_kmem_enabled_key; 1095 extern struct workqueue_struct *memcg_kmem_cache_wq; 1096 1097 extern int memcg_nr_cache_ids; 1098 void memcg_get_cache_ids(void); 1099 void memcg_put_cache_ids(void); 1100 1101 /* 1102 * Helper macro to loop through all memcg-specific caches. Callers must still 1103 * check if the cache is valid (it is either valid or NULL). 1104 * the slab_mutex must be held when looping through those caches 1105 */ 1106 #define for_each_memcg_cache_index(_idx) \ 1107 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1108 1109 static inline bool memcg_kmem_enabled(void) 1110 { 1111 return static_branch_unlikely(&memcg_kmem_enabled_key); 1112 } 1113 1114 /* 1115 * helper for accessing a memcg's index. It will be used as an index in the 1116 * child cache array in kmem_cache, and also to derive its name. This function 1117 * will return -1 when this is not a kmem-limited memcg. 1118 */ 1119 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1120 { 1121 return memcg ? memcg->kmemcg_id : -1; 1122 } 1123 1124 #else 1125 #define for_each_memcg_cache_index(_idx) \ 1126 for (; NULL; ) 1127 1128 static inline bool memcg_kmem_enabled(void) 1129 { 1130 return false; 1131 } 1132 1133 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1134 { 1135 return -1; 1136 } 1137 1138 static inline void memcg_get_cache_ids(void) 1139 { 1140 } 1141 1142 static inline void memcg_put_cache_ids(void) 1143 { 1144 } 1145 1146 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 1147 1148 #endif /* _LINUX_MEMCONTROL_H */ 1149