xref: /linux-6.15/include/linux/memcontrol.h (revision 6ed7ffdd)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 
27 struct mem_cgroup;
28 struct page_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Stats that can be updated by kernel. */
34 enum mem_cgroup_page_stat_item {
35 	MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */
36 };
37 
38 struct mem_cgroup_reclaim_cookie {
39 	struct zone *zone;
40 	int priority;
41 	unsigned int generation;
42 };
43 
44 #ifdef CONFIG_MEMCG
45 /*
46  * All "charge" functions with gfp_mask should use GFP_KERNEL or
47  * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
48  * alloc memory but reclaims memory from all available zones. So, "where I want
49  * memory from" bits of gfp_mask has no meaning. So any bits of that field is
50  * available but adding a rule is better. charge functions' gfp_mask should
51  * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
52  * codes.
53  * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
54  */
55 
56 extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm,
57 				gfp_t gfp_mask);
58 /* for swap handling */
59 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
60 		struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
61 extern void mem_cgroup_commit_charge_swapin(struct page *page,
62 					struct mem_cgroup *memcg);
63 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
64 
65 extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
66 					gfp_t gfp_mask);
67 
68 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
69 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
70 
71 /* For coalescing uncharge for reducing memcg' overhead*/
72 extern void mem_cgroup_uncharge_start(void);
73 extern void mem_cgroup_uncharge_end(void);
74 
75 extern void mem_cgroup_uncharge_page(struct page *page);
76 extern void mem_cgroup_uncharge_cache_page(struct page *page);
77 
78 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
79 				  struct mem_cgroup *memcg);
80 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg);
81 
82 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
83 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
84 extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);
85 
86 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
87 extern struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont);
88 
89 static inline
90 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
91 {
92 	struct mem_cgroup *task_memcg;
93 	bool match;
94 
95 	rcu_read_lock();
96 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
97 	match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
98 	rcu_read_unlock();
99 	return match;
100 }
101 
102 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
103 
104 extern void
105 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
106 			     struct mem_cgroup **memcgp);
107 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
108 	struct page *oldpage, struct page *newpage, bool migration_ok);
109 
110 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
111 				   struct mem_cgroup *,
112 				   struct mem_cgroup_reclaim_cookie *);
113 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
114 
115 /*
116  * For memory reclaim.
117  */
118 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
119 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
120 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
121 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
122 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
123 					struct task_struct *p);
124 extern void mem_cgroup_replace_page_cache(struct page *oldpage,
125 					struct page *newpage);
126 
127 #ifdef CONFIG_MEMCG_SWAP
128 extern int do_swap_account;
129 #endif
130 
131 static inline bool mem_cgroup_disabled(void)
132 {
133 	if (mem_cgroup_subsys.disabled)
134 		return true;
135 	return false;
136 }
137 
138 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
139 					 unsigned long *flags);
140 
141 extern atomic_t memcg_moving;
142 
143 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
144 					bool *locked, unsigned long *flags)
145 {
146 	if (mem_cgroup_disabled())
147 		return;
148 	rcu_read_lock();
149 	*locked = false;
150 	if (atomic_read(&memcg_moving))
151 		__mem_cgroup_begin_update_page_stat(page, locked, flags);
152 }
153 
154 void __mem_cgroup_end_update_page_stat(struct page *page,
155 				unsigned long *flags);
156 static inline void mem_cgroup_end_update_page_stat(struct page *page,
157 					bool *locked, unsigned long *flags)
158 {
159 	if (mem_cgroup_disabled())
160 		return;
161 	if (*locked)
162 		__mem_cgroup_end_update_page_stat(page, flags);
163 	rcu_read_unlock();
164 }
165 
166 void mem_cgroup_update_page_stat(struct page *page,
167 				 enum mem_cgroup_page_stat_item idx,
168 				 int val);
169 
170 static inline void mem_cgroup_inc_page_stat(struct page *page,
171 					    enum mem_cgroup_page_stat_item idx)
172 {
173 	mem_cgroup_update_page_stat(page, idx, 1);
174 }
175 
176 static inline void mem_cgroup_dec_page_stat(struct page *page,
177 					    enum mem_cgroup_page_stat_item idx)
178 {
179 	mem_cgroup_update_page_stat(page, idx, -1);
180 }
181 
182 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
183 						gfp_t gfp_mask,
184 						unsigned long *total_scanned);
185 
186 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
187 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
188 					     enum vm_event_item idx)
189 {
190 	if (mem_cgroup_disabled())
191 		return;
192 	__mem_cgroup_count_vm_event(mm, idx);
193 }
194 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
195 void mem_cgroup_split_huge_fixup(struct page *head);
196 #endif
197 
198 #ifdef CONFIG_DEBUG_VM
199 bool mem_cgroup_bad_page_check(struct page *page);
200 void mem_cgroup_print_bad_page(struct page *page);
201 #endif
202 #else /* CONFIG_MEMCG */
203 struct mem_cgroup;
204 
205 static inline int mem_cgroup_newpage_charge(struct page *page,
206 					struct mm_struct *mm, gfp_t gfp_mask)
207 {
208 	return 0;
209 }
210 
211 static inline int mem_cgroup_cache_charge(struct page *page,
212 					struct mm_struct *mm, gfp_t gfp_mask)
213 {
214 	return 0;
215 }
216 
217 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
218 		struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
219 {
220 	return 0;
221 }
222 
223 static inline void mem_cgroup_commit_charge_swapin(struct page *page,
224 					  struct mem_cgroup *memcg)
225 {
226 }
227 
228 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
229 {
230 }
231 
232 static inline void mem_cgroup_uncharge_start(void)
233 {
234 }
235 
236 static inline void mem_cgroup_uncharge_end(void)
237 {
238 }
239 
240 static inline void mem_cgroup_uncharge_page(struct page *page)
241 {
242 }
243 
244 static inline void mem_cgroup_uncharge_cache_page(struct page *page)
245 {
246 }
247 
248 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
249 						    struct mem_cgroup *memcg)
250 {
251 	return &zone->lruvec;
252 }
253 
254 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
255 						    struct zone *zone)
256 {
257 	return &zone->lruvec;
258 }
259 
260 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
261 {
262 	return NULL;
263 }
264 
265 static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
266 {
267 	return NULL;
268 }
269 
270 static inline bool mm_match_cgroup(struct mm_struct *mm,
271 		struct mem_cgroup *memcg)
272 {
273 	return true;
274 }
275 
276 static inline int task_in_mem_cgroup(struct task_struct *task,
277 				     const struct mem_cgroup *memcg)
278 {
279 	return 1;
280 }
281 
282 static inline struct cgroup_subsys_state
283 		*mem_cgroup_css(struct mem_cgroup *memcg)
284 {
285 	return NULL;
286 }
287 
288 static inline void
289 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
290 			     struct mem_cgroup **memcgp)
291 {
292 }
293 
294 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
295 		struct page *oldpage, struct page *newpage, bool migration_ok)
296 {
297 }
298 
299 static inline struct mem_cgroup *
300 mem_cgroup_iter(struct mem_cgroup *root,
301 		struct mem_cgroup *prev,
302 		struct mem_cgroup_reclaim_cookie *reclaim)
303 {
304 	return NULL;
305 }
306 
307 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
308 					 struct mem_cgroup *prev)
309 {
310 }
311 
312 static inline bool mem_cgroup_disabled(void)
313 {
314 	return true;
315 }
316 
317 static inline int
318 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
319 {
320 	return 1;
321 }
322 
323 static inline unsigned long
324 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
325 {
326 	return 0;
327 }
328 
329 static inline void
330 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
331 			      int increment)
332 {
333 }
334 
335 static inline void
336 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
337 {
338 }
339 
340 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
341 					bool *locked, unsigned long *flags)
342 {
343 }
344 
345 static inline void mem_cgroup_end_update_page_stat(struct page *page,
346 					bool *locked, unsigned long *flags)
347 {
348 }
349 
350 static inline void mem_cgroup_inc_page_stat(struct page *page,
351 					    enum mem_cgroup_page_stat_item idx)
352 {
353 }
354 
355 static inline void mem_cgroup_dec_page_stat(struct page *page,
356 					    enum mem_cgroup_page_stat_item idx)
357 {
358 }
359 
360 static inline
361 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
362 					    gfp_t gfp_mask,
363 					    unsigned long *total_scanned)
364 {
365 	return 0;
366 }
367 
368 static inline void mem_cgroup_split_huge_fixup(struct page *head)
369 {
370 }
371 
372 static inline
373 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
374 {
375 }
376 static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
377 				struct page *newpage)
378 {
379 }
380 #endif /* CONFIG_MEMCG */
381 
382 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
383 static inline bool
384 mem_cgroup_bad_page_check(struct page *page)
385 {
386 	return false;
387 }
388 
389 static inline void
390 mem_cgroup_print_bad_page(struct page *page)
391 {
392 }
393 #endif
394 
395 enum {
396 	UNDER_LIMIT,
397 	SOFT_LIMIT,
398 	OVER_LIMIT,
399 };
400 
401 struct sock;
402 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
403 void sock_update_memcg(struct sock *sk);
404 void sock_release_memcg(struct sock *sk);
405 #else
406 static inline void sock_update_memcg(struct sock *sk)
407 {
408 }
409 static inline void sock_release_memcg(struct sock *sk)
410 {
411 }
412 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
413 
414 #ifdef CONFIG_MEMCG_KMEM
415 extern struct static_key memcg_kmem_enabled_key;
416 
417 extern int memcg_limited_groups_array_size;
418 
419 /*
420  * Helper macro to loop through all memcg-specific caches. Callers must still
421  * check if the cache is valid (it is either valid or NULL).
422  * the slab_mutex must be held when looping through those caches
423  */
424 #define for_each_memcg_cache_index(_idx)	\
425 	for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
426 
427 static inline bool memcg_kmem_enabled(void)
428 {
429 	return static_key_false(&memcg_kmem_enabled_key);
430 }
431 
432 /*
433  * In general, we'll do everything in our power to not incur in any overhead
434  * for non-memcg users for the kmem functions. Not even a function call, if we
435  * can avoid it.
436  *
437  * Therefore, we'll inline all those functions so that in the best case, we'll
438  * see that kmemcg is off for everybody and proceed quickly.  If it is on,
439  * we'll still do most of the flag checking inline. We check a lot of
440  * conditions, but because they are pretty simple, they are expected to be
441  * fast.
442  */
443 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
444 					int order);
445 void __memcg_kmem_commit_charge(struct page *page,
446 				       struct mem_cgroup *memcg, int order);
447 void __memcg_kmem_uncharge_pages(struct page *page, int order);
448 
449 int memcg_cache_id(struct mem_cgroup *memcg);
450 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
451 			 struct kmem_cache *root_cache);
452 void memcg_release_cache(struct kmem_cache *cachep);
453 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep);
454 
455 int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
456 void memcg_update_array_size(int num_groups);
457 
458 struct kmem_cache *
459 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
460 
461 void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
462 void kmem_cache_destroy_memcg_children(struct kmem_cache *s);
463 
464 /**
465  * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
466  * @gfp: the gfp allocation flags.
467  * @memcg: a pointer to the memcg this was charged against.
468  * @order: allocation order.
469  *
470  * returns true if the memcg where the current task belongs can hold this
471  * allocation.
472  *
473  * We return true automatically if this allocation is not to be accounted to
474  * any memcg.
475  */
476 static inline bool
477 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
478 {
479 	if (!memcg_kmem_enabled())
480 		return true;
481 
482 	/*
483 	 * __GFP_NOFAIL allocations will move on even if charging is not
484 	 * possible. Therefore we don't even try, and have this allocation
485 	 * unaccounted. We could in theory charge it with
486 	 * res_counter_charge_nofail, but we hope those allocations are rare,
487 	 * and won't be worth the trouble.
488 	 */
489 	if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
490 		return true;
491 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
492 		return true;
493 
494 	/* If the test is dying, just let it go. */
495 	if (unlikely(fatal_signal_pending(current)))
496 		return true;
497 
498 	return __memcg_kmem_newpage_charge(gfp, memcg, order);
499 }
500 
501 /**
502  * memcg_kmem_uncharge_pages: uncharge pages from memcg
503  * @page: pointer to struct page being freed
504  * @order: allocation order.
505  *
506  * there is no need to specify memcg here, since it is embedded in page_cgroup
507  */
508 static inline void
509 memcg_kmem_uncharge_pages(struct page *page, int order)
510 {
511 	if (memcg_kmem_enabled())
512 		__memcg_kmem_uncharge_pages(page, order);
513 }
514 
515 /**
516  * memcg_kmem_commit_charge: embeds correct memcg in a page
517  * @page: pointer to struct page recently allocated
518  * @memcg: the memcg structure we charged against
519  * @order: allocation order.
520  *
521  * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
522  * failure of the allocation. if @page is NULL, this function will revert the
523  * charges. Otherwise, it will commit the memcg given by @memcg to the
524  * corresponding page_cgroup.
525  */
526 static inline void
527 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
528 {
529 	if (memcg_kmem_enabled() && memcg)
530 		__memcg_kmem_commit_charge(page, memcg, order);
531 }
532 
533 /**
534  * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
535  * @cachep: the original global kmem cache
536  * @gfp: allocation flags.
537  *
538  * This function assumes that the task allocating, which determines the memcg
539  * in the page allocator, belongs to the same cgroup throughout the whole
540  * process.  Misacounting can happen if the task calls memcg_kmem_get_cache()
541  * while belonging to a cgroup, and later on changes. This is considered
542  * acceptable, and should only happen upon task migration.
543  *
544  * Before the cache is created by the memcg core, there is also a possible
545  * imbalance: the task belongs to a memcg, but the cache being allocated from
546  * is the global cache, since the child cache is not yet guaranteed to be
547  * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
548  * passed and the page allocator will not attempt any cgroup accounting.
549  */
550 static __always_inline struct kmem_cache *
551 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
552 {
553 	if (!memcg_kmem_enabled())
554 		return cachep;
555 	if (gfp & __GFP_NOFAIL)
556 		return cachep;
557 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
558 		return cachep;
559 	if (unlikely(fatal_signal_pending(current)))
560 		return cachep;
561 
562 	return __memcg_kmem_get_cache(cachep, gfp);
563 }
564 #else
565 #define for_each_memcg_cache_index(_idx)	\
566 	for (; NULL; )
567 
568 static inline bool memcg_kmem_enabled(void)
569 {
570 	return false;
571 }
572 
573 static inline bool
574 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
575 {
576 	return true;
577 }
578 
579 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
580 {
581 }
582 
583 static inline void
584 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
585 {
586 }
587 
588 static inline int memcg_cache_id(struct mem_cgroup *memcg)
589 {
590 	return -1;
591 }
592 
593 static inline int
594 memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
595 		     struct kmem_cache *root_cache)
596 {
597 	return 0;
598 }
599 
600 static inline void memcg_release_cache(struct kmem_cache *cachep)
601 {
602 }
603 
604 static inline void memcg_cache_list_add(struct mem_cgroup *memcg,
605 					struct kmem_cache *s)
606 {
607 }
608 
609 static inline struct kmem_cache *
610 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
611 {
612 	return cachep;
613 }
614 
615 static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
616 {
617 }
618 #endif /* CONFIG_MEMCG_KMEM */
619 #endif /* _LINUX_MEMCONTROL_H */
620 
621