1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 #include <linux/shrinker.h> 25 26 struct mem_cgroup; 27 struct obj_cgroup; 28 struct page; 29 struct mm_struct; 30 struct kmem_cache; 31 32 /* Cgroup-specific page state, on top of universal node page state */ 33 enum memcg_stat_item { 34 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 35 MEMCG_SOCK, 36 MEMCG_PERCPU_B, 37 MEMCG_VMALLOC, 38 MEMCG_KMEM, 39 MEMCG_ZSWAP_B, 40 MEMCG_ZSWAPPED, 41 MEMCG_NR_STAT, 42 }; 43 44 enum memcg_memory_event { 45 MEMCG_LOW, 46 MEMCG_HIGH, 47 MEMCG_MAX, 48 MEMCG_OOM, 49 MEMCG_OOM_KILL, 50 MEMCG_OOM_GROUP_KILL, 51 MEMCG_SWAP_HIGH, 52 MEMCG_SWAP_MAX, 53 MEMCG_SWAP_FAIL, 54 MEMCG_NR_MEMORY_EVENTS, 55 }; 56 57 struct mem_cgroup_reclaim_cookie { 58 pg_data_t *pgdat; 59 unsigned int generation; 60 }; 61 62 #ifdef CONFIG_MEMCG 63 64 #define MEM_CGROUP_ID_SHIFT 16 65 66 struct mem_cgroup_id { 67 int id; 68 refcount_t ref; 69 }; 70 71 /* 72 * Per memcg event counter is incremented at every pagein/pageout. With THP, 73 * it will be incremented by the number of pages. This counter is used 74 * to trigger some periodic events. This is straightforward and better 75 * than using jiffies etc. to handle periodic memcg event. 76 */ 77 enum mem_cgroup_events_target { 78 MEM_CGROUP_TARGET_THRESH, 79 MEM_CGROUP_TARGET_SOFTLIMIT, 80 MEM_CGROUP_NTARGETS, 81 }; 82 83 struct memcg_vmstats_percpu; 84 struct memcg_vmstats; 85 86 struct mem_cgroup_reclaim_iter { 87 struct mem_cgroup *position; 88 /* scan generation, increased every round-trip */ 89 unsigned int generation; 90 }; 91 92 struct lruvec_stats_percpu { 93 /* Local (CPU and cgroup) state */ 94 long state[NR_VM_NODE_STAT_ITEMS]; 95 96 /* Delta calculation for lockless upward propagation */ 97 long state_prev[NR_VM_NODE_STAT_ITEMS]; 98 }; 99 100 struct lruvec_stats { 101 /* Aggregated (CPU and subtree) state */ 102 long state[NR_VM_NODE_STAT_ITEMS]; 103 104 /* Non-hierarchical (CPU aggregated) state */ 105 long state_local[NR_VM_NODE_STAT_ITEMS]; 106 107 /* Pending child counts during tree propagation */ 108 long state_pending[NR_VM_NODE_STAT_ITEMS]; 109 }; 110 111 /* 112 * per-node information in memory controller. 113 */ 114 struct mem_cgroup_per_node { 115 struct lruvec lruvec; 116 117 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 118 struct lruvec_stats lruvec_stats; 119 120 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 121 122 struct mem_cgroup_reclaim_iter iter; 123 124 struct shrinker_info __rcu *shrinker_info; 125 126 struct rb_node tree_node; /* RB tree node */ 127 unsigned long usage_in_excess;/* Set to the value by which */ 128 /* the soft limit is exceeded*/ 129 bool on_tree; 130 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 131 /* use container_of */ 132 }; 133 134 struct mem_cgroup_threshold { 135 struct eventfd_ctx *eventfd; 136 unsigned long threshold; 137 }; 138 139 /* For threshold */ 140 struct mem_cgroup_threshold_ary { 141 /* An array index points to threshold just below or equal to usage. */ 142 int current_threshold; 143 /* Size of entries[] */ 144 unsigned int size; 145 /* Array of thresholds */ 146 struct mem_cgroup_threshold entries[] __counted_by(size); 147 }; 148 149 struct mem_cgroup_thresholds { 150 /* Primary thresholds array */ 151 struct mem_cgroup_threshold_ary *primary; 152 /* 153 * Spare threshold array. 154 * This is needed to make mem_cgroup_unregister_event() "never fail". 155 * It must be able to store at least primary->size - 1 entries. 156 */ 157 struct mem_cgroup_threshold_ary *spare; 158 }; 159 160 /* 161 * Remember four most recent foreign writebacks with dirty pages in this 162 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 163 * one in a given round, we're likely to catch it later if it keeps 164 * foreign-dirtying, so a fairly low count should be enough. 165 * 166 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 167 */ 168 #define MEMCG_CGWB_FRN_CNT 4 169 170 struct memcg_cgwb_frn { 171 u64 bdi_id; /* bdi->id of the foreign inode */ 172 int memcg_id; /* memcg->css.id of foreign inode */ 173 u64 at; /* jiffies_64 at the time of dirtying */ 174 struct wb_completion done; /* tracks in-flight foreign writebacks */ 175 }; 176 177 /* 178 * Bucket for arbitrarily byte-sized objects charged to a memory 179 * cgroup. The bucket can be reparented in one piece when the cgroup 180 * is destroyed, without having to round up the individual references 181 * of all live memory objects in the wild. 182 */ 183 struct obj_cgroup { 184 struct percpu_ref refcnt; 185 struct mem_cgroup *memcg; 186 atomic_t nr_charged_bytes; 187 union { 188 struct list_head list; /* protected by objcg_lock */ 189 struct rcu_head rcu; 190 }; 191 }; 192 193 /* 194 * The memory controller data structure. The memory controller controls both 195 * page cache and RSS per cgroup. We would eventually like to provide 196 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 197 * to help the administrator determine what knobs to tune. 198 */ 199 struct mem_cgroup { 200 struct cgroup_subsys_state css; 201 202 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 203 struct mem_cgroup_id id; 204 205 /* Accounted resources */ 206 struct page_counter memory; /* Both v1 & v2 */ 207 208 union { 209 struct page_counter swap; /* v2 only */ 210 struct page_counter memsw; /* v1 only */ 211 }; 212 213 /* Legacy consumer-oriented counters */ 214 struct page_counter kmem; /* v1 only */ 215 struct page_counter tcpmem; /* v1 only */ 216 217 /* Range enforcement for interrupt charges */ 218 struct work_struct high_work; 219 220 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 221 unsigned long zswap_max; 222 223 /* 224 * Prevent pages from this memcg from being written back from zswap to 225 * swap, and from being swapped out on zswap store failures. 226 */ 227 bool zswap_writeback; 228 #endif 229 230 unsigned long soft_limit; 231 232 /* vmpressure notifications */ 233 struct vmpressure vmpressure; 234 235 /* 236 * Should the OOM killer kill all belonging tasks, had it kill one? 237 */ 238 bool oom_group; 239 240 /* protected by memcg_oom_lock */ 241 bool oom_lock; 242 int under_oom; 243 244 int swappiness; 245 /* OOM-Killer disable */ 246 int oom_kill_disable; 247 248 /* memory.events and memory.events.local */ 249 struct cgroup_file events_file; 250 struct cgroup_file events_local_file; 251 252 /* handle for "memory.swap.events" */ 253 struct cgroup_file swap_events_file; 254 255 /* protect arrays of thresholds */ 256 struct mutex thresholds_lock; 257 258 /* thresholds for memory usage. RCU-protected */ 259 struct mem_cgroup_thresholds thresholds; 260 261 /* thresholds for mem+swap usage. RCU-protected */ 262 struct mem_cgroup_thresholds memsw_thresholds; 263 264 /* For oom notifier event fd */ 265 struct list_head oom_notify; 266 267 /* 268 * Should we move charges of a task when a task is moved into this 269 * mem_cgroup ? And what type of charges should we move ? 270 */ 271 unsigned long move_charge_at_immigrate; 272 /* taken only while moving_account > 0 */ 273 spinlock_t move_lock; 274 unsigned long move_lock_flags; 275 276 CACHELINE_PADDING(_pad1_); 277 278 /* memory.stat */ 279 struct memcg_vmstats *vmstats; 280 281 /* memory.events */ 282 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 283 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 284 285 /* 286 * Hint of reclaim pressure for socket memroy management. Note 287 * that this indicator should NOT be used in legacy cgroup mode 288 * where socket memory is accounted/charged separately. 289 */ 290 unsigned long socket_pressure; 291 292 /* Legacy tcp memory accounting */ 293 bool tcpmem_active; 294 int tcpmem_pressure; 295 296 #ifdef CONFIG_MEMCG_KMEM 297 int kmemcg_id; 298 /* 299 * memcg->objcg is wiped out as a part of the objcg repaprenting 300 * process. memcg->orig_objcg preserves a pointer (and a reference) 301 * to the original objcg until the end of live of memcg. 302 */ 303 struct obj_cgroup __rcu *objcg; 304 struct obj_cgroup *orig_objcg; 305 /* list of inherited objcgs, protected by objcg_lock */ 306 struct list_head objcg_list; 307 #endif 308 309 CACHELINE_PADDING(_pad2_); 310 311 /* 312 * set > 0 if pages under this cgroup are moving to other cgroup. 313 */ 314 atomic_t moving_account; 315 struct task_struct *move_lock_task; 316 317 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 318 319 #ifdef CONFIG_CGROUP_WRITEBACK 320 struct list_head cgwb_list; 321 struct wb_domain cgwb_domain; 322 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 323 #endif 324 325 /* List of events which userspace want to receive */ 326 struct list_head event_list; 327 spinlock_t event_list_lock; 328 329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 330 struct deferred_split deferred_split_queue; 331 #endif 332 333 #ifdef CONFIG_LRU_GEN_WALKS_MMU 334 /* per-memcg mm_struct list */ 335 struct lru_gen_mm_list mm_list; 336 #endif 337 338 struct mem_cgroup_per_node *nodeinfo[]; 339 }; 340 341 /* 342 * size of first charge trial. 343 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 344 * workload. 345 */ 346 #define MEMCG_CHARGE_BATCH 64U 347 348 extern struct mem_cgroup *root_mem_cgroup; 349 350 enum page_memcg_data_flags { 351 /* page->memcg_data is a pointer to an objcgs vector */ 352 MEMCG_DATA_OBJCGS = (1UL << 0), 353 /* page has been accounted as a non-slab kernel page */ 354 MEMCG_DATA_KMEM = (1UL << 1), 355 /* the next bit after the last actual flag */ 356 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 357 }; 358 359 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 360 361 static inline bool folio_memcg_kmem(struct folio *folio); 362 363 /* 364 * After the initialization objcg->memcg is always pointing at 365 * a valid memcg, but can be atomically swapped to the parent memcg. 366 * 367 * The caller must ensure that the returned memcg won't be released: 368 * e.g. acquire the rcu_read_lock or css_set_lock. 369 */ 370 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 371 { 372 return READ_ONCE(objcg->memcg); 373 } 374 375 /* 376 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 377 * @folio: Pointer to the folio. 378 * 379 * Returns a pointer to the memory cgroup associated with the folio, 380 * or NULL. This function assumes that the folio is known to have a 381 * proper memory cgroup pointer. It's not safe to call this function 382 * against some type of folios, e.g. slab folios or ex-slab folios or 383 * kmem folios. 384 */ 385 static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 386 { 387 unsigned long memcg_data = folio->memcg_data; 388 389 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 390 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 391 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 392 393 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 394 } 395 396 /* 397 * __folio_objcg - get the object cgroup associated with a kmem folio. 398 * @folio: Pointer to the folio. 399 * 400 * Returns a pointer to the object cgroup associated with the folio, 401 * or NULL. This function assumes that the folio is known to have a 402 * proper object cgroup pointer. It's not safe to call this function 403 * against some type of folios, e.g. slab folios or ex-slab folios or 404 * LRU folios. 405 */ 406 static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 407 { 408 unsigned long memcg_data = folio->memcg_data; 409 410 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 411 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 412 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 413 414 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 415 } 416 417 /* 418 * folio_memcg - Get the memory cgroup associated with a folio. 419 * @folio: Pointer to the folio. 420 * 421 * Returns a pointer to the memory cgroup associated with the folio, 422 * or NULL. This function assumes that the folio is known to have a 423 * proper memory cgroup pointer. It's not safe to call this function 424 * against some type of folios, e.g. slab folios or ex-slab folios. 425 * 426 * For a non-kmem folio any of the following ensures folio and memcg binding 427 * stability: 428 * 429 * - the folio lock 430 * - LRU isolation 431 * - folio_memcg_lock() 432 * - exclusive reference 433 * - mem_cgroup_trylock_pages() 434 * 435 * For a kmem folio a caller should hold an rcu read lock to protect memcg 436 * associated with a kmem folio from being released. 437 */ 438 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 439 { 440 if (folio_memcg_kmem(folio)) 441 return obj_cgroup_memcg(__folio_objcg(folio)); 442 return __folio_memcg(folio); 443 } 444 445 static inline struct mem_cgroup *page_memcg(struct page *page) 446 { 447 return folio_memcg(page_folio(page)); 448 } 449 450 /** 451 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 452 * @folio: Pointer to the folio. 453 * 454 * This function assumes that the folio is known to have a 455 * proper memory cgroup pointer. It's not safe to call this function 456 * against some type of folios, e.g. slab folios or ex-slab folios. 457 * 458 * Return: A pointer to the memory cgroup associated with the folio, 459 * or NULL. 460 */ 461 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 462 { 463 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 464 465 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 466 WARN_ON_ONCE(!rcu_read_lock_held()); 467 468 if (memcg_data & MEMCG_DATA_KMEM) { 469 struct obj_cgroup *objcg; 470 471 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 472 return obj_cgroup_memcg(objcg); 473 } 474 475 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 476 } 477 478 /* 479 * folio_memcg_check - Get the memory cgroup associated with a folio. 480 * @folio: Pointer to the folio. 481 * 482 * Returns a pointer to the memory cgroup associated with the folio, 483 * or NULL. This function unlike folio_memcg() can take any folio 484 * as an argument. It has to be used in cases when it's not known if a folio 485 * has an associated memory cgroup pointer or an object cgroups vector or 486 * an object cgroup. 487 * 488 * For a non-kmem folio any of the following ensures folio and memcg binding 489 * stability: 490 * 491 * - the folio lock 492 * - LRU isolation 493 * - lock_folio_memcg() 494 * - exclusive reference 495 * - mem_cgroup_trylock_pages() 496 * 497 * For a kmem folio a caller should hold an rcu read lock to protect memcg 498 * associated with a kmem folio from being released. 499 */ 500 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 501 { 502 /* 503 * Because folio->memcg_data might be changed asynchronously 504 * for slabs, READ_ONCE() should be used here. 505 */ 506 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 507 508 if (memcg_data & MEMCG_DATA_OBJCGS) 509 return NULL; 510 511 if (memcg_data & MEMCG_DATA_KMEM) { 512 struct obj_cgroup *objcg; 513 514 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 515 return obj_cgroup_memcg(objcg); 516 } 517 518 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 519 } 520 521 static inline struct mem_cgroup *page_memcg_check(struct page *page) 522 { 523 if (PageTail(page)) 524 return NULL; 525 return folio_memcg_check((struct folio *)page); 526 } 527 528 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 529 { 530 struct mem_cgroup *memcg; 531 532 rcu_read_lock(); 533 retry: 534 memcg = obj_cgroup_memcg(objcg); 535 if (unlikely(!css_tryget(&memcg->css))) 536 goto retry; 537 rcu_read_unlock(); 538 539 return memcg; 540 } 541 542 #ifdef CONFIG_MEMCG_KMEM 543 /* 544 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 545 * @folio: Pointer to the folio. 546 * 547 * Checks if the folio has MemcgKmem flag set. The caller must ensure 548 * that the folio has an associated memory cgroup. It's not safe to call 549 * this function against some types of folios, e.g. slab folios. 550 */ 551 static inline bool folio_memcg_kmem(struct folio *folio) 552 { 553 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 554 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio); 555 return folio->memcg_data & MEMCG_DATA_KMEM; 556 } 557 558 559 #else 560 static inline bool folio_memcg_kmem(struct folio *folio) 561 { 562 return false; 563 } 564 565 #endif 566 567 static inline bool PageMemcgKmem(struct page *page) 568 { 569 return folio_memcg_kmem(page_folio(page)); 570 } 571 572 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 573 { 574 return (memcg == root_mem_cgroup); 575 } 576 577 static inline bool mem_cgroup_disabled(void) 578 { 579 return !cgroup_subsys_enabled(memory_cgrp_subsys); 580 } 581 582 static inline void mem_cgroup_protection(struct mem_cgroup *root, 583 struct mem_cgroup *memcg, 584 unsigned long *min, 585 unsigned long *low) 586 { 587 *min = *low = 0; 588 589 if (mem_cgroup_disabled()) 590 return; 591 592 /* 593 * There is no reclaim protection applied to a targeted reclaim. 594 * We are special casing this specific case here because 595 * mem_cgroup_calculate_protection is not robust enough to keep 596 * the protection invariant for calculated effective values for 597 * parallel reclaimers with different reclaim target. This is 598 * especially a problem for tail memcgs (as they have pages on LRU) 599 * which would want to have effective values 0 for targeted reclaim 600 * but a different value for external reclaim. 601 * 602 * Example 603 * Let's have global and A's reclaim in parallel: 604 * | 605 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 606 * |\ 607 * | C (low = 1G, usage = 2.5G) 608 * B (low = 1G, usage = 0.5G) 609 * 610 * For the global reclaim 611 * A.elow = A.low 612 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 613 * C.elow = min(C.usage, C.low) 614 * 615 * With the effective values resetting we have A reclaim 616 * A.elow = 0 617 * B.elow = B.low 618 * C.elow = C.low 619 * 620 * If the global reclaim races with A's reclaim then 621 * B.elow = C.elow = 0 because children_low_usage > A.elow) 622 * is possible and reclaiming B would be violating the protection. 623 * 624 */ 625 if (root == memcg) 626 return; 627 628 *min = READ_ONCE(memcg->memory.emin); 629 *low = READ_ONCE(memcg->memory.elow); 630 } 631 632 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 633 struct mem_cgroup *memcg); 634 635 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 636 struct mem_cgroup *memcg) 637 { 638 /* 639 * The root memcg doesn't account charges, and doesn't support 640 * protection. The target memcg's protection is ignored, see 641 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 642 */ 643 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 644 memcg == target; 645 } 646 647 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 648 struct mem_cgroup *memcg) 649 { 650 if (mem_cgroup_unprotected(target, memcg)) 651 return false; 652 653 return READ_ONCE(memcg->memory.elow) >= 654 page_counter_read(&memcg->memory); 655 } 656 657 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 658 struct mem_cgroup *memcg) 659 { 660 if (mem_cgroup_unprotected(target, memcg)) 661 return false; 662 663 return READ_ONCE(memcg->memory.emin) >= 664 page_counter_read(&memcg->memory); 665 } 666 667 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg); 668 669 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 670 671 /** 672 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 673 * @folio: Folio to charge. 674 * @mm: mm context of the allocating task. 675 * @gfp: Reclaim mode. 676 * 677 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 678 * pages according to @gfp if necessary. If @mm is NULL, try to 679 * charge to the active memcg. 680 * 681 * Do not use this for folios allocated for swapin. 682 * 683 * Return: 0 on success. Otherwise, an error code is returned. 684 */ 685 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 686 gfp_t gfp) 687 { 688 if (mem_cgroup_disabled()) 689 return 0; 690 return __mem_cgroup_charge(folio, mm, gfp); 691 } 692 693 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 694 long nr_pages); 695 696 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 697 gfp_t gfp, swp_entry_t entry); 698 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 699 700 void __mem_cgroup_uncharge(struct folio *folio); 701 702 /** 703 * mem_cgroup_uncharge - Uncharge a folio. 704 * @folio: Folio to uncharge. 705 * 706 * Uncharge a folio previously charged with mem_cgroup_charge(). 707 */ 708 static inline void mem_cgroup_uncharge(struct folio *folio) 709 { 710 if (mem_cgroup_disabled()) 711 return; 712 __mem_cgroup_uncharge(folio); 713 } 714 715 void __mem_cgroup_uncharge_list(struct list_head *page_list); 716 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 717 { 718 if (mem_cgroup_disabled()) 719 return; 720 __mem_cgroup_uncharge_list(page_list); 721 } 722 723 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages); 724 725 void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 726 727 void mem_cgroup_migrate(struct folio *old, struct folio *new); 728 729 /** 730 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 731 * @memcg: memcg of the wanted lruvec 732 * @pgdat: pglist_data 733 * 734 * Returns the lru list vector holding pages for a given @memcg & 735 * @pgdat combination. This can be the node lruvec, if the memory 736 * controller is disabled. 737 */ 738 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 739 struct pglist_data *pgdat) 740 { 741 struct mem_cgroup_per_node *mz; 742 struct lruvec *lruvec; 743 744 if (mem_cgroup_disabled()) { 745 lruvec = &pgdat->__lruvec; 746 goto out; 747 } 748 749 if (!memcg) 750 memcg = root_mem_cgroup; 751 752 mz = memcg->nodeinfo[pgdat->node_id]; 753 lruvec = &mz->lruvec; 754 out: 755 /* 756 * Since a node can be onlined after the mem_cgroup was created, 757 * we have to be prepared to initialize lruvec->pgdat here; 758 * and if offlined then reonlined, we need to reinitialize it. 759 */ 760 if (unlikely(lruvec->pgdat != pgdat)) 761 lruvec->pgdat = pgdat; 762 return lruvec; 763 } 764 765 /** 766 * folio_lruvec - return lruvec for isolating/putting an LRU folio 767 * @folio: Pointer to the folio. 768 * 769 * This function relies on folio->mem_cgroup being stable. 770 */ 771 static inline struct lruvec *folio_lruvec(struct folio *folio) 772 { 773 struct mem_cgroup *memcg = folio_memcg(folio); 774 775 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 776 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 777 } 778 779 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 780 781 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 782 783 struct mem_cgroup *get_mem_cgroup_from_current(void); 784 785 struct lruvec *folio_lruvec_lock(struct folio *folio); 786 struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 787 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 788 unsigned long *flags); 789 790 #ifdef CONFIG_DEBUG_VM 791 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 792 #else 793 static inline 794 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 795 { 796 } 797 #endif 798 799 static inline 800 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 801 return css ? container_of(css, struct mem_cgroup, css) : NULL; 802 } 803 804 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 805 { 806 return percpu_ref_tryget(&objcg->refcnt); 807 } 808 809 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 810 { 811 percpu_ref_get(&objcg->refcnt); 812 } 813 814 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 815 unsigned long nr) 816 { 817 percpu_ref_get_many(&objcg->refcnt, nr); 818 } 819 820 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 821 { 822 percpu_ref_put(&objcg->refcnt); 823 } 824 825 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 826 { 827 return !memcg || css_tryget(&memcg->css); 828 } 829 830 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 831 { 832 return !memcg || css_tryget_online(&memcg->css); 833 } 834 835 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 836 { 837 if (memcg) 838 css_put(&memcg->css); 839 } 840 841 #define mem_cgroup_from_counter(counter, member) \ 842 container_of(counter, struct mem_cgroup, member) 843 844 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 845 struct mem_cgroup *, 846 struct mem_cgroup_reclaim_cookie *); 847 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 848 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 849 int (*)(struct task_struct *, void *), void *arg); 850 851 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 852 { 853 if (mem_cgroup_disabled()) 854 return 0; 855 856 return memcg->id.id; 857 } 858 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 859 860 #ifdef CONFIG_SHRINKER_DEBUG 861 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 862 { 863 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 864 } 865 866 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 867 #endif 868 869 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 870 { 871 return mem_cgroup_from_css(seq_css(m)); 872 } 873 874 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 875 { 876 struct mem_cgroup_per_node *mz; 877 878 if (mem_cgroup_disabled()) 879 return NULL; 880 881 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 882 return mz->memcg; 883 } 884 885 /** 886 * parent_mem_cgroup - find the accounting parent of a memcg 887 * @memcg: memcg whose parent to find 888 * 889 * Returns the parent memcg, or NULL if this is the root. 890 */ 891 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 892 { 893 return mem_cgroup_from_css(memcg->css.parent); 894 } 895 896 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 897 struct mem_cgroup *root) 898 { 899 if (root == memcg) 900 return true; 901 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 902 } 903 904 static inline bool mm_match_cgroup(struct mm_struct *mm, 905 struct mem_cgroup *memcg) 906 { 907 struct mem_cgroup *task_memcg; 908 bool match = false; 909 910 rcu_read_lock(); 911 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 912 if (task_memcg) 913 match = mem_cgroup_is_descendant(task_memcg, memcg); 914 rcu_read_unlock(); 915 return match; 916 } 917 918 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 919 ino_t page_cgroup_ino(struct page *page); 920 921 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 922 { 923 if (mem_cgroup_disabled()) 924 return true; 925 return !!(memcg->css.flags & CSS_ONLINE); 926 } 927 928 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 929 int zid, int nr_pages); 930 931 static inline 932 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 933 enum lru_list lru, int zone_idx) 934 { 935 struct mem_cgroup_per_node *mz; 936 937 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 938 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 939 } 940 941 void mem_cgroup_handle_over_high(gfp_t gfp_mask); 942 943 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 944 945 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 946 947 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 948 struct task_struct *p); 949 950 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 951 952 static inline void mem_cgroup_enter_user_fault(void) 953 { 954 WARN_ON(current->in_user_fault); 955 current->in_user_fault = 1; 956 } 957 958 static inline void mem_cgroup_exit_user_fault(void) 959 { 960 WARN_ON(!current->in_user_fault); 961 current->in_user_fault = 0; 962 } 963 964 static inline bool task_in_memcg_oom(struct task_struct *p) 965 { 966 return p->memcg_in_oom; 967 } 968 969 bool mem_cgroup_oom_synchronize(bool wait); 970 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 971 struct mem_cgroup *oom_domain); 972 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 973 974 void folio_memcg_lock(struct folio *folio); 975 void folio_memcg_unlock(struct folio *folio); 976 977 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 978 979 /* try to stablize folio_memcg() for all the pages in a memcg */ 980 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 981 { 982 rcu_read_lock(); 983 984 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 985 return true; 986 987 rcu_read_unlock(); 988 return false; 989 } 990 991 static inline void mem_cgroup_unlock_pages(void) 992 { 993 rcu_read_unlock(); 994 } 995 996 /* idx can be of type enum memcg_stat_item or node_stat_item */ 997 static inline void mod_memcg_state(struct mem_cgroup *memcg, 998 int idx, int val) 999 { 1000 unsigned long flags; 1001 1002 local_irq_save(flags); 1003 __mod_memcg_state(memcg, idx, val); 1004 local_irq_restore(flags); 1005 } 1006 1007 static inline void mod_memcg_page_state(struct page *page, 1008 int idx, int val) 1009 { 1010 struct mem_cgroup *memcg; 1011 1012 if (mem_cgroup_disabled()) 1013 return; 1014 1015 rcu_read_lock(); 1016 memcg = page_memcg(page); 1017 if (memcg) 1018 mod_memcg_state(memcg, idx, val); 1019 rcu_read_unlock(); 1020 } 1021 1022 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 1023 1024 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1025 enum node_stat_item idx) 1026 { 1027 struct mem_cgroup_per_node *pn; 1028 long x; 1029 1030 if (mem_cgroup_disabled()) 1031 return node_page_state(lruvec_pgdat(lruvec), idx); 1032 1033 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1034 x = READ_ONCE(pn->lruvec_stats.state[idx]); 1035 #ifdef CONFIG_SMP 1036 if (x < 0) 1037 x = 0; 1038 #endif 1039 return x; 1040 } 1041 1042 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1043 enum node_stat_item idx) 1044 { 1045 struct mem_cgroup_per_node *pn; 1046 long x = 0; 1047 1048 if (mem_cgroup_disabled()) 1049 return node_page_state(lruvec_pgdat(lruvec), idx); 1050 1051 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1052 x = READ_ONCE(pn->lruvec_stats.state_local[idx]); 1053 #ifdef CONFIG_SMP 1054 if (x < 0) 1055 x = 0; 1056 #endif 1057 return x; 1058 } 1059 1060 void mem_cgroup_flush_stats(struct mem_cgroup *memcg); 1061 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg); 1062 1063 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1064 int val); 1065 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1066 1067 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1068 int val) 1069 { 1070 unsigned long flags; 1071 1072 local_irq_save(flags); 1073 __mod_lruvec_kmem_state(p, idx, val); 1074 local_irq_restore(flags); 1075 } 1076 1077 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1078 enum node_stat_item idx, int val) 1079 { 1080 unsigned long flags; 1081 1082 local_irq_save(flags); 1083 __mod_memcg_lruvec_state(lruvec, idx, val); 1084 local_irq_restore(flags); 1085 } 1086 1087 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1088 unsigned long count); 1089 1090 static inline void count_memcg_events(struct mem_cgroup *memcg, 1091 enum vm_event_item idx, 1092 unsigned long count) 1093 { 1094 unsigned long flags; 1095 1096 local_irq_save(flags); 1097 __count_memcg_events(memcg, idx, count); 1098 local_irq_restore(flags); 1099 } 1100 1101 static inline void count_memcg_folio_events(struct folio *folio, 1102 enum vm_event_item idx, unsigned long nr) 1103 { 1104 struct mem_cgroup *memcg = folio_memcg(folio); 1105 1106 if (memcg) 1107 count_memcg_events(memcg, idx, nr); 1108 } 1109 1110 static inline void count_memcg_event_mm(struct mm_struct *mm, 1111 enum vm_event_item idx) 1112 { 1113 struct mem_cgroup *memcg; 1114 1115 if (mem_cgroup_disabled()) 1116 return; 1117 1118 rcu_read_lock(); 1119 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1120 if (likely(memcg)) 1121 count_memcg_events(memcg, idx, 1); 1122 rcu_read_unlock(); 1123 } 1124 1125 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1126 enum memcg_memory_event event) 1127 { 1128 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1129 event == MEMCG_SWAP_FAIL; 1130 1131 atomic_long_inc(&memcg->memory_events_local[event]); 1132 if (!swap_event) 1133 cgroup_file_notify(&memcg->events_local_file); 1134 1135 do { 1136 atomic_long_inc(&memcg->memory_events[event]); 1137 if (swap_event) 1138 cgroup_file_notify(&memcg->swap_events_file); 1139 else 1140 cgroup_file_notify(&memcg->events_file); 1141 1142 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1143 break; 1144 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1145 break; 1146 } while ((memcg = parent_mem_cgroup(memcg)) && 1147 !mem_cgroup_is_root(memcg)); 1148 } 1149 1150 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1151 enum memcg_memory_event event) 1152 { 1153 struct mem_cgroup *memcg; 1154 1155 if (mem_cgroup_disabled()) 1156 return; 1157 1158 rcu_read_lock(); 1159 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1160 if (likely(memcg)) 1161 memcg_memory_event(memcg, event); 1162 rcu_read_unlock(); 1163 } 1164 1165 void split_page_memcg(struct page *head, unsigned int nr); 1166 1167 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1168 gfp_t gfp_mask, 1169 unsigned long *total_scanned); 1170 1171 #else /* CONFIG_MEMCG */ 1172 1173 #define MEM_CGROUP_ID_SHIFT 0 1174 1175 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1176 { 1177 return NULL; 1178 } 1179 1180 static inline struct mem_cgroup *page_memcg(struct page *page) 1181 { 1182 return NULL; 1183 } 1184 1185 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1186 { 1187 WARN_ON_ONCE(!rcu_read_lock_held()); 1188 return NULL; 1189 } 1190 1191 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1192 { 1193 return NULL; 1194 } 1195 1196 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1197 { 1198 return NULL; 1199 } 1200 1201 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 1202 { 1203 return NULL; 1204 } 1205 1206 static inline bool folio_memcg_kmem(struct folio *folio) 1207 { 1208 return false; 1209 } 1210 1211 static inline bool PageMemcgKmem(struct page *page) 1212 { 1213 return false; 1214 } 1215 1216 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1217 { 1218 return true; 1219 } 1220 1221 static inline bool mem_cgroup_disabled(void) 1222 { 1223 return true; 1224 } 1225 1226 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1227 enum memcg_memory_event event) 1228 { 1229 } 1230 1231 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1232 enum memcg_memory_event event) 1233 { 1234 } 1235 1236 static inline void mem_cgroup_protection(struct mem_cgroup *root, 1237 struct mem_cgroup *memcg, 1238 unsigned long *min, 1239 unsigned long *low) 1240 { 1241 *min = *low = 0; 1242 } 1243 1244 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1245 struct mem_cgroup *memcg) 1246 { 1247 } 1248 1249 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1250 struct mem_cgroup *memcg) 1251 { 1252 return true; 1253 } 1254 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1255 struct mem_cgroup *memcg) 1256 { 1257 return false; 1258 } 1259 1260 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1261 struct mem_cgroup *memcg) 1262 { 1263 return false; 1264 } 1265 1266 static inline void mem_cgroup_commit_charge(struct folio *folio, 1267 struct mem_cgroup *memcg) 1268 { 1269 } 1270 1271 static inline int mem_cgroup_charge(struct folio *folio, 1272 struct mm_struct *mm, gfp_t gfp) 1273 { 1274 return 0; 1275 } 1276 1277 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, 1278 gfp_t gfp, long nr_pages) 1279 { 1280 return 0; 1281 } 1282 1283 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1284 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1285 { 1286 return 0; 1287 } 1288 1289 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1290 { 1291 } 1292 1293 static inline void mem_cgroup_uncharge(struct folio *folio) 1294 { 1295 } 1296 1297 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1298 { 1299 } 1300 1301 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 1302 unsigned int nr_pages) 1303 { 1304 } 1305 1306 static inline void mem_cgroup_replace_folio(struct folio *old, 1307 struct folio *new) 1308 { 1309 } 1310 1311 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1312 { 1313 } 1314 1315 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1316 struct pglist_data *pgdat) 1317 { 1318 return &pgdat->__lruvec; 1319 } 1320 1321 static inline struct lruvec *folio_lruvec(struct folio *folio) 1322 { 1323 struct pglist_data *pgdat = folio_pgdat(folio); 1324 return &pgdat->__lruvec; 1325 } 1326 1327 static inline 1328 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1329 { 1330 } 1331 1332 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1333 { 1334 return NULL; 1335 } 1336 1337 static inline bool mm_match_cgroup(struct mm_struct *mm, 1338 struct mem_cgroup *memcg) 1339 { 1340 return true; 1341 } 1342 1343 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1344 { 1345 return NULL; 1346 } 1347 1348 static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1349 { 1350 return NULL; 1351 } 1352 1353 static inline 1354 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1355 { 1356 return NULL; 1357 } 1358 1359 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1360 { 1361 } 1362 1363 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1364 { 1365 return true; 1366 } 1367 1368 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 1369 { 1370 return true; 1371 } 1372 1373 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1374 { 1375 } 1376 1377 static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1378 { 1379 struct pglist_data *pgdat = folio_pgdat(folio); 1380 1381 spin_lock(&pgdat->__lruvec.lru_lock); 1382 return &pgdat->__lruvec; 1383 } 1384 1385 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1386 { 1387 struct pglist_data *pgdat = folio_pgdat(folio); 1388 1389 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1390 return &pgdat->__lruvec; 1391 } 1392 1393 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1394 unsigned long *flagsp) 1395 { 1396 struct pglist_data *pgdat = folio_pgdat(folio); 1397 1398 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1399 return &pgdat->__lruvec; 1400 } 1401 1402 static inline struct mem_cgroup * 1403 mem_cgroup_iter(struct mem_cgroup *root, 1404 struct mem_cgroup *prev, 1405 struct mem_cgroup_reclaim_cookie *reclaim) 1406 { 1407 return NULL; 1408 } 1409 1410 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1411 struct mem_cgroup *prev) 1412 { 1413 } 1414 1415 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1416 int (*fn)(struct task_struct *, void *), void *arg) 1417 { 1418 } 1419 1420 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1421 { 1422 return 0; 1423 } 1424 1425 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1426 { 1427 WARN_ON_ONCE(id); 1428 /* XXX: This should always return root_mem_cgroup */ 1429 return NULL; 1430 } 1431 1432 #ifdef CONFIG_SHRINKER_DEBUG 1433 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1434 { 1435 return 0; 1436 } 1437 1438 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1439 { 1440 return NULL; 1441 } 1442 #endif 1443 1444 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1445 { 1446 return NULL; 1447 } 1448 1449 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1450 { 1451 return NULL; 1452 } 1453 1454 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1455 { 1456 return true; 1457 } 1458 1459 static inline 1460 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1461 enum lru_list lru, int zone_idx) 1462 { 1463 return 0; 1464 } 1465 1466 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1467 { 1468 return 0; 1469 } 1470 1471 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1472 { 1473 return 0; 1474 } 1475 1476 static inline void 1477 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1478 { 1479 } 1480 1481 static inline void 1482 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1483 { 1484 } 1485 1486 static inline void folio_memcg_lock(struct folio *folio) 1487 { 1488 } 1489 1490 static inline void folio_memcg_unlock(struct folio *folio) 1491 { 1492 } 1493 1494 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1495 { 1496 /* to match folio_memcg_rcu() */ 1497 rcu_read_lock(); 1498 return true; 1499 } 1500 1501 static inline void mem_cgroup_unlock_pages(void) 1502 { 1503 rcu_read_unlock(); 1504 } 1505 1506 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1507 { 1508 } 1509 1510 static inline void mem_cgroup_enter_user_fault(void) 1511 { 1512 } 1513 1514 static inline void mem_cgroup_exit_user_fault(void) 1515 { 1516 } 1517 1518 static inline bool task_in_memcg_oom(struct task_struct *p) 1519 { 1520 return false; 1521 } 1522 1523 static inline bool mem_cgroup_oom_synchronize(bool wait) 1524 { 1525 return false; 1526 } 1527 1528 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1529 struct task_struct *victim, struct mem_cgroup *oom_domain) 1530 { 1531 return NULL; 1532 } 1533 1534 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1535 { 1536 } 1537 1538 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1539 int idx, 1540 int nr) 1541 { 1542 } 1543 1544 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1545 int idx, 1546 int nr) 1547 { 1548 } 1549 1550 static inline void mod_memcg_page_state(struct page *page, 1551 int idx, int val) 1552 { 1553 } 1554 1555 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1556 { 1557 return 0; 1558 } 1559 1560 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1561 enum node_stat_item idx) 1562 { 1563 return node_page_state(lruvec_pgdat(lruvec), idx); 1564 } 1565 1566 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1567 enum node_stat_item idx) 1568 { 1569 return node_page_state(lruvec_pgdat(lruvec), idx); 1570 } 1571 1572 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 1573 { 1574 } 1575 1576 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 1577 { 1578 } 1579 1580 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1581 enum node_stat_item idx, int val) 1582 { 1583 } 1584 1585 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1586 int val) 1587 { 1588 struct page *page = virt_to_head_page(p); 1589 1590 __mod_node_page_state(page_pgdat(page), idx, val); 1591 } 1592 1593 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1594 int val) 1595 { 1596 struct page *page = virt_to_head_page(p); 1597 1598 mod_node_page_state(page_pgdat(page), idx, val); 1599 } 1600 1601 static inline void count_memcg_events(struct mem_cgroup *memcg, 1602 enum vm_event_item idx, 1603 unsigned long count) 1604 { 1605 } 1606 1607 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1608 enum vm_event_item idx, 1609 unsigned long count) 1610 { 1611 } 1612 1613 static inline void count_memcg_folio_events(struct folio *folio, 1614 enum vm_event_item idx, unsigned long nr) 1615 { 1616 } 1617 1618 static inline 1619 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1620 { 1621 } 1622 1623 static inline void split_page_memcg(struct page *head, unsigned int nr) 1624 { 1625 } 1626 1627 static inline 1628 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1629 gfp_t gfp_mask, 1630 unsigned long *total_scanned) 1631 { 1632 return 0; 1633 } 1634 #endif /* CONFIG_MEMCG */ 1635 1636 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1637 { 1638 __mod_lruvec_kmem_state(p, idx, 1); 1639 } 1640 1641 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1642 { 1643 __mod_lruvec_kmem_state(p, idx, -1); 1644 } 1645 1646 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1647 { 1648 struct mem_cgroup *memcg; 1649 1650 memcg = lruvec_memcg(lruvec); 1651 if (!memcg) 1652 return NULL; 1653 memcg = parent_mem_cgroup(memcg); 1654 if (!memcg) 1655 return NULL; 1656 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1657 } 1658 1659 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1660 { 1661 spin_unlock(&lruvec->lru_lock); 1662 } 1663 1664 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1665 { 1666 spin_unlock_irq(&lruvec->lru_lock); 1667 } 1668 1669 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1670 unsigned long flags) 1671 { 1672 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1673 } 1674 1675 /* Test requires a stable page->memcg binding, see page_memcg() */ 1676 static inline bool folio_matches_lruvec(struct folio *folio, 1677 struct lruvec *lruvec) 1678 { 1679 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1680 lruvec_memcg(lruvec) == folio_memcg(folio); 1681 } 1682 1683 /* Don't lock again iff page's lruvec locked */ 1684 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1685 struct lruvec *locked_lruvec) 1686 { 1687 if (locked_lruvec) { 1688 if (folio_matches_lruvec(folio, locked_lruvec)) 1689 return locked_lruvec; 1690 1691 unlock_page_lruvec_irq(locked_lruvec); 1692 } 1693 1694 return folio_lruvec_lock_irq(folio); 1695 } 1696 1697 /* Don't lock again iff page's lruvec locked */ 1698 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio, 1699 struct lruvec *locked_lruvec, unsigned long *flags) 1700 { 1701 if (locked_lruvec) { 1702 if (folio_matches_lruvec(folio, locked_lruvec)) 1703 return locked_lruvec; 1704 1705 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1706 } 1707 1708 return folio_lruvec_lock_irqsave(folio, flags); 1709 } 1710 1711 #ifdef CONFIG_CGROUP_WRITEBACK 1712 1713 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1714 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1715 unsigned long *pheadroom, unsigned long *pdirty, 1716 unsigned long *pwriteback); 1717 1718 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1719 struct bdi_writeback *wb); 1720 1721 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1722 struct bdi_writeback *wb) 1723 { 1724 struct mem_cgroup *memcg; 1725 1726 if (mem_cgroup_disabled()) 1727 return; 1728 1729 memcg = folio_memcg(folio); 1730 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1731 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1732 } 1733 1734 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1735 1736 #else /* CONFIG_CGROUP_WRITEBACK */ 1737 1738 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1739 { 1740 return NULL; 1741 } 1742 1743 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1744 unsigned long *pfilepages, 1745 unsigned long *pheadroom, 1746 unsigned long *pdirty, 1747 unsigned long *pwriteback) 1748 { 1749 } 1750 1751 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1752 struct bdi_writeback *wb) 1753 { 1754 } 1755 1756 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1757 { 1758 } 1759 1760 #endif /* CONFIG_CGROUP_WRITEBACK */ 1761 1762 struct sock; 1763 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1764 gfp_t gfp_mask); 1765 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1766 #ifdef CONFIG_MEMCG 1767 extern struct static_key_false memcg_sockets_enabled_key; 1768 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1769 void mem_cgroup_sk_alloc(struct sock *sk); 1770 void mem_cgroup_sk_free(struct sock *sk); 1771 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1772 { 1773 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1774 return !!memcg->tcpmem_pressure; 1775 do { 1776 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1777 return true; 1778 } while ((memcg = parent_mem_cgroup(memcg))); 1779 return false; 1780 } 1781 1782 int alloc_shrinker_info(struct mem_cgroup *memcg); 1783 void free_shrinker_info(struct mem_cgroup *memcg); 1784 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1785 void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1786 #else 1787 #define mem_cgroup_sockets_enabled 0 1788 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1789 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1790 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1791 { 1792 return false; 1793 } 1794 1795 static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1796 int nid, int shrinker_id) 1797 { 1798 } 1799 #endif 1800 1801 #ifdef CONFIG_MEMCG_KMEM 1802 bool mem_cgroup_kmem_disabled(void); 1803 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1804 void __memcg_kmem_uncharge_page(struct page *page, int order); 1805 1806 /* 1807 * The returned objcg pointer is safe to use without additional 1808 * protection within a scope. The scope is defined either by 1809 * the current task (similar to the "current" global variable) 1810 * or by set_active_memcg() pair. 1811 * Please, use obj_cgroup_get() to get a reference if the pointer 1812 * needs to be used outside of the local scope. 1813 */ 1814 struct obj_cgroup *current_obj_cgroup(void); 1815 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1816 1817 static inline struct obj_cgroup *get_obj_cgroup_from_current(void) 1818 { 1819 struct obj_cgroup *objcg = current_obj_cgroup(); 1820 1821 if (objcg) 1822 obj_cgroup_get(objcg); 1823 1824 return objcg; 1825 } 1826 1827 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1828 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1829 1830 extern struct static_key_false memcg_bpf_enabled_key; 1831 static inline bool memcg_bpf_enabled(void) 1832 { 1833 return static_branch_likely(&memcg_bpf_enabled_key); 1834 } 1835 1836 extern struct static_key_false memcg_kmem_online_key; 1837 1838 static inline bool memcg_kmem_online(void) 1839 { 1840 return static_branch_likely(&memcg_kmem_online_key); 1841 } 1842 1843 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1844 int order) 1845 { 1846 if (memcg_kmem_online()) 1847 return __memcg_kmem_charge_page(page, gfp, order); 1848 return 0; 1849 } 1850 1851 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1852 { 1853 if (memcg_kmem_online()) 1854 __memcg_kmem_uncharge_page(page, order); 1855 } 1856 1857 /* 1858 * A helper for accessing memcg's kmem_id, used for getting 1859 * corresponding LRU lists. 1860 */ 1861 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1862 { 1863 return memcg ? memcg->kmemcg_id : -1; 1864 } 1865 1866 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1867 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1868 1869 static inline void count_objcg_event(struct obj_cgroup *objcg, 1870 enum vm_event_item idx) 1871 { 1872 struct mem_cgroup *memcg; 1873 1874 if (!memcg_kmem_online()) 1875 return; 1876 1877 rcu_read_lock(); 1878 memcg = obj_cgroup_memcg(objcg); 1879 count_memcg_events(memcg, idx, 1); 1880 rcu_read_unlock(); 1881 } 1882 1883 #else 1884 static inline bool mem_cgroup_kmem_disabled(void) 1885 { 1886 return true; 1887 } 1888 1889 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1890 int order) 1891 { 1892 return 0; 1893 } 1894 1895 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1896 { 1897 } 1898 1899 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1900 int order) 1901 { 1902 return 0; 1903 } 1904 1905 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1906 { 1907 } 1908 1909 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1910 { 1911 return NULL; 1912 } 1913 1914 static inline bool memcg_bpf_enabled(void) 1915 { 1916 return false; 1917 } 1918 1919 static inline bool memcg_kmem_online(void) 1920 { 1921 return false; 1922 } 1923 1924 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1925 { 1926 return -1; 1927 } 1928 1929 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1930 { 1931 return NULL; 1932 } 1933 1934 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1935 { 1936 return NULL; 1937 } 1938 1939 static inline void count_objcg_event(struct obj_cgroup *objcg, 1940 enum vm_event_item idx) 1941 { 1942 } 1943 1944 #endif /* CONFIG_MEMCG_KMEM */ 1945 1946 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1947 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1948 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1949 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1950 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg); 1951 #else 1952 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1953 { 1954 return true; 1955 } 1956 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1957 size_t size) 1958 { 1959 } 1960 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1961 size_t size) 1962 { 1963 } 1964 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 1965 { 1966 /* if zswap is disabled, do not block pages going to the swapping device */ 1967 return true; 1968 } 1969 #endif 1970 1971 #endif /* _LINUX_MEMCONTROL_H */ 1972