xref: /linux-6.15/include/linux/memcontrol.h (revision 730eeb17)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_VMALLOC,
37 	MEMCG_KMEM,
38 	MEMCG_ZSWAP_B,
39 	MEMCG_ZSWAPPED,
40 	MEMCG_NR_STAT,
41 };
42 
43 enum memcg_memory_event {
44 	MEMCG_LOW,
45 	MEMCG_HIGH,
46 	MEMCG_MAX,
47 	MEMCG_OOM,
48 	MEMCG_OOM_KILL,
49 	MEMCG_OOM_GROUP_KILL,
50 	MEMCG_SWAP_HIGH,
51 	MEMCG_SWAP_MAX,
52 	MEMCG_SWAP_FAIL,
53 	MEMCG_NR_MEMORY_EVENTS,
54 };
55 
56 struct mem_cgroup_reclaim_cookie {
57 	pg_data_t *pgdat;
58 	unsigned int generation;
59 };
60 
61 #ifdef CONFIG_MEMCG
62 
63 #define MEM_CGROUP_ID_SHIFT	16
64 #define MEM_CGROUP_ID_MAX	USHRT_MAX
65 
66 struct mem_cgroup_id {
67 	int id;
68 	refcount_t ref;
69 };
70 
71 /*
72  * Per memcg event counter is incremented at every pagein/pageout. With THP,
73  * it will be incremented by the number of pages. This counter is used
74  * to trigger some periodic events. This is straightforward and better
75  * than using jiffies etc. to handle periodic memcg event.
76  */
77 enum mem_cgroup_events_target {
78 	MEM_CGROUP_TARGET_THRESH,
79 	MEM_CGROUP_TARGET_SOFTLIMIT,
80 	MEM_CGROUP_NTARGETS,
81 };
82 
83 struct memcg_vmstats_percpu;
84 struct memcg_vmstats;
85 
86 struct mem_cgroup_reclaim_iter {
87 	struct mem_cgroup *position;
88 	/* scan generation, increased every round-trip */
89 	unsigned int generation;
90 };
91 
92 /*
93  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
94  * shrinkers, which have elements charged to this memcg.
95  */
96 struct shrinker_info {
97 	struct rcu_head rcu;
98 	atomic_long_t *nr_deferred;
99 	unsigned long *map;
100 	int map_nr_max;
101 };
102 
103 struct lruvec_stats_percpu {
104 	/* Local (CPU and cgroup) state */
105 	long state[NR_VM_NODE_STAT_ITEMS];
106 
107 	/* Delta calculation for lockless upward propagation */
108 	long state_prev[NR_VM_NODE_STAT_ITEMS];
109 };
110 
111 struct lruvec_stats {
112 	/* Aggregated (CPU and subtree) state */
113 	long state[NR_VM_NODE_STAT_ITEMS];
114 
115 	/* Pending child counts during tree propagation */
116 	long state_pending[NR_VM_NODE_STAT_ITEMS];
117 };
118 
119 /*
120  * per-node information in memory controller.
121  */
122 struct mem_cgroup_per_node {
123 	struct lruvec		lruvec;
124 
125 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
126 	struct lruvec_stats			lruvec_stats;
127 
128 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
129 
130 	struct mem_cgroup_reclaim_iter	iter;
131 
132 	struct shrinker_info __rcu	*shrinker_info;
133 
134 	struct rb_node		tree_node;	/* RB tree node */
135 	unsigned long		usage_in_excess;/* Set to the value by which */
136 						/* the soft limit is exceeded*/
137 	bool			on_tree;
138 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
139 						/* use container_of	   */
140 };
141 
142 struct mem_cgroup_threshold {
143 	struct eventfd_ctx *eventfd;
144 	unsigned long threshold;
145 };
146 
147 /* For threshold */
148 struct mem_cgroup_threshold_ary {
149 	/* An array index points to threshold just below or equal to usage. */
150 	int current_threshold;
151 	/* Size of entries[] */
152 	unsigned int size;
153 	/* Array of thresholds */
154 	struct mem_cgroup_threshold entries[];
155 };
156 
157 struct mem_cgroup_thresholds {
158 	/* Primary thresholds array */
159 	struct mem_cgroup_threshold_ary *primary;
160 	/*
161 	 * Spare threshold array.
162 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
163 	 * It must be able to store at least primary->size - 1 entries.
164 	 */
165 	struct mem_cgroup_threshold_ary *spare;
166 };
167 
168 /*
169  * Remember four most recent foreign writebacks with dirty pages in this
170  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
171  * one in a given round, we're likely to catch it later if it keeps
172  * foreign-dirtying, so a fairly low count should be enough.
173  *
174  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
175  */
176 #define MEMCG_CGWB_FRN_CNT	4
177 
178 struct memcg_cgwb_frn {
179 	u64 bdi_id;			/* bdi->id of the foreign inode */
180 	int memcg_id;			/* memcg->css.id of foreign inode */
181 	u64 at;				/* jiffies_64 at the time of dirtying */
182 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
183 };
184 
185 /*
186  * Bucket for arbitrarily byte-sized objects charged to a memory
187  * cgroup. The bucket can be reparented in one piece when the cgroup
188  * is destroyed, without having to round up the individual references
189  * of all live memory objects in the wild.
190  */
191 struct obj_cgroup {
192 	struct percpu_ref refcnt;
193 	struct mem_cgroup *memcg;
194 	atomic_t nr_charged_bytes;
195 	union {
196 		struct list_head list; /* protected by objcg_lock */
197 		struct rcu_head rcu;
198 	};
199 };
200 
201 /*
202  * The memory controller data structure. The memory controller controls both
203  * page cache and RSS per cgroup. We would eventually like to provide
204  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
205  * to help the administrator determine what knobs to tune.
206  */
207 struct mem_cgroup {
208 	struct cgroup_subsys_state css;
209 
210 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
211 	struct mem_cgroup_id id;
212 
213 	/* Accounted resources */
214 	struct page_counter memory;		/* Both v1 & v2 */
215 
216 	union {
217 		struct page_counter swap;	/* v2 only */
218 		struct page_counter memsw;	/* v1 only */
219 	};
220 
221 	/* Legacy consumer-oriented counters */
222 	struct page_counter kmem;		/* v1 only */
223 	struct page_counter tcpmem;		/* v1 only */
224 
225 	/* Range enforcement for interrupt charges */
226 	struct work_struct high_work;
227 
228 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
229 	unsigned long zswap_max;
230 #endif
231 
232 	unsigned long soft_limit;
233 
234 	/* vmpressure notifications */
235 	struct vmpressure vmpressure;
236 
237 	/*
238 	 * Should the OOM killer kill all belonging tasks, had it kill one?
239 	 */
240 	bool oom_group;
241 
242 	/* protected by memcg_oom_lock */
243 	bool		oom_lock;
244 	int		under_oom;
245 
246 	int	swappiness;
247 	/* OOM-Killer disable */
248 	int		oom_kill_disable;
249 
250 	/* memory.events and memory.events.local */
251 	struct cgroup_file events_file;
252 	struct cgroup_file events_local_file;
253 
254 	/* handle for "memory.swap.events" */
255 	struct cgroup_file swap_events_file;
256 
257 	/* protect arrays of thresholds */
258 	struct mutex thresholds_lock;
259 
260 	/* thresholds for memory usage. RCU-protected */
261 	struct mem_cgroup_thresholds thresholds;
262 
263 	/* thresholds for mem+swap usage. RCU-protected */
264 	struct mem_cgroup_thresholds memsw_thresholds;
265 
266 	/* For oom notifier event fd */
267 	struct list_head oom_notify;
268 
269 	/*
270 	 * Should we move charges of a task when a task is moved into this
271 	 * mem_cgroup ? And what type of charges should we move ?
272 	 */
273 	unsigned long move_charge_at_immigrate;
274 	/* taken only while moving_account > 0 */
275 	spinlock_t		move_lock;
276 	unsigned long		move_lock_flags;
277 
278 	CACHELINE_PADDING(_pad1_);
279 
280 	/* memory.stat */
281 	struct memcg_vmstats	*vmstats;
282 
283 	/* memory.events */
284 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
285 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
286 
287 	/*
288 	 * Hint of reclaim pressure for socket memroy management. Note
289 	 * that this indicator should NOT be used in legacy cgroup mode
290 	 * where socket memory is accounted/charged separately.
291 	 */
292 	unsigned long		socket_pressure;
293 
294 	/* Legacy tcp memory accounting */
295 	bool			tcpmem_active;
296 	int			tcpmem_pressure;
297 
298 #ifdef CONFIG_MEMCG_KMEM
299 	int kmemcg_id;
300 	struct obj_cgroup __rcu *objcg;
301 	/* list of inherited objcgs, protected by objcg_lock */
302 	struct list_head objcg_list;
303 #endif
304 
305 	CACHELINE_PADDING(_pad2_);
306 
307 	/*
308 	 * set > 0 if pages under this cgroup are moving to other cgroup.
309 	 */
310 	atomic_t		moving_account;
311 	struct task_struct	*move_lock_task;
312 
313 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
314 
315 #ifdef CONFIG_CGROUP_WRITEBACK
316 	struct list_head cgwb_list;
317 	struct wb_domain cgwb_domain;
318 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
319 #endif
320 
321 	/* List of events which userspace want to receive */
322 	struct list_head event_list;
323 	spinlock_t event_list_lock;
324 
325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
326 	struct deferred_split deferred_split_queue;
327 #endif
328 
329 #ifdef CONFIG_LRU_GEN
330 	/* per-memcg mm_struct list */
331 	struct lru_gen_mm_list mm_list;
332 #endif
333 
334 	struct mem_cgroup_per_node *nodeinfo[];
335 };
336 
337 /*
338  * size of first charge trial.
339  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
340  * workload.
341  */
342 #define MEMCG_CHARGE_BATCH 64U
343 
344 extern struct mem_cgroup *root_mem_cgroup;
345 
346 enum page_memcg_data_flags {
347 	/* page->memcg_data is a pointer to an objcgs vector */
348 	MEMCG_DATA_OBJCGS = (1UL << 0),
349 	/* page has been accounted as a non-slab kernel page */
350 	MEMCG_DATA_KMEM = (1UL << 1),
351 	/* the next bit after the last actual flag */
352 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
353 };
354 
355 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
356 
357 static inline bool folio_memcg_kmem(struct folio *folio);
358 
359 /*
360  * After the initialization objcg->memcg is always pointing at
361  * a valid memcg, but can be atomically swapped to the parent memcg.
362  *
363  * The caller must ensure that the returned memcg won't be released:
364  * e.g. acquire the rcu_read_lock or css_set_lock.
365  */
366 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
367 {
368 	return READ_ONCE(objcg->memcg);
369 }
370 
371 /*
372  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
373  * @folio: Pointer to the folio.
374  *
375  * Returns a pointer to the memory cgroup associated with the folio,
376  * or NULL. This function assumes that the folio is known to have a
377  * proper memory cgroup pointer. It's not safe to call this function
378  * against some type of folios, e.g. slab folios or ex-slab folios or
379  * kmem folios.
380  */
381 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
382 {
383 	unsigned long memcg_data = folio->memcg_data;
384 
385 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
386 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
387 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
388 
389 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
390 }
391 
392 /*
393  * __folio_objcg - get the object cgroup associated with a kmem folio.
394  * @folio: Pointer to the folio.
395  *
396  * Returns a pointer to the object cgroup associated with the folio,
397  * or NULL. This function assumes that the folio is known to have a
398  * proper object cgroup pointer. It's not safe to call this function
399  * against some type of folios, e.g. slab folios or ex-slab folios or
400  * LRU folios.
401  */
402 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
403 {
404 	unsigned long memcg_data = folio->memcg_data;
405 
406 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
407 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
408 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
409 
410 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
411 }
412 
413 /*
414  * folio_memcg - Get the memory cgroup associated with a folio.
415  * @folio: Pointer to the folio.
416  *
417  * Returns a pointer to the memory cgroup associated with the folio,
418  * or NULL. This function assumes that the folio is known to have a
419  * proper memory cgroup pointer. It's not safe to call this function
420  * against some type of folios, e.g. slab folios or ex-slab folios.
421  *
422  * For a non-kmem folio any of the following ensures folio and memcg binding
423  * stability:
424  *
425  * - the folio lock
426  * - LRU isolation
427  * - folio_memcg_lock()
428  * - exclusive reference
429  * - mem_cgroup_trylock_pages()
430  *
431  * For a kmem folio a caller should hold an rcu read lock to protect memcg
432  * associated with a kmem folio from being released.
433  */
434 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
435 {
436 	if (folio_memcg_kmem(folio))
437 		return obj_cgroup_memcg(__folio_objcg(folio));
438 	return __folio_memcg(folio);
439 }
440 
441 static inline struct mem_cgroup *page_memcg(struct page *page)
442 {
443 	return folio_memcg(page_folio(page));
444 }
445 
446 /**
447  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
448  * @folio: Pointer to the folio.
449  *
450  * This function assumes that the folio is known to have a
451  * proper memory cgroup pointer. It's not safe to call this function
452  * against some type of folios, e.g. slab folios or ex-slab folios.
453  *
454  * Return: A pointer to the memory cgroup associated with the folio,
455  * or NULL.
456  */
457 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
458 {
459 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
460 
461 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
462 	WARN_ON_ONCE(!rcu_read_lock_held());
463 
464 	if (memcg_data & MEMCG_DATA_KMEM) {
465 		struct obj_cgroup *objcg;
466 
467 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
468 		return obj_cgroup_memcg(objcg);
469 	}
470 
471 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
472 }
473 
474 /*
475  * folio_memcg_check - Get the memory cgroup associated with a folio.
476  * @folio: Pointer to the folio.
477  *
478  * Returns a pointer to the memory cgroup associated with the folio,
479  * or NULL. This function unlike folio_memcg() can take any folio
480  * as an argument. It has to be used in cases when it's not known if a folio
481  * has an associated memory cgroup pointer or an object cgroups vector or
482  * an object cgroup.
483  *
484  * For a non-kmem folio any of the following ensures folio and memcg binding
485  * stability:
486  *
487  * - the folio lock
488  * - LRU isolation
489  * - lock_folio_memcg()
490  * - exclusive reference
491  * - mem_cgroup_trylock_pages()
492  *
493  * For a kmem folio a caller should hold an rcu read lock to protect memcg
494  * associated with a kmem folio from being released.
495  */
496 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
497 {
498 	/*
499 	 * Because folio->memcg_data might be changed asynchronously
500 	 * for slabs, READ_ONCE() should be used here.
501 	 */
502 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
503 
504 	if (memcg_data & MEMCG_DATA_OBJCGS)
505 		return NULL;
506 
507 	if (memcg_data & MEMCG_DATA_KMEM) {
508 		struct obj_cgroup *objcg;
509 
510 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
511 		return obj_cgroup_memcg(objcg);
512 	}
513 
514 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
515 }
516 
517 static inline struct mem_cgroup *page_memcg_check(struct page *page)
518 {
519 	if (PageTail(page))
520 		return NULL;
521 	return folio_memcg_check((struct folio *)page);
522 }
523 
524 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
525 {
526 	struct mem_cgroup *memcg;
527 
528 	rcu_read_lock();
529 retry:
530 	memcg = obj_cgroup_memcg(objcg);
531 	if (unlikely(!css_tryget(&memcg->css)))
532 		goto retry;
533 	rcu_read_unlock();
534 
535 	return memcg;
536 }
537 
538 #ifdef CONFIG_MEMCG_KMEM
539 /*
540  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
541  * @folio: Pointer to the folio.
542  *
543  * Checks if the folio has MemcgKmem flag set. The caller must ensure
544  * that the folio has an associated memory cgroup. It's not safe to call
545  * this function against some types of folios, e.g. slab folios.
546  */
547 static inline bool folio_memcg_kmem(struct folio *folio)
548 {
549 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
550 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
551 	return folio->memcg_data & MEMCG_DATA_KMEM;
552 }
553 
554 
555 #else
556 static inline bool folio_memcg_kmem(struct folio *folio)
557 {
558 	return false;
559 }
560 
561 #endif
562 
563 static inline bool PageMemcgKmem(struct page *page)
564 {
565 	return folio_memcg_kmem(page_folio(page));
566 }
567 
568 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
569 {
570 	return (memcg == root_mem_cgroup);
571 }
572 
573 static inline bool mem_cgroup_disabled(void)
574 {
575 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
576 }
577 
578 static inline void mem_cgroup_protection(struct mem_cgroup *root,
579 					 struct mem_cgroup *memcg,
580 					 unsigned long *min,
581 					 unsigned long *low)
582 {
583 	*min = *low = 0;
584 
585 	if (mem_cgroup_disabled())
586 		return;
587 
588 	/*
589 	 * There is no reclaim protection applied to a targeted reclaim.
590 	 * We are special casing this specific case here because
591 	 * mem_cgroup_protected calculation is not robust enough to keep
592 	 * the protection invariant for calculated effective values for
593 	 * parallel reclaimers with different reclaim target. This is
594 	 * especially a problem for tail memcgs (as they have pages on LRU)
595 	 * which would want to have effective values 0 for targeted reclaim
596 	 * but a different value for external reclaim.
597 	 *
598 	 * Example
599 	 * Let's have global and A's reclaim in parallel:
600 	 *  |
601 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
602 	 *  |\
603 	 *  | C (low = 1G, usage = 2.5G)
604 	 *  B (low = 1G, usage = 0.5G)
605 	 *
606 	 * For the global reclaim
607 	 * A.elow = A.low
608 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
609 	 * C.elow = min(C.usage, C.low)
610 	 *
611 	 * With the effective values resetting we have A reclaim
612 	 * A.elow = 0
613 	 * B.elow = B.low
614 	 * C.elow = C.low
615 	 *
616 	 * If the global reclaim races with A's reclaim then
617 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
618 	 * is possible and reclaiming B would be violating the protection.
619 	 *
620 	 */
621 	if (root == memcg)
622 		return;
623 
624 	*min = READ_ONCE(memcg->memory.emin);
625 	*low = READ_ONCE(memcg->memory.elow);
626 }
627 
628 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
629 				     struct mem_cgroup *memcg);
630 
631 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
632 					  struct mem_cgroup *memcg)
633 {
634 	/*
635 	 * The root memcg doesn't account charges, and doesn't support
636 	 * protection. The target memcg's protection is ignored, see
637 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
638 	 */
639 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
640 		memcg == target;
641 }
642 
643 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
644 					struct mem_cgroup *memcg)
645 {
646 	if (mem_cgroup_unprotected(target, memcg))
647 		return false;
648 
649 	return READ_ONCE(memcg->memory.elow) >=
650 		page_counter_read(&memcg->memory);
651 }
652 
653 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
654 					struct mem_cgroup *memcg)
655 {
656 	if (mem_cgroup_unprotected(target, memcg))
657 		return false;
658 
659 	return READ_ONCE(memcg->memory.emin) >=
660 		page_counter_read(&memcg->memory);
661 }
662 
663 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
664 
665 /**
666  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
667  * @folio: Folio to charge.
668  * @mm: mm context of the allocating task.
669  * @gfp: Reclaim mode.
670  *
671  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
672  * pages according to @gfp if necessary.  If @mm is NULL, try to
673  * charge to the active memcg.
674  *
675  * Do not use this for folios allocated for swapin.
676  *
677  * Return: 0 on success. Otherwise, an error code is returned.
678  */
679 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
680 				    gfp_t gfp)
681 {
682 	if (mem_cgroup_disabled())
683 		return 0;
684 	return __mem_cgroup_charge(folio, mm, gfp);
685 }
686 
687 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
688 				  gfp_t gfp, swp_entry_t entry);
689 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
690 
691 void __mem_cgroup_uncharge(struct folio *folio);
692 
693 /**
694  * mem_cgroup_uncharge - Uncharge a folio.
695  * @folio: Folio to uncharge.
696  *
697  * Uncharge a folio previously charged with mem_cgroup_charge().
698  */
699 static inline void mem_cgroup_uncharge(struct folio *folio)
700 {
701 	if (mem_cgroup_disabled())
702 		return;
703 	__mem_cgroup_uncharge(folio);
704 }
705 
706 void __mem_cgroup_uncharge_list(struct list_head *page_list);
707 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
708 {
709 	if (mem_cgroup_disabled())
710 		return;
711 	__mem_cgroup_uncharge_list(page_list);
712 }
713 
714 void mem_cgroup_migrate(struct folio *old, struct folio *new);
715 
716 /**
717  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
718  * @memcg: memcg of the wanted lruvec
719  * @pgdat: pglist_data
720  *
721  * Returns the lru list vector holding pages for a given @memcg &
722  * @pgdat combination. This can be the node lruvec, if the memory
723  * controller is disabled.
724  */
725 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
726 					       struct pglist_data *pgdat)
727 {
728 	struct mem_cgroup_per_node *mz;
729 	struct lruvec *lruvec;
730 
731 	if (mem_cgroup_disabled()) {
732 		lruvec = &pgdat->__lruvec;
733 		goto out;
734 	}
735 
736 	if (!memcg)
737 		memcg = root_mem_cgroup;
738 
739 	mz = memcg->nodeinfo[pgdat->node_id];
740 	lruvec = &mz->lruvec;
741 out:
742 	/*
743 	 * Since a node can be onlined after the mem_cgroup was created,
744 	 * we have to be prepared to initialize lruvec->pgdat here;
745 	 * and if offlined then reonlined, we need to reinitialize it.
746 	 */
747 	if (unlikely(lruvec->pgdat != pgdat))
748 		lruvec->pgdat = pgdat;
749 	return lruvec;
750 }
751 
752 /**
753  * folio_lruvec - return lruvec for isolating/putting an LRU folio
754  * @folio: Pointer to the folio.
755  *
756  * This function relies on folio->mem_cgroup being stable.
757  */
758 static inline struct lruvec *folio_lruvec(struct folio *folio)
759 {
760 	struct mem_cgroup *memcg = folio_memcg(folio);
761 
762 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
763 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
764 }
765 
766 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
767 
768 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
769 
770 struct lruvec *folio_lruvec_lock(struct folio *folio);
771 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
772 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
773 						unsigned long *flags);
774 
775 #ifdef CONFIG_DEBUG_VM
776 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
777 #else
778 static inline
779 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
780 {
781 }
782 #endif
783 
784 static inline
785 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
786 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
787 }
788 
789 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
790 {
791 	return percpu_ref_tryget(&objcg->refcnt);
792 }
793 
794 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
795 {
796 	percpu_ref_get(&objcg->refcnt);
797 }
798 
799 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
800 				       unsigned long nr)
801 {
802 	percpu_ref_get_many(&objcg->refcnt, nr);
803 }
804 
805 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
806 {
807 	percpu_ref_put(&objcg->refcnt);
808 }
809 
810 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
811 {
812 	return !memcg || css_tryget(&memcg->css);
813 }
814 
815 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
816 {
817 	if (memcg)
818 		css_put(&memcg->css);
819 }
820 
821 #define mem_cgroup_from_counter(counter, member)	\
822 	container_of(counter, struct mem_cgroup, member)
823 
824 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
825 				   struct mem_cgroup *,
826 				   struct mem_cgroup_reclaim_cookie *);
827 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
828 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
829 			   int (*)(struct task_struct *, void *), void *arg);
830 
831 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
832 {
833 	if (mem_cgroup_disabled())
834 		return 0;
835 
836 	return memcg->id.id;
837 }
838 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
839 
840 #ifdef CONFIG_SHRINKER_DEBUG
841 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
842 {
843 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
844 }
845 
846 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
847 #endif
848 
849 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
850 {
851 	return mem_cgroup_from_css(seq_css(m));
852 }
853 
854 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
855 {
856 	struct mem_cgroup_per_node *mz;
857 
858 	if (mem_cgroup_disabled())
859 		return NULL;
860 
861 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
862 	return mz->memcg;
863 }
864 
865 /**
866  * parent_mem_cgroup - find the accounting parent of a memcg
867  * @memcg: memcg whose parent to find
868  *
869  * Returns the parent memcg, or NULL if this is the root or the memory
870  * controller is in legacy no-hierarchy mode.
871  */
872 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
873 {
874 	return mem_cgroup_from_css(memcg->css.parent);
875 }
876 
877 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
878 			      struct mem_cgroup *root)
879 {
880 	if (root == memcg)
881 		return true;
882 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
883 }
884 
885 static inline bool mm_match_cgroup(struct mm_struct *mm,
886 				   struct mem_cgroup *memcg)
887 {
888 	struct mem_cgroup *task_memcg;
889 	bool match = false;
890 
891 	rcu_read_lock();
892 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
893 	if (task_memcg)
894 		match = mem_cgroup_is_descendant(task_memcg, memcg);
895 	rcu_read_unlock();
896 	return match;
897 }
898 
899 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
900 ino_t page_cgroup_ino(struct page *page);
901 
902 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
903 {
904 	if (mem_cgroup_disabled())
905 		return true;
906 	return !!(memcg->css.flags & CSS_ONLINE);
907 }
908 
909 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
910 		int zid, int nr_pages);
911 
912 static inline
913 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
914 		enum lru_list lru, int zone_idx)
915 {
916 	struct mem_cgroup_per_node *mz;
917 
918 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
919 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
920 }
921 
922 void mem_cgroup_handle_over_high(void);
923 
924 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
925 
926 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
927 
928 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
929 				struct task_struct *p);
930 
931 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
932 
933 static inline void mem_cgroup_enter_user_fault(void)
934 {
935 	WARN_ON(current->in_user_fault);
936 	current->in_user_fault = 1;
937 }
938 
939 static inline void mem_cgroup_exit_user_fault(void)
940 {
941 	WARN_ON(!current->in_user_fault);
942 	current->in_user_fault = 0;
943 }
944 
945 static inline bool task_in_memcg_oom(struct task_struct *p)
946 {
947 	return p->memcg_in_oom;
948 }
949 
950 bool mem_cgroup_oom_synchronize(bool wait);
951 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
952 					    struct mem_cgroup *oom_domain);
953 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
954 
955 void folio_memcg_lock(struct folio *folio);
956 void folio_memcg_unlock(struct folio *folio);
957 
958 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
959 
960 /* try to stablize folio_memcg() for all the pages in a memcg */
961 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
962 {
963 	rcu_read_lock();
964 
965 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
966 		return true;
967 
968 	rcu_read_unlock();
969 	return false;
970 }
971 
972 static inline void mem_cgroup_unlock_pages(void)
973 {
974 	rcu_read_unlock();
975 }
976 
977 /* idx can be of type enum memcg_stat_item or node_stat_item */
978 static inline void mod_memcg_state(struct mem_cgroup *memcg,
979 				   int idx, int val)
980 {
981 	unsigned long flags;
982 
983 	local_irq_save(flags);
984 	__mod_memcg_state(memcg, idx, val);
985 	local_irq_restore(flags);
986 }
987 
988 static inline void mod_memcg_page_state(struct page *page,
989 					int idx, int val)
990 {
991 	struct mem_cgroup *memcg;
992 
993 	if (mem_cgroup_disabled())
994 		return;
995 
996 	rcu_read_lock();
997 	memcg = page_memcg(page);
998 	if (memcg)
999 		mod_memcg_state(memcg, idx, val);
1000 	rcu_read_unlock();
1001 }
1002 
1003 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1004 
1005 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1006 					      enum node_stat_item idx)
1007 {
1008 	struct mem_cgroup_per_node *pn;
1009 	long x;
1010 
1011 	if (mem_cgroup_disabled())
1012 		return node_page_state(lruvec_pgdat(lruvec), idx);
1013 
1014 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1015 	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1016 #ifdef CONFIG_SMP
1017 	if (x < 0)
1018 		x = 0;
1019 #endif
1020 	return x;
1021 }
1022 
1023 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1024 						    enum node_stat_item idx)
1025 {
1026 	struct mem_cgroup_per_node *pn;
1027 	long x = 0;
1028 	int cpu;
1029 
1030 	if (mem_cgroup_disabled())
1031 		return node_page_state(lruvec_pgdat(lruvec), idx);
1032 
1033 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1034 	for_each_possible_cpu(cpu)
1035 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1036 #ifdef CONFIG_SMP
1037 	if (x < 0)
1038 		x = 0;
1039 #endif
1040 	return x;
1041 }
1042 
1043 void mem_cgroup_flush_stats(void);
1044 void mem_cgroup_flush_stats_ratelimited(void);
1045 
1046 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1047 			      int val);
1048 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1049 
1050 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1051 					 int val)
1052 {
1053 	unsigned long flags;
1054 
1055 	local_irq_save(flags);
1056 	__mod_lruvec_kmem_state(p, idx, val);
1057 	local_irq_restore(flags);
1058 }
1059 
1060 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1061 					  enum node_stat_item idx, int val)
1062 {
1063 	unsigned long flags;
1064 
1065 	local_irq_save(flags);
1066 	__mod_memcg_lruvec_state(lruvec, idx, val);
1067 	local_irq_restore(flags);
1068 }
1069 
1070 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1071 			  unsigned long count);
1072 
1073 static inline void count_memcg_events(struct mem_cgroup *memcg,
1074 				      enum vm_event_item idx,
1075 				      unsigned long count)
1076 {
1077 	unsigned long flags;
1078 
1079 	local_irq_save(flags);
1080 	__count_memcg_events(memcg, idx, count);
1081 	local_irq_restore(flags);
1082 }
1083 
1084 static inline void count_memcg_page_event(struct page *page,
1085 					  enum vm_event_item idx)
1086 {
1087 	struct mem_cgroup *memcg = page_memcg(page);
1088 
1089 	if (memcg)
1090 		count_memcg_events(memcg, idx, 1);
1091 }
1092 
1093 static inline void count_memcg_folio_events(struct folio *folio,
1094 		enum vm_event_item idx, unsigned long nr)
1095 {
1096 	struct mem_cgroup *memcg = folio_memcg(folio);
1097 
1098 	if (memcg)
1099 		count_memcg_events(memcg, idx, nr);
1100 }
1101 
1102 static inline void count_memcg_event_mm(struct mm_struct *mm,
1103 					enum vm_event_item idx)
1104 {
1105 	struct mem_cgroup *memcg;
1106 
1107 	if (mem_cgroup_disabled())
1108 		return;
1109 
1110 	rcu_read_lock();
1111 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1112 	if (likely(memcg))
1113 		count_memcg_events(memcg, idx, 1);
1114 	rcu_read_unlock();
1115 }
1116 
1117 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1118 				      enum memcg_memory_event event)
1119 {
1120 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1121 			  event == MEMCG_SWAP_FAIL;
1122 
1123 	atomic_long_inc(&memcg->memory_events_local[event]);
1124 	if (!swap_event)
1125 		cgroup_file_notify(&memcg->events_local_file);
1126 
1127 	do {
1128 		atomic_long_inc(&memcg->memory_events[event]);
1129 		if (swap_event)
1130 			cgroup_file_notify(&memcg->swap_events_file);
1131 		else
1132 			cgroup_file_notify(&memcg->events_file);
1133 
1134 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1135 			break;
1136 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1137 			break;
1138 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1139 		 !mem_cgroup_is_root(memcg));
1140 }
1141 
1142 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1143 					 enum memcg_memory_event event)
1144 {
1145 	struct mem_cgroup *memcg;
1146 
1147 	if (mem_cgroup_disabled())
1148 		return;
1149 
1150 	rcu_read_lock();
1151 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1152 	if (likely(memcg))
1153 		memcg_memory_event(memcg, event);
1154 	rcu_read_unlock();
1155 }
1156 
1157 void split_page_memcg(struct page *head, unsigned int nr);
1158 
1159 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1160 						gfp_t gfp_mask,
1161 						unsigned long *total_scanned);
1162 
1163 #else /* CONFIG_MEMCG */
1164 
1165 #define MEM_CGROUP_ID_SHIFT	0
1166 #define MEM_CGROUP_ID_MAX	0
1167 
1168 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1169 {
1170 	return NULL;
1171 }
1172 
1173 static inline struct mem_cgroup *page_memcg(struct page *page)
1174 {
1175 	return NULL;
1176 }
1177 
1178 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1179 {
1180 	WARN_ON_ONCE(!rcu_read_lock_held());
1181 	return NULL;
1182 }
1183 
1184 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1185 {
1186 	return NULL;
1187 }
1188 
1189 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1190 {
1191 	return NULL;
1192 }
1193 
1194 static inline bool folio_memcg_kmem(struct folio *folio)
1195 {
1196 	return false;
1197 }
1198 
1199 static inline bool PageMemcgKmem(struct page *page)
1200 {
1201 	return false;
1202 }
1203 
1204 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1205 {
1206 	return true;
1207 }
1208 
1209 static inline bool mem_cgroup_disabled(void)
1210 {
1211 	return true;
1212 }
1213 
1214 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1215 				      enum memcg_memory_event event)
1216 {
1217 }
1218 
1219 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1220 					 enum memcg_memory_event event)
1221 {
1222 }
1223 
1224 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1225 					 struct mem_cgroup *memcg,
1226 					 unsigned long *min,
1227 					 unsigned long *low)
1228 {
1229 	*min = *low = 0;
1230 }
1231 
1232 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1233 						   struct mem_cgroup *memcg)
1234 {
1235 }
1236 
1237 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1238 					  struct mem_cgroup *memcg)
1239 {
1240 	return true;
1241 }
1242 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1243 					struct mem_cgroup *memcg)
1244 {
1245 	return false;
1246 }
1247 
1248 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1249 					struct mem_cgroup *memcg)
1250 {
1251 	return false;
1252 }
1253 
1254 static inline int mem_cgroup_charge(struct folio *folio,
1255 		struct mm_struct *mm, gfp_t gfp)
1256 {
1257 	return 0;
1258 }
1259 
1260 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1261 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1262 {
1263 	return 0;
1264 }
1265 
1266 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1267 {
1268 }
1269 
1270 static inline void mem_cgroup_uncharge(struct folio *folio)
1271 {
1272 }
1273 
1274 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1275 {
1276 }
1277 
1278 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1279 {
1280 }
1281 
1282 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1283 					       struct pglist_data *pgdat)
1284 {
1285 	return &pgdat->__lruvec;
1286 }
1287 
1288 static inline struct lruvec *folio_lruvec(struct folio *folio)
1289 {
1290 	struct pglist_data *pgdat = folio_pgdat(folio);
1291 	return &pgdat->__lruvec;
1292 }
1293 
1294 static inline
1295 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1296 {
1297 }
1298 
1299 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1300 {
1301 	return NULL;
1302 }
1303 
1304 static inline bool mm_match_cgroup(struct mm_struct *mm,
1305 		struct mem_cgroup *memcg)
1306 {
1307 	return true;
1308 }
1309 
1310 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1311 {
1312 	return NULL;
1313 }
1314 
1315 static inline
1316 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1317 {
1318 	return NULL;
1319 }
1320 
1321 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1322 {
1323 }
1324 
1325 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1326 {
1327 	return true;
1328 }
1329 
1330 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1331 {
1332 }
1333 
1334 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1335 {
1336 	struct pglist_data *pgdat = folio_pgdat(folio);
1337 
1338 	spin_lock(&pgdat->__lruvec.lru_lock);
1339 	return &pgdat->__lruvec;
1340 }
1341 
1342 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1343 {
1344 	struct pglist_data *pgdat = folio_pgdat(folio);
1345 
1346 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1347 	return &pgdat->__lruvec;
1348 }
1349 
1350 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1351 		unsigned long *flagsp)
1352 {
1353 	struct pglist_data *pgdat = folio_pgdat(folio);
1354 
1355 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1356 	return &pgdat->__lruvec;
1357 }
1358 
1359 static inline struct mem_cgroup *
1360 mem_cgroup_iter(struct mem_cgroup *root,
1361 		struct mem_cgroup *prev,
1362 		struct mem_cgroup_reclaim_cookie *reclaim)
1363 {
1364 	return NULL;
1365 }
1366 
1367 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1368 					 struct mem_cgroup *prev)
1369 {
1370 }
1371 
1372 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1373 		int (*fn)(struct task_struct *, void *), void *arg)
1374 {
1375 }
1376 
1377 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1378 {
1379 	return 0;
1380 }
1381 
1382 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1383 {
1384 	WARN_ON_ONCE(id);
1385 	/* XXX: This should always return root_mem_cgroup */
1386 	return NULL;
1387 }
1388 
1389 #ifdef CONFIG_SHRINKER_DEBUG
1390 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1391 {
1392 	return 0;
1393 }
1394 
1395 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1396 {
1397 	return NULL;
1398 }
1399 #endif
1400 
1401 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1402 {
1403 	return NULL;
1404 }
1405 
1406 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1407 {
1408 	return NULL;
1409 }
1410 
1411 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1412 {
1413 	return true;
1414 }
1415 
1416 static inline
1417 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1418 		enum lru_list lru, int zone_idx)
1419 {
1420 	return 0;
1421 }
1422 
1423 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1424 {
1425 	return 0;
1426 }
1427 
1428 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1429 {
1430 	return 0;
1431 }
1432 
1433 static inline void
1434 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1435 {
1436 }
1437 
1438 static inline void
1439 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1440 {
1441 }
1442 
1443 static inline void folio_memcg_lock(struct folio *folio)
1444 {
1445 }
1446 
1447 static inline void folio_memcg_unlock(struct folio *folio)
1448 {
1449 }
1450 
1451 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1452 {
1453 	/* to match folio_memcg_rcu() */
1454 	rcu_read_lock();
1455 	return true;
1456 }
1457 
1458 static inline void mem_cgroup_unlock_pages(void)
1459 {
1460 	rcu_read_unlock();
1461 }
1462 
1463 static inline void mem_cgroup_handle_over_high(void)
1464 {
1465 }
1466 
1467 static inline void mem_cgroup_enter_user_fault(void)
1468 {
1469 }
1470 
1471 static inline void mem_cgroup_exit_user_fault(void)
1472 {
1473 }
1474 
1475 static inline bool task_in_memcg_oom(struct task_struct *p)
1476 {
1477 	return false;
1478 }
1479 
1480 static inline bool mem_cgroup_oom_synchronize(bool wait)
1481 {
1482 	return false;
1483 }
1484 
1485 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1486 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1487 {
1488 	return NULL;
1489 }
1490 
1491 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1492 {
1493 }
1494 
1495 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1496 				     int idx,
1497 				     int nr)
1498 {
1499 }
1500 
1501 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1502 				   int idx,
1503 				   int nr)
1504 {
1505 }
1506 
1507 static inline void mod_memcg_page_state(struct page *page,
1508 					int idx, int val)
1509 {
1510 }
1511 
1512 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1513 {
1514 	return 0;
1515 }
1516 
1517 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1518 					      enum node_stat_item idx)
1519 {
1520 	return node_page_state(lruvec_pgdat(lruvec), idx);
1521 }
1522 
1523 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1524 						    enum node_stat_item idx)
1525 {
1526 	return node_page_state(lruvec_pgdat(lruvec), idx);
1527 }
1528 
1529 static inline void mem_cgroup_flush_stats(void)
1530 {
1531 }
1532 
1533 static inline void mem_cgroup_flush_stats_ratelimited(void)
1534 {
1535 }
1536 
1537 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1538 					    enum node_stat_item idx, int val)
1539 {
1540 }
1541 
1542 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1543 					   int val)
1544 {
1545 	struct page *page = virt_to_head_page(p);
1546 
1547 	__mod_node_page_state(page_pgdat(page), idx, val);
1548 }
1549 
1550 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1551 					 int val)
1552 {
1553 	struct page *page = virt_to_head_page(p);
1554 
1555 	mod_node_page_state(page_pgdat(page), idx, val);
1556 }
1557 
1558 static inline void count_memcg_events(struct mem_cgroup *memcg,
1559 				      enum vm_event_item idx,
1560 				      unsigned long count)
1561 {
1562 }
1563 
1564 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1565 					enum vm_event_item idx,
1566 					unsigned long count)
1567 {
1568 }
1569 
1570 static inline void count_memcg_page_event(struct page *page,
1571 					  int idx)
1572 {
1573 }
1574 
1575 static inline void count_memcg_folio_events(struct folio *folio,
1576 		enum vm_event_item idx, unsigned long nr)
1577 {
1578 }
1579 
1580 static inline
1581 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1582 {
1583 }
1584 
1585 static inline void split_page_memcg(struct page *head, unsigned int nr)
1586 {
1587 }
1588 
1589 static inline
1590 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1591 					    gfp_t gfp_mask,
1592 					    unsigned long *total_scanned)
1593 {
1594 	return 0;
1595 }
1596 #endif /* CONFIG_MEMCG */
1597 
1598 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1599 {
1600 	__mod_lruvec_kmem_state(p, idx, 1);
1601 }
1602 
1603 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1604 {
1605 	__mod_lruvec_kmem_state(p, idx, -1);
1606 }
1607 
1608 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1609 {
1610 	struct mem_cgroup *memcg;
1611 
1612 	memcg = lruvec_memcg(lruvec);
1613 	if (!memcg)
1614 		return NULL;
1615 	memcg = parent_mem_cgroup(memcg);
1616 	if (!memcg)
1617 		return NULL;
1618 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1619 }
1620 
1621 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1622 {
1623 	spin_unlock(&lruvec->lru_lock);
1624 }
1625 
1626 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1627 {
1628 	spin_unlock_irq(&lruvec->lru_lock);
1629 }
1630 
1631 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1632 		unsigned long flags)
1633 {
1634 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1635 }
1636 
1637 /* Test requires a stable page->memcg binding, see page_memcg() */
1638 static inline bool folio_matches_lruvec(struct folio *folio,
1639 		struct lruvec *lruvec)
1640 {
1641 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1642 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1643 }
1644 
1645 /* Don't lock again iff page's lruvec locked */
1646 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1647 		struct lruvec *locked_lruvec)
1648 {
1649 	if (locked_lruvec) {
1650 		if (folio_matches_lruvec(folio, locked_lruvec))
1651 			return locked_lruvec;
1652 
1653 		unlock_page_lruvec_irq(locked_lruvec);
1654 	}
1655 
1656 	return folio_lruvec_lock_irq(folio);
1657 }
1658 
1659 /* Don't lock again iff page's lruvec locked */
1660 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1661 		struct lruvec *locked_lruvec, unsigned long *flags)
1662 {
1663 	if (locked_lruvec) {
1664 		if (folio_matches_lruvec(folio, locked_lruvec))
1665 			return locked_lruvec;
1666 
1667 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1668 	}
1669 
1670 	return folio_lruvec_lock_irqsave(folio, flags);
1671 }
1672 
1673 #ifdef CONFIG_CGROUP_WRITEBACK
1674 
1675 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1676 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1677 			 unsigned long *pheadroom, unsigned long *pdirty,
1678 			 unsigned long *pwriteback);
1679 
1680 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1681 					     struct bdi_writeback *wb);
1682 
1683 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1684 						  struct bdi_writeback *wb)
1685 {
1686 	struct mem_cgroup *memcg;
1687 
1688 	if (mem_cgroup_disabled())
1689 		return;
1690 
1691 	memcg = folio_memcg(folio);
1692 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1693 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1694 }
1695 
1696 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1697 
1698 #else	/* CONFIG_CGROUP_WRITEBACK */
1699 
1700 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1701 {
1702 	return NULL;
1703 }
1704 
1705 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1706 				       unsigned long *pfilepages,
1707 				       unsigned long *pheadroom,
1708 				       unsigned long *pdirty,
1709 				       unsigned long *pwriteback)
1710 {
1711 }
1712 
1713 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1714 						  struct bdi_writeback *wb)
1715 {
1716 }
1717 
1718 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1719 {
1720 }
1721 
1722 #endif	/* CONFIG_CGROUP_WRITEBACK */
1723 
1724 struct sock;
1725 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1726 			     gfp_t gfp_mask);
1727 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1728 #ifdef CONFIG_MEMCG
1729 extern struct static_key_false memcg_sockets_enabled_key;
1730 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1731 void mem_cgroup_sk_alloc(struct sock *sk);
1732 void mem_cgroup_sk_free(struct sock *sk);
1733 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1734 {
1735 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1736 		return !!memcg->tcpmem_pressure;
1737 	do {
1738 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1739 			return true;
1740 	} while ((memcg = parent_mem_cgroup(memcg)));
1741 	return false;
1742 }
1743 
1744 int alloc_shrinker_info(struct mem_cgroup *memcg);
1745 void free_shrinker_info(struct mem_cgroup *memcg);
1746 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1747 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1748 #else
1749 #define mem_cgroup_sockets_enabled 0
1750 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1751 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1752 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1753 {
1754 	return false;
1755 }
1756 
1757 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1758 				    int nid, int shrinker_id)
1759 {
1760 }
1761 #endif
1762 
1763 #ifdef CONFIG_MEMCG_KMEM
1764 bool mem_cgroup_kmem_disabled(void);
1765 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1766 void __memcg_kmem_uncharge_page(struct page *page, int order);
1767 
1768 struct obj_cgroup *get_obj_cgroup_from_current(void);
1769 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1770 
1771 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1772 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1773 
1774 extern struct static_key_false memcg_bpf_enabled_key;
1775 static inline bool memcg_bpf_enabled(void)
1776 {
1777 	return static_branch_likely(&memcg_bpf_enabled_key);
1778 }
1779 
1780 extern struct static_key_false memcg_kmem_online_key;
1781 
1782 static inline bool memcg_kmem_online(void)
1783 {
1784 	return static_branch_likely(&memcg_kmem_online_key);
1785 }
1786 
1787 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1788 					 int order)
1789 {
1790 	if (memcg_kmem_online())
1791 		return __memcg_kmem_charge_page(page, gfp, order);
1792 	return 0;
1793 }
1794 
1795 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1796 {
1797 	if (memcg_kmem_online())
1798 		__memcg_kmem_uncharge_page(page, order);
1799 }
1800 
1801 /*
1802  * A helper for accessing memcg's kmem_id, used for getting
1803  * corresponding LRU lists.
1804  */
1805 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1806 {
1807 	return memcg ? memcg->kmemcg_id : -1;
1808 }
1809 
1810 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1811 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1812 
1813 static inline void count_objcg_event(struct obj_cgroup *objcg,
1814 				     enum vm_event_item idx)
1815 {
1816 	struct mem_cgroup *memcg;
1817 
1818 	if (!memcg_kmem_online())
1819 		return;
1820 
1821 	rcu_read_lock();
1822 	memcg = obj_cgroup_memcg(objcg);
1823 	count_memcg_events(memcg, idx, 1);
1824 	rcu_read_unlock();
1825 }
1826 
1827 #else
1828 static inline bool mem_cgroup_kmem_disabled(void)
1829 {
1830 	return true;
1831 }
1832 
1833 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1834 					 int order)
1835 {
1836 	return 0;
1837 }
1838 
1839 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1840 {
1841 }
1842 
1843 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1844 					   int order)
1845 {
1846 	return 0;
1847 }
1848 
1849 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1850 {
1851 }
1852 
1853 static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1854 {
1855 	return NULL;
1856 }
1857 
1858 static inline bool memcg_bpf_enabled(void)
1859 {
1860 	return false;
1861 }
1862 
1863 static inline bool memcg_kmem_online(void)
1864 {
1865 	return false;
1866 }
1867 
1868 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1869 {
1870 	return -1;
1871 }
1872 
1873 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1874 {
1875 	return NULL;
1876 }
1877 
1878 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1879 {
1880 	return NULL;
1881 }
1882 
1883 static inline void count_objcg_event(struct obj_cgroup *objcg,
1884 				     enum vm_event_item idx)
1885 {
1886 }
1887 
1888 #endif /* CONFIG_MEMCG_KMEM */
1889 
1890 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1891 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1892 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1893 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1894 #else
1895 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1896 {
1897 	return true;
1898 }
1899 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1900 					   size_t size)
1901 {
1902 }
1903 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1904 					     size_t size)
1905 {
1906 }
1907 #endif
1908 
1909 #endif /* _LINUX_MEMCONTROL_H */
1910