1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 #include <linux/page_counter.h> 27 #include <linux/vmpressure.h> 28 #include <linux/eventfd.h> 29 #include <linux/mm.h> 30 #include <linux/vmstat.h> 31 #include <linux/writeback.h> 32 #include <linux/page-flags.h> 33 34 struct mem_cgroup; 35 struct page; 36 struct mm_struct; 37 struct kmem_cache; 38 39 /* Cgroup-specific page state, on top of universal node page state */ 40 enum memcg_stat_item { 41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 42 MEMCG_RSS, 43 MEMCG_RSS_HUGE, 44 MEMCG_SWAP, 45 MEMCG_SOCK, 46 /* XXX: why are these zone and not node counters? */ 47 MEMCG_KERNEL_STACK_KB, 48 MEMCG_NR_STAT, 49 }; 50 51 enum memcg_memory_event { 52 MEMCG_LOW, 53 MEMCG_HIGH, 54 MEMCG_MAX, 55 MEMCG_OOM, 56 MEMCG_OOM_KILL, 57 MEMCG_SWAP_MAX, 58 MEMCG_SWAP_FAIL, 59 MEMCG_NR_MEMORY_EVENTS, 60 }; 61 62 enum mem_cgroup_protection { 63 MEMCG_PROT_NONE, 64 MEMCG_PROT_LOW, 65 MEMCG_PROT_MIN, 66 }; 67 68 struct mem_cgroup_reclaim_cookie { 69 pg_data_t *pgdat; 70 int priority; 71 unsigned int generation; 72 }; 73 74 #ifdef CONFIG_MEMCG 75 76 #define MEM_CGROUP_ID_SHIFT 16 77 #define MEM_CGROUP_ID_MAX USHRT_MAX 78 79 struct mem_cgroup_id { 80 int id; 81 atomic_t ref; 82 }; 83 84 /* 85 * Per memcg event counter is incremented at every pagein/pageout. With THP, 86 * it will be incremated by the number of pages. This counter is used for 87 * for trigger some periodic events. This is straightforward and better 88 * than using jiffies etc. to handle periodic memcg event. 89 */ 90 enum mem_cgroup_events_target { 91 MEM_CGROUP_TARGET_THRESH, 92 MEM_CGROUP_TARGET_SOFTLIMIT, 93 MEM_CGROUP_TARGET_NUMAINFO, 94 MEM_CGROUP_NTARGETS, 95 }; 96 97 struct mem_cgroup_stat_cpu { 98 long count[MEMCG_NR_STAT]; 99 unsigned long events[NR_VM_EVENT_ITEMS]; 100 unsigned long nr_page_events; 101 unsigned long targets[MEM_CGROUP_NTARGETS]; 102 }; 103 104 struct mem_cgroup_reclaim_iter { 105 struct mem_cgroup *position; 106 /* scan generation, increased every round-trip */ 107 unsigned int generation; 108 }; 109 110 struct lruvec_stat { 111 long count[NR_VM_NODE_STAT_ITEMS]; 112 }; 113 114 /* 115 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 116 * which have elements charged to this memcg. 117 */ 118 struct memcg_shrinker_map { 119 struct rcu_head rcu; 120 unsigned long map[0]; 121 }; 122 123 /* 124 * per-zone information in memory controller. 125 */ 126 struct mem_cgroup_per_node { 127 struct lruvec lruvec; 128 129 struct lruvec_stat __percpu *lruvec_stat_cpu; 130 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 131 132 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 133 134 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 135 136 #ifdef CONFIG_MEMCG_KMEM 137 struct memcg_shrinker_map __rcu *shrinker_map; 138 #endif 139 struct rb_node tree_node; /* RB tree node */ 140 unsigned long usage_in_excess;/* Set to the value by which */ 141 /* the soft limit is exceeded*/ 142 bool on_tree; 143 bool congested; /* memcg has many dirty pages */ 144 /* backed by a congested BDI */ 145 146 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 147 /* use container_of */ 148 }; 149 150 struct mem_cgroup_threshold { 151 struct eventfd_ctx *eventfd; 152 unsigned long threshold; 153 }; 154 155 /* For threshold */ 156 struct mem_cgroup_threshold_ary { 157 /* An array index points to threshold just below or equal to usage. */ 158 int current_threshold; 159 /* Size of entries[] */ 160 unsigned int size; 161 /* Array of thresholds */ 162 struct mem_cgroup_threshold entries[0]; 163 }; 164 165 struct mem_cgroup_thresholds { 166 /* Primary thresholds array */ 167 struct mem_cgroup_threshold_ary *primary; 168 /* 169 * Spare threshold array. 170 * This is needed to make mem_cgroup_unregister_event() "never fail". 171 * It must be able to store at least primary->size - 1 entries. 172 */ 173 struct mem_cgroup_threshold_ary *spare; 174 }; 175 176 enum memcg_kmem_state { 177 KMEM_NONE, 178 KMEM_ALLOCATED, 179 KMEM_ONLINE, 180 }; 181 182 #if defined(CONFIG_SMP) 183 struct memcg_padding { 184 char x[0]; 185 } ____cacheline_internodealigned_in_smp; 186 #define MEMCG_PADDING(name) struct memcg_padding name; 187 #else 188 #define MEMCG_PADDING(name) 189 #endif 190 191 /* 192 * The memory controller data structure. The memory controller controls both 193 * page cache and RSS per cgroup. We would eventually like to provide 194 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 195 * to help the administrator determine what knobs to tune. 196 */ 197 struct mem_cgroup { 198 struct cgroup_subsys_state css; 199 200 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 201 struct mem_cgroup_id id; 202 203 /* Accounted resources */ 204 struct page_counter memory; 205 struct page_counter swap; 206 207 /* Legacy consumer-oriented counters */ 208 struct page_counter memsw; 209 struct page_counter kmem; 210 struct page_counter tcpmem; 211 212 /* Upper bound of normal memory consumption range */ 213 unsigned long high; 214 215 /* Range enforcement for interrupt charges */ 216 struct work_struct high_work; 217 218 unsigned long soft_limit; 219 220 /* vmpressure notifications */ 221 struct vmpressure vmpressure; 222 223 /* 224 * Should the accounting and control be hierarchical, per subtree? 225 */ 226 bool use_hierarchy; 227 228 /* protected by memcg_oom_lock */ 229 bool oom_lock; 230 int under_oom; 231 232 int swappiness; 233 /* OOM-Killer disable */ 234 int oom_kill_disable; 235 236 /* memory.events */ 237 struct cgroup_file events_file; 238 239 /* handle for "memory.swap.events" */ 240 struct cgroup_file swap_events_file; 241 242 /* protect arrays of thresholds */ 243 struct mutex thresholds_lock; 244 245 /* thresholds for memory usage. RCU-protected */ 246 struct mem_cgroup_thresholds thresholds; 247 248 /* thresholds for mem+swap usage. RCU-protected */ 249 struct mem_cgroup_thresholds memsw_thresholds; 250 251 /* For oom notifier event fd */ 252 struct list_head oom_notify; 253 254 /* 255 * Should we move charges of a task when a task is moved into this 256 * mem_cgroup ? And what type of charges should we move ? 257 */ 258 unsigned long move_charge_at_immigrate; 259 /* taken only while moving_account > 0 */ 260 spinlock_t move_lock; 261 unsigned long move_lock_flags; 262 263 MEMCG_PADDING(_pad1_); 264 265 /* 266 * set > 0 if pages under this cgroup are moving to other cgroup. 267 */ 268 atomic_t moving_account; 269 struct task_struct *move_lock_task; 270 271 /* memory.stat */ 272 struct mem_cgroup_stat_cpu __percpu *stat_cpu; 273 274 MEMCG_PADDING(_pad2_); 275 276 atomic_long_t stat[MEMCG_NR_STAT]; 277 atomic_long_t events[NR_VM_EVENT_ITEMS]; 278 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 279 280 unsigned long socket_pressure; 281 282 /* Legacy tcp memory accounting */ 283 bool tcpmem_active; 284 int tcpmem_pressure; 285 286 #ifdef CONFIG_MEMCG_KMEM 287 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 288 int kmemcg_id; 289 enum memcg_kmem_state kmem_state; 290 struct list_head kmem_caches; 291 #endif 292 293 int last_scanned_node; 294 #if MAX_NUMNODES > 1 295 nodemask_t scan_nodes; 296 atomic_t numainfo_events; 297 atomic_t numainfo_updating; 298 #endif 299 300 #ifdef CONFIG_CGROUP_WRITEBACK 301 struct list_head cgwb_list; 302 struct wb_domain cgwb_domain; 303 #endif 304 305 /* List of events which userspace want to receive */ 306 struct list_head event_list; 307 spinlock_t event_list_lock; 308 309 struct mem_cgroup_per_node *nodeinfo[0]; 310 /* WARNING: nodeinfo must be the last member here */ 311 }; 312 313 /* 314 * size of first charge trial. "32" comes from vmscan.c's magic value. 315 * TODO: maybe necessary to use big numbers in big irons. 316 */ 317 #define MEMCG_CHARGE_BATCH 32U 318 319 extern struct mem_cgroup *root_mem_cgroup; 320 321 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 322 { 323 return (memcg == root_mem_cgroup); 324 } 325 326 static inline bool mem_cgroup_disabled(void) 327 { 328 return !cgroup_subsys_enabled(memory_cgrp_subsys); 329 } 330 331 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 332 struct mem_cgroup *memcg); 333 334 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 335 gfp_t gfp_mask, struct mem_cgroup **memcgp, 336 bool compound); 337 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 338 gfp_t gfp_mask, struct mem_cgroup **memcgp, 339 bool compound); 340 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 341 bool lrucare, bool compound); 342 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 343 bool compound); 344 void mem_cgroup_uncharge(struct page *page); 345 void mem_cgroup_uncharge_list(struct list_head *page_list); 346 347 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 348 349 static struct mem_cgroup_per_node * 350 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 351 { 352 return memcg->nodeinfo[nid]; 353 } 354 355 /** 356 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 357 * @node: node of the wanted lruvec 358 * @memcg: memcg of the wanted lruvec 359 * 360 * Returns the lru list vector holding pages for a given @node or a given 361 * @memcg and @zone. This can be the node lruvec, if the memory controller 362 * is disabled. 363 */ 364 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 365 struct mem_cgroup *memcg) 366 { 367 struct mem_cgroup_per_node *mz; 368 struct lruvec *lruvec; 369 370 if (mem_cgroup_disabled()) { 371 lruvec = node_lruvec(pgdat); 372 goto out; 373 } 374 375 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 376 lruvec = &mz->lruvec; 377 out: 378 /* 379 * Since a node can be onlined after the mem_cgroup was created, 380 * we have to be prepared to initialize lruvec->pgdat here; 381 * and if offlined then reonlined, we need to reinitialize it. 382 */ 383 if (unlikely(lruvec->pgdat != pgdat)) 384 lruvec->pgdat = pgdat; 385 return lruvec; 386 } 387 388 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 389 390 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 391 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 392 393 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 394 395 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 396 397 static inline 398 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 399 return css ? container_of(css, struct mem_cgroup, css) : NULL; 400 } 401 402 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 403 { 404 if (memcg) 405 css_put(&memcg->css); 406 } 407 408 #define mem_cgroup_from_counter(counter, member) \ 409 container_of(counter, struct mem_cgroup, member) 410 411 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 412 struct mem_cgroup *, 413 struct mem_cgroup_reclaim_cookie *); 414 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 415 int mem_cgroup_scan_tasks(struct mem_cgroup *, 416 int (*)(struct task_struct *, void *), void *); 417 418 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 419 { 420 if (mem_cgroup_disabled()) 421 return 0; 422 423 return memcg->id.id; 424 } 425 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 426 427 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 428 { 429 struct mem_cgroup_per_node *mz; 430 431 if (mem_cgroup_disabled()) 432 return NULL; 433 434 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 435 return mz->memcg; 436 } 437 438 /** 439 * parent_mem_cgroup - find the accounting parent of a memcg 440 * @memcg: memcg whose parent to find 441 * 442 * Returns the parent memcg, or NULL if this is the root or the memory 443 * controller is in legacy no-hierarchy mode. 444 */ 445 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 446 { 447 if (!memcg->memory.parent) 448 return NULL; 449 return mem_cgroup_from_counter(memcg->memory.parent, memory); 450 } 451 452 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 453 struct mem_cgroup *root) 454 { 455 if (root == memcg) 456 return true; 457 if (!root->use_hierarchy) 458 return false; 459 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 460 } 461 462 static inline bool mm_match_cgroup(struct mm_struct *mm, 463 struct mem_cgroup *memcg) 464 { 465 struct mem_cgroup *task_memcg; 466 bool match = false; 467 468 rcu_read_lock(); 469 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 470 if (task_memcg) 471 match = mem_cgroup_is_descendant(task_memcg, memcg); 472 rcu_read_unlock(); 473 return match; 474 } 475 476 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 477 ino_t page_cgroup_ino(struct page *page); 478 479 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 480 { 481 if (mem_cgroup_disabled()) 482 return true; 483 return !!(memcg->css.flags & CSS_ONLINE); 484 } 485 486 /* 487 * For memory reclaim. 488 */ 489 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 490 491 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 492 int zid, int nr_pages); 493 494 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 495 int nid, unsigned int lru_mask); 496 497 static inline 498 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 499 { 500 struct mem_cgroup_per_node *mz; 501 unsigned long nr_pages = 0; 502 int zid; 503 504 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 505 for (zid = 0; zid < MAX_NR_ZONES; zid++) 506 nr_pages += mz->lru_zone_size[zid][lru]; 507 return nr_pages; 508 } 509 510 static inline 511 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 512 enum lru_list lru, int zone_idx) 513 { 514 struct mem_cgroup_per_node *mz; 515 516 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 517 return mz->lru_zone_size[zone_idx][lru]; 518 } 519 520 void mem_cgroup_handle_over_high(void); 521 522 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 523 524 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 525 struct task_struct *p); 526 527 static inline void mem_cgroup_enter_user_fault(void) 528 { 529 WARN_ON(current->in_user_fault); 530 current->in_user_fault = 1; 531 } 532 533 static inline void mem_cgroup_exit_user_fault(void) 534 { 535 WARN_ON(!current->in_user_fault); 536 current->in_user_fault = 0; 537 } 538 539 static inline bool task_in_memcg_oom(struct task_struct *p) 540 { 541 return p->memcg_in_oom; 542 } 543 544 bool mem_cgroup_oom_synchronize(bool wait); 545 546 #ifdef CONFIG_MEMCG_SWAP 547 extern int do_swap_account; 548 #endif 549 550 struct mem_cgroup *lock_page_memcg(struct page *page); 551 void __unlock_page_memcg(struct mem_cgroup *memcg); 552 void unlock_page_memcg(struct page *page); 553 554 /* idx can be of type enum memcg_stat_item or node_stat_item */ 555 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 556 int idx) 557 { 558 long x = atomic_long_read(&memcg->stat[idx]); 559 #ifdef CONFIG_SMP 560 if (x < 0) 561 x = 0; 562 #endif 563 return x; 564 } 565 566 /* idx can be of type enum memcg_stat_item or node_stat_item */ 567 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 568 int idx, int val) 569 { 570 long x; 571 572 if (mem_cgroup_disabled()) 573 return; 574 575 x = val + __this_cpu_read(memcg->stat_cpu->count[idx]); 576 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 577 atomic_long_add(x, &memcg->stat[idx]); 578 x = 0; 579 } 580 __this_cpu_write(memcg->stat_cpu->count[idx], x); 581 } 582 583 /* idx can be of type enum memcg_stat_item or node_stat_item */ 584 static inline void mod_memcg_state(struct mem_cgroup *memcg, 585 int idx, int val) 586 { 587 unsigned long flags; 588 589 local_irq_save(flags); 590 __mod_memcg_state(memcg, idx, val); 591 local_irq_restore(flags); 592 } 593 594 /** 595 * mod_memcg_page_state - update page state statistics 596 * @page: the page 597 * @idx: page state item to account 598 * @val: number of pages (positive or negative) 599 * 600 * The @page must be locked or the caller must use lock_page_memcg() 601 * to prevent double accounting when the page is concurrently being 602 * moved to another memcg: 603 * 604 * lock_page(page) or lock_page_memcg(page) 605 * if (TestClearPageState(page)) 606 * mod_memcg_page_state(page, state, -1); 607 * unlock_page(page) or unlock_page_memcg(page) 608 * 609 * Kernel pages are an exception to this, since they'll never move. 610 */ 611 static inline void __mod_memcg_page_state(struct page *page, 612 int idx, int val) 613 { 614 if (page->mem_cgroup) 615 __mod_memcg_state(page->mem_cgroup, idx, val); 616 } 617 618 static inline void mod_memcg_page_state(struct page *page, 619 int idx, int val) 620 { 621 if (page->mem_cgroup) 622 mod_memcg_state(page->mem_cgroup, idx, val); 623 } 624 625 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 626 enum node_stat_item idx) 627 { 628 struct mem_cgroup_per_node *pn; 629 long x; 630 631 if (mem_cgroup_disabled()) 632 return node_page_state(lruvec_pgdat(lruvec), idx); 633 634 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 635 x = atomic_long_read(&pn->lruvec_stat[idx]); 636 #ifdef CONFIG_SMP 637 if (x < 0) 638 x = 0; 639 #endif 640 return x; 641 } 642 643 static inline void __mod_lruvec_state(struct lruvec *lruvec, 644 enum node_stat_item idx, int val) 645 { 646 struct mem_cgroup_per_node *pn; 647 long x; 648 649 /* Update node */ 650 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 651 652 if (mem_cgroup_disabled()) 653 return; 654 655 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 656 657 /* Update memcg */ 658 __mod_memcg_state(pn->memcg, idx, val); 659 660 /* Update lruvec */ 661 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 662 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 663 atomic_long_add(x, &pn->lruvec_stat[idx]); 664 x = 0; 665 } 666 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 667 } 668 669 static inline void mod_lruvec_state(struct lruvec *lruvec, 670 enum node_stat_item idx, int val) 671 { 672 unsigned long flags; 673 674 local_irq_save(flags); 675 __mod_lruvec_state(lruvec, idx, val); 676 local_irq_restore(flags); 677 } 678 679 static inline void __mod_lruvec_page_state(struct page *page, 680 enum node_stat_item idx, int val) 681 { 682 pg_data_t *pgdat = page_pgdat(page); 683 struct lruvec *lruvec; 684 685 /* Untracked pages have no memcg, no lruvec. Update only the node */ 686 if (!page->mem_cgroup) { 687 __mod_node_page_state(pgdat, idx, val); 688 return; 689 } 690 691 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 692 __mod_lruvec_state(lruvec, idx, val); 693 } 694 695 static inline void mod_lruvec_page_state(struct page *page, 696 enum node_stat_item idx, int val) 697 { 698 unsigned long flags; 699 700 local_irq_save(flags); 701 __mod_lruvec_page_state(page, idx, val); 702 local_irq_restore(flags); 703 } 704 705 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 706 gfp_t gfp_mask, 707 unsigned long *total_scanned); 708 709 static inline void __count_memcg_events(struct mem_cgroup *memcg, 710 enum vm_event_item idx, 711 unsigned long count) 712 { 713 unsigned long x; 714 715 if (mem_cgroup_disabled()) 716 return; 717 718 x = count + __this_cpu_read(memcg->stat_cpu->events[idx]); 719 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 720 atomic_long_add(x, &memcg->events[idx]); 721 x = 0; 722 } 723 __this_cpu_write(memcg->stat_cpu->events[idx], x); 724 } 725 726 static inline void count_memcg_events(struct mem_cgroup *memcg, 727 enum vm_event_item idx, 728 unsigned long count) 729 { 730 unsigned long flags; 731 732 local_irq_save(flags); 733 __count_memcg_events(memcg, idx, count); 734 local_irq_restore(flags); 735 } 736 737 static inline void count_memcg_page_event(struct page *page, 738 enum vm_event_item idx) 739 { 740 if (page->mem_cgroup) 741 count_memcg_events(page->mem_cgroup, idx, 1); 742 } 743 744 static inline void count_memcg_event_mm(struct mm_struct *mm, 745 enum vm_event_item idx) 746 { 747 struct mem_cgroup *memcg; 748 749 if (mem_cgroup_disabled()) 750 return; 751 752 rcu_read_lock(); 753 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 754 if (likely(memcg)) 755 count_memcg_events(memcg, idx, 1); 756 rcu_read_unlock(); 757 } 758 759 static inline void memcg_memory_event(struct mem_cgroup *memcg, 760 enum memcg_memory_event event) 761 { 762 atomic_long_inc(&memcg->memory_events[event]); 763 cgroup_file_notify(&memcg->events_file); 764 } 765 766 static inline void memcg_memory_event_mm(struct mm_struct *mm, 767 enum memcg_memory_event event) 768 { 769 struct mem_cgroup *memcg; 770 771 if (mem_cgroup_disabled()) 772 return; 773 774 rcu_read_lock(); 775 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 776 if (likely(memcg)) 777 memcg_memory_event(memcg, event); 778 rcu_read_unlock(); 779 } 780 781 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 782 void mem_cgroup_split_huge_fixup(struct page *head); 783 #endif 784 785 #else /* CONFIG_MEMCG */ 786 787 #define MEM_CGROUP_ID_SHIFT 0 788 #define MEM_CGROUP_ID_MAX 0 789 790 struct mem_cgroup; 791 792 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 793 { 794 return true; 795 } 796 797 static inline bool mem_cgroup_disabled(void) 798 { 799 return true; 800 } 801 802 static inline void memcg_memory_event(struct mem_cgroup *memcg, 803 enum memcg_memory_event event) 804 { 805 } 806 807 static inline void memcg_memory_event_mm(struct mm_struct *mm, 808 enum memcg_memory_event event) 809 { 810 } 811 812 static inline enum mem_cgroup_protection mem_cgroup_protected( 813 struct mem_cgroup *root, struct mem_cgroup *memcg) 814 { 815 return MEMCG_PROT_NONE; 816 } 817 818 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 819 gfp_t gfp_mask, 820 struct mem_cgroup **memcgp, 821 bool compound) 822 { 823 *memcgp = NULL; 824 return 0; 825 } 826 827 static inline int mem_cgroup_try_charge_delay(struct page *page, 828 struct mm_struct *mm, 829 gfp_t gfp_mask, 830 struct mem_cgroup **memcgp, 831 bool compound) 832 { 833 *memcgp = NULL; 834 return 0; 835 } 836 837 static inline void mem_cgroup_commit_charge(struct page *page, 838 struct mem_cgroup *memcg, 839 bool lrucare, bool compound) 840 { 841 } 842 843 static inline void mem_cgroup_cancel_charge(struct page *page, 844 struct mem_cgroup *memcg, 845 bool compound) 846 { 847 } 848 849 static inline void mem_cgroup_uncharge(struct page *page) 850 { 851 } 852 853 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 854 { 855 } 856 857 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 858 { 859 } 860 861 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 862 struct mem_cgroup *memcg) 863 { 864 return node_lruvec(pgdat); 865 } 866 867 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 868 struct pglist_data *pgdat) 869 { 870 return &pgdat->lruvec; 871 } 872 873 static inline bool mm_match_cgroup(struct mm_struct *mm, 874 struct mem_cgroup *memcg) 875 { 876 return true; 877 } 878 879 static inline bool task_in_mem_cgroup(struct task_struct *task, 880 const struct mem_cgroup *memcg) 881 { 882 return true; 883 } 884 885 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 886 { 887 return NULL; 888 } 889 890 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 891 { 892 return NULL; 893 } 894 895 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 896 { 897 } 898 899 static inline struct mem_cgroup * 900 mem_cgroup_iter(struct mem_cgroup *root, 901 struct mem_cgroup *prev, 902 struct mem_cgroup_reclaim_cookie *reclaim) 903 { 904 return NULL; 905 } 906 907 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 908 struct mem_cgroup *prev) 909 { 910 } 911 912 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 913 int (*fn)(struct task_struct *, void *), void *arg) 914 { 915 return 0; 916 } 917 918 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 919 { 920 return 0; 921 } 922 923 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 924 { 925 WARN_ON_ONCE(id); 926 /* XXX: This should always return root_mem_cgroup */ 927 return NULL; 928 } 929 930 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 931 { 932 return NULL; 933 } 934 935 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 936 { 937 return true; 938 } 939 940 static inline unsigned long 941 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 942 { 943 return 0; 944 } 945 static inline 946 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 947 enum lru_list lru, int zone_idx) 948 { 949 return 0; 950 } 951 952 static inline unsigned long 953 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 954 int nid, unsigned int lru_mask) 955 { 956 return 0; 957 } 958 959 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 960 { 961 return 0; 962 } 963 964 static inline void 965 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 966 { 967 } 968 969 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 970 { 971 return NULL; 972 } 973 974 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 975 { 976 } 977 978 static inline void unlock_page_memcg(struct page *page) 979 { 980 } 981 982 static inline void mem_cgroup_handle_over_high(void) 983 { 984 } 985 986 static inline void mem_cgroup_enter_user_fault(void) 987 { 988 } 989 990 static inline void mem_cgroup_exit_user_fault(void) 991 { 992 } 993 994 static inline bool task_in_memcg_oom(struct task_struct *p) 995 { 996 return false; 997 } 998 999 static inline bool mem_cgroup_oom_synchronize(bool wait) 1000 { 1001 return false; 1002 } 1003 1004 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 1005 int idx) 1006 { 1007 return 0; 1008 } 1009 1010 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1011 int idx, 1012 int nr) 1013 { 1014 } 1015 1016 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1017 int idx, 1018 int nr) 1019 { 1020 } 1021 1022 static inline void __mod_memcg_page_state(struct page *page, 1023 int idx, 1024 int nr) 1025 { 1026 } 1027 1028 static inline void mod_memcg_page_state(struct page *page, 1029 int idx, 1030 int nr) 1031 { 1032 } 1033 1034 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1035 enum node_stat_item idx) 1036 { 1037 return node_page_state(lruvec_pgdat(lruvec), idx); 1038 } 1039 1040 static inline void __mod_lruvec_state(struct lruvec *lruvec, 1041 enum node_stat_item idx, int val) 1042 { 1043 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1044 } 1045 1046 static inline void mod_lruvec_state(struct lruvec *lruvec, 1047 enum node_stat_item idx, int val) 1048 { 1049 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1050 } 1051 1052 static inline void __mod_lruvec_page_state(struct page *page, 1053 enum node_stat_item idx, int val) 1054 { 1055 __mod_node_page_state(page_pgdat(page), idx, val); 1056 } 1057 1058 static inline void mod_lruvec_page_state(struct page *page, 1059 enum node_stat_item idx, int val) 1060 { 1061 mod_node_page_state(page_pgdat(page), idx, val); 1062 } 1063 1064 static inline 1065 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1066 gfp_t gfp_mask, 1067 unsigned long *total_scanned) 1068 { 1069 return 0; 1070 } 1071 1072 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1073 { 1074 } 1075 1076 static inline void count_memcg_events(struct mem_cgroup *memcg, 1077 enum vm_event_item idx, 1078 unsigned long count) 1079 { 1080 } 1081 1082 static inline void count_memcg_page_event(struct page *page, 1083 int idx) 1084 { 1085 } 1086 1087 static inline 1088 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1089 { 1090 } 1091 #endif /* CONFIG_MEMCG */ 1092 1093 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1094 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1095 int idx) 1096 { 1097 __mod_memcg_state(memcg, idx, 1); 1098 } 1099 1100 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1101 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1102 int idx) 1103 { 1104 __mod_memcg_state(memcg, idx, -1); 1105 } 1106 1107 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1108 static inline void __inc_memcg_page_state(struct page *page, 1109 int idx) 1110 { 1111 __mod_memcg_page_state(page, idx, 1); 1112 } 1113 1114 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1115 static inline void __dec_memcg_page_state(struct page *page, 1116 int idx) 1117 { 1118 __mod_memcg_page_state(page, idx, -1); 1119 } 1120 1121 static inline void __inc_lruvec_state(struct lruvec *lruvec, 1122 enum node_stat_item idx) 1123 { 1124 __mod_lruvec_state(lruvec, idx, 1); 1125 } 1126 1127 static inline void __dec_lruvec_state(struct lruvec *lruvec, 1128 enum node_stat_item idx) 1129 { 1130 __mod_lruvec_state(lruvec, idx, -1); 1131 } 1132 1133 static inline void __inc_lruvec_page_state(struct page *page, 1134 enum node_stat_item idx) 1135 { 1136 __mod_lruvec_page_state(page, idx, 1); 1137 } 1138 1139 static inline void __dec_lruvec_page_state(struct page *page, 1140 enum node_stat_item idx) 1141 { 1142 __mod_lruvec_page_state(page, idx, -1); 1143 } 1144 1145 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1146 static inline void inc_memcg_state(struct mem_cgroup *memcg, 1147 int idx) 1148 { 1149 mod_memcg_state(memcg, idx, 1); 1150 } 1151 1152 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1153 static inline void dec_memcg_state(struct mem_cgroup *memcg, 1154 int idx) 1155 { 1156 mod_memcg_state(memcg, idx, -1); 1157 } 1158 1159 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1160 static inline void inc_memcg_page_state(struct page *page, 1161 int idx) 1162 { 1163 mod_memcg_page_state(page, idx, 1); 1164 } 1165 1166 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1167 static inline void dec_memcg_page_state(struct page *page, 1168 int idx) 1169 { 1170 mod_memcg_page_state(page, idx, -1); 1171 } 1172 1173 static inline void inc_lruvec_state(struct lruvec *lruvec, 1174 enum node_stat_item idx) 1175 { 1176 mod_lruvec_state(lruvec, idx, 1); 1177 } 1178 1179 static inline void dec_lruvec_state(struct lruvec *lruvec, 1180 enum node_stat_item idx) 1181 { 1182 mod_lruvec_state(lruvec, idx, -1); 1183 } 1184 1185 static inline void inc_lruvec_page_state(struct page *page, 1186 enum node_stat_item idx) 1187 { 1188 mod_lruvec_page_state(page, idx, 1); 1189 } 1190 1191 static inline void dec_lruvec_page_state(struct page *page, 1192 enum node_stat_item idx) 1193 { 1194 mod_lruvec_page_state(page, idx, -1); 1195 } 1196 1197 #ifdef CONFIG_CGROUP_WRITEBACK 1198 1199 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1200 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1201 unsigned long *pheadroom, unsigned long *pdirty, 1202 unsigned long *pwriteback); 1203 1204 #else /* CONFIG_CGROUP_WRITEBACK */ 1205 1206 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1207 { 1208 return NULL; 1209 } 1210 1211 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1212 unsigned long *pfilepages, 1213 unsigned long *pheadroom, 1214 unsigned long *pdirty, 1215 unsigned long *pwriteback) 1216 { 1217 } 1218 1219 #endif /* CONFIG_CGROUP_WRITEBACK */ 1220 1221 struct sock; 1222 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1223 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1224 #ifdef CONFIG_MEMCG 1225 extern struct static_key_false memcg_sockets_enabled_key; 1226 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1227 void mem_cgroup_sk_alloc(struct sock *sk); 1228 void mem_cgroup_sk_free(struct sock *sk); 1229 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1230 { 1231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1232 return true; 1233 do { 1234 if (time_before(jiffies, memcg->socket_pressure)) 1235 return true; 1236 } while ((memcg = parent_mem_cgroup(memcg))); 1237 return false; 1238 } 1239 #else 1240 #define mem_cgroup_sockets_enabled 0 1241 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1242 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1243 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1244 { 1245 return false; 1246 } 1247 #endif 1248 1249 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1250 void memcg_kmem_put_cache(struct kmem_cache *cachep); 1251 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1252 struct mem_cgroup *memcg); 1253 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1254 void memcg_kmem_uncharge(struct page *page, int order); 1255 1256 #ifdef CONFIG_MEMCG_KMEM 1257 extern struct static_key_false memcg_kmem_enabled_key; 1258 extern struct workqueue_struct *memcg_kmem_cache_wq; 1259 1260 extern int memcg_nr_cache_ids; 1261 void memcg_get_cache_ids(void); 1262 void memcg_put_cache_ids(void); 1263 1264 /* 1265 * Helper macro to loop through all memcg-specific caches. Callers must still 1266 * check if the cache is valid (it is either valid or NULL). 1267 * the slab_mutex must be held when looping through those caches 1268 */ 1269 #define for_each_memcg_cache_index(_idx) \ 1270 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1271 1272 static inline bool memcg_kmem_enabled(void) 1273 { 1274 return static_branch_unlikely(&memcg_kmem_enabled_key); 1275 } 1276 1277 /* 1278 * helper for accessing a memcg's index. It will be used as an index in the 1279 * child cache array in kmem_cache, and also to derive its name. This function 1280 * will return -1 when this is not a kmem-limited memcg. 1281 */ 1282 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1283 { 1284 return memcg ? memcg->kmemcg_id : -1; 1285 } 1286 1287 extern int memcg_expand_shrinker_maps(int new_id); 1288 1289 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1290 int nid, int shrinker_id); 1291 #else 1292 #define for_each_memcg_cache_index(_idx) \ 1293 for (; NULL; ) 1294 1295 static inline bool memcg_kmem_enabled(void) 1296 { 1297 return false; 1298 } 1299 1300 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1301 { 1302 return -1; 1303 } 1304 1305 static inline void memcg_get_cache_ids(void) 1306 { 1307 } 1308 1309 static inline void memcg_put_cache_ids(void) 1310 { 1311 } 1312 1313 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1314 int nid, int shrinker_id) { } 1315 #endif /* CONFIG_MEMCG_KMEM */ 1316 1317 #endif /* _LINUX_MEMCONTROL_H */ 1318