xref: /linux-6.15/include/linux/memcontrol.h (revision 6fbd8569)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mm.h>
30 #include <linux/vmstat.h>
31 #include <linux/writeback.h>
32 #include <linux/page-flags.h>
33 
34 struct mem_cgroup;
35 struct page;
36 struct mm_struct;
37 struct kmem_cache;
38 
39 /* Cgroup-specific page state, on top of universal node page state */
40 enum memcg_stat_item {
41 	MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
42 	MEMCG_RSS,
43 	MEMCG_RSS_HUGE,
44 	MEMCG_SWAP,
45 	MEMCG_SOCK,
46 	/* XXX: why are these zone and not node counters? */
47 	MEMCG_KERNEL_STACK_KB,
48 	MEMCG_NR_STAT,
49 };
50 
51 enum memcg_memory_event {
52 	MEMCG_LOW,
53 	MEMCG_HIGH,
54 	MEMCG_MAX,
55 	MEMCG_OOM,
56 	MEMCG_OOM_KILL,
57 	MEMCG_SWAP_MAX,
58 	MEMCG_SWAP_FAIL,
59 	MEMCG_NR_MEMORY_EVENTS,
60 };
61 
62 enum mem_cgroup_protection {
63 	MEMCG_PROT_NONE,
64 	MEMCG_PROT_LOW,
65 	MEMCG_PROT_MIN,
66 };
67 
68 struct mem_cgroup_reclaim_cookie {
69 	pg_data_t *pgdat;
70 	int priority;
71 	unsigned int generation;
72 };
73 
74 #ifdef CONFIG_MEMCG
75 
76 #define MEM_CGROUP_ID_SHIFT	16
77 #define MEM_CGROUP_ID_MAX	USHRT_MAX
78 
79 struct mem_cgroup_id {
80 	int id;
81 	atomic_t ref;
82 };
83 
84 /*
85  * Per memcg event counter is incremented at every pagein/pageout. With THP,
86  * it will be incremated by the number of pages. This counter is used for
87  * for trigger some periodic events. This is straightforward and better
88  * than using jiffies etc. to handle periodic memcg event.
89  */
90 enum mem_cgroup_events_target {
91 	MEM_CGROUP_TARGET_THRESH,
92 	MEM_CGROUP_TARGET_SOFTLIMIT,
93 	MEM_CGROUP_TARGET_NUMAINFO,
94 	MEM_CGROUP_NTARGETS,
95 };
96 
97 struct mem_cgroup_stat_cpu {
98 	long count[MEMCG_NR_STAT];
99 	unsigned long events[NR_VM_EVENT_ITEMS];
100 	unsigned long nr_page_events;
101 	unsigned long targets[MEM_CGROUP_NTARGETS];
102 };
103 
104 struct mem_cgroup_reclaim_iter {
105 	struct mem_cgroup *position;
106 	/* scan generation, increased every round-trip */
107 	unsigned int generation;
108 };
109 
110 struct lruvec_stat {
111 	long count[NR_VM_NODE_STAT_ITEMS];
112 };
113 
114 /*
115  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
116  * which have elements charged to this memcg.
117  */
118 struct memcg_shrinker_map {
119 	struct rcu_head rcu;
120 	unsigned long map[0];
121 };
122 
123 /*
124  * per-zone information in memory controller.
125  */
126 struct mem_cgroup_per_node {
127 	struct lruvec		lruvec;
128 
129 	struct lruvec_stat __percpu *lruvec_stat_cpu;
130 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
131 
132 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
133 
134 	struct mem_cgroup_reclaim_iter	iter[DEF_PRIORITY + 1];
135 
136 #ifdef CONFIG_MEMCG_KMEM
137 	struct memcg_shrinker_map __rcu	*shrinker_map;
138 #endif
139 	struct rb_node		tree_node;	/* RB tree node */
140 	unsigned long		usage_in_excess;/* Set to the value by which */
141 						/* the soft limit is exceeded*/
142 	bool			on_tree;
143 	bool			congested;	/* memcg has many dirty pages */
144 						/* backed by a congested BDI */
145 
146 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
147 						/* use container_of	   */
148 };
149 
150 struct mem_cgroup_threshold {
151 	struct eventfd_ctx *eventfd;
152 	unsigned long threshold;
153 };
154 
155 /* For threshold */
156 struct mem_cgroup_threshold_ary {
157 	/* An array index points to threshold just below or equal to usage. */
158 	int current_threshold;
159 	/* Size of entries[] */
160 	unsigned int size;
161 	/* Array of thresholds */
162 	struct mem_cgroup_threshold entries[0];
163 };
164 
165 struct mem_cgroup_thresholds {
166 	/* Primary thresholds array */
167 	struct mem_cgroup_threshold_ary *primary;
168 	/*
169 	 * Spare threshold array.
170 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
171 	 * It must be able to store at least primary->size - 1 entries.
172 	 */
173 	struct mem_cgroup_threshold_ary *spare;
174 };
175 
176 enum memcg_kmem_state {
177 	KMEM_NONE,
178 	KMEM_ALLOCATED,
179 	KMEM_ONLINE,
180 };
181 
182 #if defined(CONFIG_SMP)
183 struct memcg_padding {
184 	char x[0];
185 } ____cacheline_internodealigned_in_smp;
186 #define MEMCG_PADDING(name)      struct memcg_padding name;
187 #else
188 #define MEMCG_PADDING(name)
189 #endif
190 
191 /*
192  * The memory controller data structure. The memory controller controls both
193  * page cache and RSS per cgroup. We would eventually like to provide
194  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
195  * to help the administrator determine what knobs to tune.
196  */
197 struct mem_cgroup {
198 	struct cgroup_subsys_state css;
199 
200 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
201 	struct mem_cgroup_id id;
202 
203 	/* Accounted resources */
204 	struct page_counter memory;
205 	struct page_counter swap;
206 
207 	/* Legacy consumer-oriented counters */
208 	struct page_counter memsw;
209 	struct page_counter kmem;
210 	struct page_counter tcpmem;
211 
212 	/* Upper bound of normal memory consumption range */
213 	unsigned long high;
214 
215 	/* Range enforcement for interrupt charges */
216 	struct work_struct high_work;
217 
218 	unsigned long soft_limit;
219 
220 	/* vmpressure notifications */
221 	struct vmpressure vmpressure;
222 
223 	/*
224 	 * Should the accounting and control be hierarchical, per subtree?
225 	 */
226 	bool use_hierarchy;
227 
228 	/* protected by memcg_oom_lock */
229 	bool		oom_lock;
230 	int		under_oom;
231 
232 	int	swappiness;
233 	/* OOM-Killer disable */
234 	int		oom_kill_disable;
235 
236 	/* memory.events */
237 	struct cgroup_file events_file;
238 
239 	/* handle for "memory.swap.events" */
240 	struct cgroup_file swap_events_file;
241 
242 	/* protect arrays of thresholds */
243 	struct mutex thresholds_lock;
244 
245 	/* thresholds for memory usage. RCU-protected */
246 	struct mem_cgroup_thresholds thresholds;
247 
248 	/* thresholds for mem+swap usage. RCU-protected */
249 	struct mem_cgroup_thresholds memsw_thresholds;
250 
251 	/* For oom notifier event fd */
252 	struct list_head oom_notify;
253 
254 	/*
255 	 * Should we move charges of a task when a task is moved into this
256 	 * mem_cgroup ? And what type of charges should we move ?
257 	 */
258 	unsigned long move_charge_at_immigrate;
259 	/* taken only while moving_account > 0 */
260 	spinlock_t		move_lock;
261 	unsigned long		move_lock_flags;
262 
263 	MEMCG_PADDING(_pad1_);
264 
265 	/*
266 	 * set > 0 if pages under this cgroup are moving to other cgroup.
267 	 */
268 	atomic_t		moving_account;
269 	struct task_struct	*move_lock_task;
270 
271 	/* memory.stat */
272 	struct mem_cgroup_stat_cpu __percpu *stat_cpu;
273 
274 	MEMCG_PADDING(_pad2_);
275 
276 	atomic_long_t		stat[MEMCG_NR_STAT];
277 	atomic_long_t		events[NR_VM_EVENT_ITEMS];
278 	atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
279 
280 	unsigned long		socket_pressure;
281 
282 	/* Legacy tcp memory accounting */
283 	bool			tcpmem_active;
284 	int			tcpmem_pressure;
285 
286 #ifdef CONFIG_MEMCG_KMEM
287         /* Index in the kmem_cache->memcg_params.memcg_caches array */
288 	int kmemcg_id;
289 	enum memcg_kmem_state kmem_state;
290 	struct list_head kmem_caches;
291 #endif
292 
293 	int last_scanned_node;
294 #if MAX_NUMNODES > 1
295 	nodemask_t	scan_nodes;
296 	atomic_t	numainfo_events;
297 	atomic_t	numainfo_updating;
298 #endif
299 
300 #ifdef CONFIG_CGROUP_WRITEBACK
301 	struct list_head cgwb_list;
302 	struct wb_domain cgwb_domain;
303 #endif
304 
305 	/* List of events which userspace want to receive */
306 	struct list_head event_list;
307 	spinlock_t event_list_lock;
308 
309 	struct mem_cgroup_per_node *nodeinfo[0];
310 	/* WARNING: nodeinfo must be the last member here */
311 };
312 
313 /*
314  * size of first charge trial. "32" comes from vmscan.c's magic value.
315  * TODO: maybe necessary to use big numbers in big irons.
316  */
317 #define MEMCG_CHARGE_BATCH 32U
318 
319 extern struct mem_cgroup *root_mem_cgroup;
320 
321 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
322 {
323 	return (memcg == root_mem_cgroup);
324 }
325 
326 static inline bool mem_cgroup_disabled(void)
327 {
328 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
329 }
330 
331 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
332 						struct mem_cgroup *memcg);
333 
334 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
335 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
336 			  bool compound);
337 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
338 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
339 			  bool compound);
340 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
341 			      bool lrucare, bool compound);
342 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
343 		bool compound);
344 void mem_cgroup_uncharge(struct page *page);
345 void mem_cgroup_uncharge_list(struct list_head *page_list);
346 
347 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
348 
349 static struct mem_cgroup_per_node *
350 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
351 {
352 	return memcg->nodeinfo[nid];
353 }
354 
355 /**
356  * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
357  * @node: node of the wanted lruvec
358  * @memcg: memcg of the wanted lruvec
359  *
360  * Returns the lru list vector holding pages for a given @node or a given
361  * @memcg and @zone. This can be the node lruvec, if the memory controller
362  * is disabled.
363  */
364 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
365 				struct mem_cgroup *memcg)
366 {
367 	struct mem_cgroup_per_node *mz;
368 	struct lruvec *lruvec;
369 
370 	if (mem_cgroup_disabled()) {
371 		lruvec = node_lruvec(pgdat);
372 		goto out;
373 	}
374 
375 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
376 	lruvec = &mz->lruvec;
377 out:
378 	/*
379 	 * Since a node can be onlined after the mem_cgroup was created,
380 	 * we have to be prepared to initialize lruvec->pgdat here;
381 	 * and if offlined then reonlined, we need to reinitialize it.
382 	 */
383 	if (unlikely(lruvec->pgdat != pgdat))
384 		lruvec->pgdat = pgdat;
385 	return lruvec;
386 }
387 
388 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
389 
390 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
391 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
392 
393 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
394 
395 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
396 
397 static inline
398 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
399 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
400 }
401 
402 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
403 {
404 	if (memcg)
405 		css_put(&memcg->css);
406 }
407 
408 #define mem_cgroup_from_counter(counter, member)	\
409 	container_of(counter, struct mem_cgroup, member)
410 
411 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
412 				   struct mem_cgroup *,
413 				   struct mem_cgroup_reclaim_cookie *);
414 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
415 int mem_cgroup_scan_tasks(struct mem_cgroup *,
416 			  int (*)(struct task_struct *, void *), void *);
417 
418 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
419 {
420 	if (mem_cgroup_disabled())
421 		return 0;
422 
423 	return memcg->id.id;
424 }
425 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
426 
427 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
428 {
429 	struct mem_cgroup_per_node *mz;
430 
431 	if (mem_cgroup_disabled())
432 		return NULL;
433 
434 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
435 	return mz->memcg;
436 }
437 
438 /**
439  * parent_mem_cgroup - find the accounting parent of a memcg
440  * @memcg: memcg whose parent to find
441  *
442  * Returns the parent memcg, or NULL if this is the root or the memory
443  * controller is in legacy no-hierarchy mode.
444  */
445 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
446 {
447 	if (!memcg->memory.parent)
448 		return NULL;
449 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
450 }
451 
452 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
453 			      struct mem_cgroup *root)
454 {
455 	if (root == memcg)
456 		return true;
457 	if (!root->use_hierarchy)
458 		return false;
459 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
460 }
461 
462 static inline bool mm_match_cgroup(struct mm_struct *mm,
463 				   struct mem_cgroup *memcg)
464 {
465 	struct mem_cgroup *task_memcg;
466 	bool match = false;
467 
468 	rcu_read_lock();
469 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
470 	if (task_memcg)
471 		match = mem_cgroup_is_descendant(task_memcg, memcg);
472 	rcu_read_unlock();
473 	return match;
474 }
475 
476 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
477 ino_t page_cgroup_ino(struct page *page);
478 
479 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
480 {
481 	if (mem_cgroup_disabled())
482 		return true;
483 	return !!(memcg->css.flags & CSS_ONLINE);
484 }
485 
486 /*
487  * For memory reclaim.
488  */
489 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
490 
491 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
492 		int zid, int nr_pages);
493 
494 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
495 					   int nid, unsigned int lru_mask);
496 
497 static inline
498 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
499 {
500 	struct mem_cgroup_per_node *mz;
501 	unsigned long nr_pages = 0;
502 	int zid;
503 
504 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
505 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
506 		nr_pages += mz->lru_zone_size[zid][lru];
507 	return nr_pages;
508 }
509 
510 static inline
511 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
512 		enum lru_list lru, int zone_idx)
513 {
514 	struct mem_cgroup_per_node *mz;
515 
516 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
517 	return mz->lru_zone_size[zone_idx][lru];
518 }
519 
520 void mem_cgroup_handle_over_high(void);
521 
522 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
523 
524 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
525 				struct task_struct *p);
526 
527 static inline void mem_cgroup_enter_user_fault(void)
528 {
529 	WARN_ON(current->in_user_fault);
530 	current->in_user_fault = 1;
531 }
532 
533 static inline void mem_cgroup_exit_user_fault(void)
534 {
535 	WARN_ON(!current->in_user_fault);
536 	current->in_user_fault = 0;
537 }
538 
539 static inline bool task_in_memcg_oom(struct task_struct *p)
540 {
541 	return p->memcg_in_oom;
542 }
543 
544 bool mem_cgroup_oom_synchronize(bool wait);
545 
546 #ifdef CONFIG_MEMCG_SWAP
547 extern int do_swap_account;
548 #endif
549 
550 struct mem_cgroup *lock_page_memcg(struct page *page);
551 void __unlock_page_memcg(struct mem_cgroup *memcg);
552 void unlock_page_memcg(struct page *page);
553 
554 /* idx can be of type enum memcg_stat_item or node_stat_item */
555 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
556 					     int idx)
557 {
558 	long x = atomic_long_read(&memcg->stat[idx]);
559 #ifdef CONFIG_SMP
560 	if (x < 0)
561 		x = 0;
562 #endif
563 	return x;
564 }
565 
566 /* idx can be of type enum memcg_stat_item or node_stat_item */
567 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
568 				     int idx, int val)
569 {
570 	long x;
571 
572 	if (mem_cgroup_disabled())
573 		return;
574 
575 	x = val + __this_cpu_read(memcg->stat_cpu->count[idx]);
576 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
577 		atomic_long_add(x, &memcg->stat[idx]);
578 		x = 0;
579 	}
580 	__this_cpu_write(memcg->stat_cpu->count[idx], x);
581 }
582 
583 /* idx can be of type enum memcg_stat_item or node_stat_item */
584 static inline void mod_memcg_state(struct mem_cgroup *memcg,
585 				   int idx, int val)
586 {
587 	unsigned long flags;
588 
589 	local_irq_save(flags);
590 	__mod_memcg_state(memcg, idx, val);
591 	local_irq_restore(flags);
592 }
593 
594 /**
595  * mod_memcg_page_state - update page state statistics
596  * @page: the page
597  * @idx: page state item to account
598  * @val: number of pages (positive or negative)
599  *
600  * The @page must be locked or the caller must use lock_page_memcg()
601  * to prevent double accounting when the page is concurrently being
602  * moved to another memcg:
603  *
604  *   lock_page(page) or lock_page_memcg(page)
605  *   if (TestClearPageState(page))
606  *     mod_memcg_page_state(page, state, -1);
607  *   unlock_page(page) or unlock_page_memcg(page)
608  *
609  * Kernel pages are an exception to this, since they'll never move.
610  */
611 static inline void __mod_memcg_page_state(struct page *page,
612 					  int idx, int val)
613 {
614 	if (page->mem_cgroup)
615 		__mod_memcg_state(page->mem_cgroup, idx, val);
616 }
617 
618 static inline void mod_memcg_page_state(struct page *page,
619 					int idx, int val)
620 {
621 	if (page->mem_cgroup)
622 		mod_memcg_state(page->mem_cgroup, idx, val);
623 }
624 
625 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
626 					      enum node_stat_item idx)
627 {
628 	struct mem_cgroup_per_node *pn;
629 	long x;
630 
631 	if (mem_cgroup_disabled())
632 		return node_page_state(lruvec_pgdat(lruvec), idx);
633 
634 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
635 	x = atomic_long_read(&pn->lruvec_stat[idx]);
636 #ifdef CONFIG_SMP
637 	if (x < 0)
638 		x = 0;
639 #endif
640 	return x;
641 }
642 
643 static inline void __mod_lruvec_state(struct lruvec *lruvec,
644 				      enum node_stat_item idx, int val)
645 {
646 	struct mem_cgroup_per_node *pn;
647 	long x;
648 
649 	/* Update node */
650 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
651 
652 	if (mem_cgroup_disabled())
653 		return;
654 
655 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
656 
657 	/* Update memcg */
658 	__mod_memcg_state(pn->memcg, idx, val);
659 
660 	/* Update lruvec */
661 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
662 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
663 		atomic_long_add(x, &pn->lruvec_stat[idx]);
664 		x = 0;
665 	}
666 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
667 }
668 
669 static inline void mod_lruvec_state(struct lruvec *lruvec,
670 				    enum node_stat_item idx, int val)
671 {
672 	unsigned long flags;
673 
674 	local_irq_save(flags);
675 	__mod_lruvec_state(lruvec, idx, val);
676 	local_irq_restore(flags);
677 }
678 
679 static inline void __mod_lruvec_page_state(struct page *page,
680 					   enum node_stat_item idx, int val)
681 {
682 	pg_data_t *pgdat = page_pgdat(page);
683 	struct lruvec *lruvec;
684 
685 	/* Untracked pages have no memcg, no lruvec. Update only the node */
686 	if (!page->mem_cgroup) {
687 		__mod_node_page_state(pgdat, idx, val);
688 		return;
689 	}
690 
691 	lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
692 	__mod_lruvec_state(lruvec, idx, val);
693 }
694 
695 static inline void mod_lruvec_page_state(struct page *page,
696 					 enum node_stat_item idx, int val)
697 {
698 	unsigned long flags;
699 
700 	local_irq_save(flags);
701 	__mod_lruvec_page_state(page, idx, val);
702 	local_irq_restore(flags);
703 }
704 
705 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
706 						gfp_t gfp_mask,
707 						unsigned long *total_scanned);
708 
709 static inline void __count_memcg_events(struct mem_cgroup *memcg,
710 					enum vm_event_item idx,
711 					unsigned long count)
712 {
713 	unsigned long x;
714 
715 	if (mem_cgroup_disabled())
716 		return;
717 
718 	x = count + __this_cpu_read(memcg->stat_cpu->events[idx]);
719 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
720 		atomic_long_add(x, &memcg->events[idx]);
721 		x = 0;
722 	}
723 	__this_cpu_write(memcg->stat_cpu->events[idx], x);
724 }
725 
726 static inline void count_memcg_events(struct mem_cgroup *memcg,
727 				      enum vm_event_item idx,
728 				      unsigned long count)
729 {
730 	unsigned long flags;
731 
732 	local_irq_save(flags);
733 	__count_memcg_events(memcg, idx, count);
734 	local_irq_restore(flags);
735 }
736 
737 static inline void count_memcg_page_event(struct page *page,
738 					  enum vm_event_item idx)
739 {
740 	if (page->mem_cgroup)
741 		count_memcg_events(page->mem_cgroup, idx, 1);
742 }
743 
744 static inline void count_memcg_event_mm(struct mm_struct *mm,
745 					enum vm_event_item idx)
746 {
747 	struct mem_cgroup *memcg;
748 
749 	if (mem_cgroup_disabled())
750 		return;
751 
752 	rcu_read_lock();
753 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
754 	if (likely(memcg))
755 		count_memcg_events(memcg, idx, 1);
756 	rcu_read_unlock();
757 }
758 
759 static inline void memcg_memory_event(struct mem_cgroup *memcg,
760 				      enum memcg_memory_event event)
761 {
762 	atomic_long_inc(&memcg->memory_events[event]);
763 	cgroup_file_notify(&memcg->events_file);
764 }
765 
766 static inline void memcg_memory_event_mm(struct mm_struct *mm,
767 					 enum memcg_memory_event event)
768 {
769 	struct mem_cgroup *memcg;
770 
771 	if (mem_cgroup_disabled())
772 		return;
773 
774 	rcu_read_lock();
775 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
776 	if (likely(memcg))
777 		memcg_memory_event(memcg, event);
778 	rcu_read_unlock();
779 }
780 
781 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
782 void mem_cgroup_split_huge_fixup(struct page *head);
783 #endif
784 
785 #else /* CONFIG_MEMCG */
786 
787 #define MEM_CGROUP_ID_SHIFT	0
788 #define MEM_CGROUP_ID_MAX	0
789 
790 struct mem_cgroup;
791 
792 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
793 {
794 	return true;
795 }
796 
797 static inline bool mem_cgroup_disabled(void)
798 {
799 	return true;
800 }
801 
802 static inline void memcg_memory_event(struct mem_cgroup *memcg,
803 				      enum memcg_memory_event event)
804 {
805 }
806 
807 static inline void memcg_memory_event_mm(struct mm_struct *mm,
808 					 enum memcg_memory_event event)
809 {
810 }
811 
812 static inline enum mem_cgroup_protection mem_cgroup_protected(
813 	struct mem_cgroup *root, struct mem_cgroup *memcg)
814 {
815 	return MEMCG_PROT_NONE;
816 }
817 
818 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
819 					gfp_t gfp_mask,
820 					struct mem_cgroup **memcgp,
821 					bool compound)
822 {
823 	*memcgp = NULL;
824 	return 0;
825 }
826 
827 static inline int mem_cgroup_try_charge_delay(struct page *page,
828 					      struct mm_struct *mm,
829 					      gfp_t gfp_mask,
830 					      struct mem_cgroup **memcgp,
831 					      bool compound)
832 {
833 	*memcgp = NULL;
834 	return 0;
835 }
836 
837 static inline void mem_cgroup_commit_charge(struct page *page,
838 					    struct mem_cgroup *memcg,
839 					    bool lrucare, bool compound)
840 {
841 }
842 
843 static inline void mem_cgroup_cancel_charge(struct page *page,
844 					    struct mem_cgroup *memcg,
845 					    bool compound)
846 {
847 }
848 
849 static inline void mem_cgroup_uncharge(struct page *page)
850 {
851 }
852 
853 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
854 {
855 }
856 
857 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
858 {
859 }
860 
861 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
862 				struct mem_cgroup *memcg)
863 {
864 	return node_lruvec(pgdat);
865 }
866 
867 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
868 						    struct pglist_data *pgdat)
869 {
870 	return &pgdat->lruvec;
871 }
872 
873 static inline bool mm_match_cgroup(struct mm_struct *mm,
874 		struct mem_cgroup *memcg)
875 {
876 	return true;
877 }
878 
879 static inline bool task_in_mem_cgroup(struct task_struct *task,
880 				      const struct mem_cgroup *memcg)
881 {
882 	return true;
883 }
884 
885 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
886 {
887 	return NULL;
888 }
889 
890 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
891 {
892 	return NULL;
893 }
894 
895 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
896 {
897 }
898 
899 static inline struct mem_cgroup *
900 mem_cgroup_iter(struct mem_cgroup *root,
901 		struct mem_cgroup *prev,
902 		struct mem_cgroup_reclaim_cookie *reclaim)
903 {
904 	return NULL;
905 }
906 
907 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
908 					 struct mem_cgroup *prev)
909 {
910 }
911 
912 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
913 		int (*fn)(struct task_struct *, void *), void *arg)
914 {
915 	return 0;
916 }
917 
918 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
919 {
920 	return 0;
921 }
922 
923 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
924 {
925 	WARN_ON_ONCE(id);
926 	/* XXX: This should always return root_mem_cgroup */
927 	return NULL;
928 }
929 
930 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
931 {
932 	return NULL;
933 }
934 
935 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
936 {
937 	return true;
938 }
939 
940 static inline unsigned long
941 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
942 {
943 	return 0;
944 }
945 static inline
946 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
947 		enum lru_list lru, int zone_idx)
948 {
949 	return 0;
950 }
951 
952 static inline unsigned long
953 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
954 			     int nid, unsigned int lru_mask)
955 {
956 	return 0;
957 }
958 
959 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
960 {
961 	return 0;
962 }
963 
964 static inline void
965 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
966 {
967 }
968 
969 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
970 {
971 	return NULL;
972 }
973 
974 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
975 {
976 }
977 
978 static inline void unlock_page_memcg(struct page *page)
979 {
980 }
981 
982 static inline void mem_cgroup_handle_over_high(void)
983 {
984 }
985 
986 static inline void mem_cgroup_enter_user_fault(void)
987 {
988 }
989 
990 static inline void mem_cgroup_exit_user_fault(void)
991 {
992 }
993 
994 static inline bool task_in_memcg_oom(struct task_struct *p)
995 {
996 	return false;
997 }
998 
999 static inline bool mem_cgroup_oom_synchronize(bool wait)
1000 {
1001 	return false;
1002 }
1003 
1004 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
1005 					     int idx)
1006 {
1007 	return 0;
1008 }
1009 
1010 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1011 				     int idx,
1012 				     int nr)
1013 {
1014 }
1015 
1016 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1017 				   int idx,
1018 				   int nr)
1019 {
1020 }
1021 
1022 static inline void __mod_memcg_page_state(struct page *page,
1023 					  int idx,
1024 					  int nr)
1025 {
1026 }
1027 
1028 static inline void mod_memcg_page_state(struct page *page,
1029 					int idx,
1030 					int nr)
1031 {
1032 }
1033 
1034 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1035 					      enum node_stat_item idx)
1036 {
1037 	return node_page_state(lruvec_pgdat(lruvec), idx);
1038 }
1039 
1040 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1041 				      enum node_stat_item idx, int val)
1042 {
1043 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1044 }
1045 
1046 static inline void mod_lruvec_state(struct lruvec *lruvec,
1047 				    enum node_stat_item idx, int val)
1048 {
1049 	mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1050 }
1051 
1052 static inline void __mod_lruvec_page_state(struct page *page,
1053 					   enum node_stat_item idx, int val)
1054 {
1055 	__mod_node_page_state(page_pgdat(page), idx, val);
1056 }
1057 
1058 static inline void mod_lruvec_page_state(struct page *page,
1059 					 enum node_stat_item idx, int val)
1060 {
1061 	mod_node_page_state(page_pgdat(page), idx, val);
1062 }
1063 
1064 static inline
1065 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1066 					    gfp_t gfp_mask,
1067 					    unsigned long *total_scanned)
1068 {
1069 	return 0;
1070 }
1071 
1072 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1073 {
1074 }
1075 
1076 static inline void count_memcg_events(struct mem_cgroup *memcg,
1077 				      enum vm_event_item idx,
1078 				      unsigned long count)
1079 {
1080 }
1081 
1082 static inline void count_memcg_page_event(struct page *page,
1083 					  int idx)
1084 {
1085 }
1086 
1087 static inline
1088 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1089 {
1090 }
1091 #endif /* CONFIG_MEMCG */
1092 
1093 /* idx can be of type enum memcg_stat_item or node_stat_item */
1094 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1095 				     int idx)
1096 {
1097 	__mod_memcg_state(memcg, idx, 1);
1098 }
1099 
1100 /* idx can be of type enum memcg_stat_item or node_stat_item */
1101 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1102 				     int idx)
1103 {
1104 	__mod_memcg_state(memcg, idx, -1);
1105 }
1106 
1107 /* idx can be of type enum memcg_stat_item or node_stat_item */
1108 static inline void __inc_memcg_page_state(struct page *page,
1109 					  int idx)
1110 {
1111 	__mod_memcg_page_state(page, idx, 1);
1112 }
1113 
1114 /* idx can be of type enum memcg_stat_item or node_stat_item */
1115 static inline void __dec_memcg_page_state(struct page *page,
1116 					  int idx)
1117 {
1118 	__mod_memcg_page_state(page, idx, -1);
1119 }
1120 
1121 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1122 				      enum node_stat_item idx)
1123 {
1124 	__mod_lruvec_state(lruvec, idx, 1);
1125 }
1126 
1127 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1128 				      enum node_stat_item idx)
1129 {
1130 	__mod_lruvec_state(lruvec, idx, -1);
1131 }
1132 
1133 static inline void __inc_lruvec_page_state(struct page *page,
1134 					   enum node_stat_item idx)
1135 {
1136 	__mod_lruvec_page_state(page, idx, 1);
1137 }
1138 
1139 static inline void __dec_lruvec_page_state(struct page *page,
1140 					   enum node_stat_item idx)
1141 {
1142 	__mod_lruvec_page_state(page, idx, -1);
1143 }
1144 
1145 /* idx can be of type enum memcg_stat_item or node_stat_item */
1146 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1147 				   int idx)
1148 {
1149 	mod_memcg_state(memcg, idx, 1);
1150 }
1151 
1152 /* idx can be of type enum memcg_stat_item or node_stat_item */
1153 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1154 				   int idx)
1155 {
1156 	mod_memcg_state(memcg, idx, -1);
1157 }
1158 
1159 /* idx can be of type enum memcg_stat_item or node_stat_item */
1160 static inline void inc_memcg_page_state(struct page *page,
1161 					int idx)
1162 {
1163 	mod_memcg_page_state(page, idx, 1);
1164 }
1165 
1166 /* idx can be of type enum memcg_stat_item or node_stat_item */
1167 static inline void dec_memcg_page_state(struct page *page,
1168 					int idx)
1169 {
1170 	mod_memcg_page_state(page, idx, -1);
1171 }
1172 
1173 static inline void inc_lruvec_state(struct lruvec *lruvec,
1174 				    enum node_stat_item idx)
1175 {
1176 	mod_lruvec_state(lruvec, idx, 1);
1177 }
1178 
1179 static inline void dec_lruvec_state(struct lruvec *lruvec,
1180 				    enum node_stat_item idx)
1181 {
1182 	mod_lruvec_state(lruvec, idx, -1);
1183 }
1184 
1185 static inline void inc_lruvec_page_state(struct page *page,
1186 					 enum node_stat_item idx)
1187 {
1188 	mod_lruvec_page_state(page, idx, 1);
1189 }
1190 
1191 static inline void dec_lruvec_page_state(struct page *page,
1192 					 enum node_stat_item idx)
1193 {
1194 	mod_lruvec_page_state(page, idx, -1);
1195 }
1196 
1197 #ifdef CONFIG_CGROUP_WRITEBACK
1198 
1199 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1200 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1201 			 unsigned long *pheadroom, unsigned long *pdirty,
1202 			 unsigned long *pwriteback);
1203 
1204 #else	/* CONFIG_CGROUP_WRITEBACK */
1205 
1206 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1207 {
1208 	return NULL;
1209 }
1210 
1211 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1212 				       unsigned long *pfilepages,
1213 				       unsigned long *pheadroom,
1214 				       unsigned long *pdirty,
1215 				       unsigned long *pwriteback)
1216 {
1217 }
1218 
1219 #endif	/* CONFIG_CGROUP_WRITEBACK */
1220 
1221 struct sock;
1222 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1223 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1224 #ifdef CONFIG_MEMCG
1225 extern struct static_key_false memcg_sockets_enabled_key;
1226 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1227 void mem_cgroup_sk_alloc(struct sock *sk);
1228 void mem_cgroup_sk_free(struct sock *sk);
1229 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1230 {
1231 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1232 		return true;
1233 	do {
1234 		if (time_before(jiffies, memcg->socket_pressure))
1235 			return true;
1236 	} while ((memcg = parent_mem_cgroup(memcg)));
1237 	return false;
1238 }
1239 #else
1240 #define mem_cgroup_sockets_enabled 0
1241 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1242 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1243 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1244 {
1245 	return false;
1246 }
1247 #endif
1248 
1249 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1250 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1251 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1252 			    struct mem_cgroup *memcg);
1253 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1254 void memcg_kmem_uncharge(struct page *page, int order);
1255 
1256 #ifdef CONFIG_MEMCG_KMEM
1257 extern struct static_key_false memcg_kmem_enabled_key;
1258 extern struct workqueue_struct *memcg_kmem_cache_wq;
1259 
1260 extern int memcg_nr_cache_ids;
1261 void memcg_get_cache_ids(void);
1262 void memcg_put_cache_ids(void);
1263 
1264 /*
1265  * Helper macro to loop through all memcg-specific caches. Callers must still
1266  * check if the cache is valid (it is either valid or NULL).
1267  * the slab_mutex must be held when looping through those caches
1268  */
1269 #define for_each_memcg_cache_index(_idx)	\
1270 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1271 
1272 static inline bool memcg_kmem_enabled(void)
1273 {
1274 	return static_branch_unlikely(&memcg_kmem_enabled_key);
1275 }
1276 
1277 /*
1278  * helper for accessing a memcg's index. It will be used as an index in the
1279  * child cache array in kmem_cache, and also to derive its name. This function
1280  * will return -1 when this is not a kmem-limited memcg.
1281  */
1282 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1283 {
1284 	return memcg ? memcg->kmemcg_id : -1;
1285 }
1286 
1287 extern int memcg_expand_shrinker_maps(int new_id);
1288 
1289 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1290 				   int nid, int shrinker_id);
1291 #else
1292 #define for_each_memcg_cache_index(_idx)	\
1293 	for (; NULL; )
1294 
1295 static inline bool memcg_kmem_enabled(void)
1296 {
1297 	return false;
1298 }
1299 
1300 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1301 {
1302 	return -1;
1303 }
1304 
1305 static inline void memcg_get_cache_ids(void)
1306 {
1307 }
1308 
1309 static inline void memcg_put_cache_ids(void)
1310 {
1311 }
1312 
1313 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1314 					  int nid, int shrinker_id) { }
1315 #endif /* CONFIG_MEMCG_KMEM */
1316 
1317 #endif /* _LINUX_MEMCONTROL_H */
1318