1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 25 struct mem_cgroup; 26 struct obj_cgroup; 27 struct page; 28 struct mm_struct; 29 struct kmem_cache; 30 31 /* Cgroup-specific page state, on top of universal node page state */ 32 enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_VMALLOC, 37 MEMCG_KMEM, 38 MEMCG_ZSWAP_B, 39 MEMCG_ZSWAPPED, 40 MEMCG_NR_STAT, 41 }; 42 43 enum memcg_memory_event { 44 MEMCG_LOW, 45 MEMCG_HIGH, 46 MEMCG_MAX, 47 MEMCG_OOM, 48 MEMCG_OOM_KILL, 49 MEMCG_OOM_GROUP_KILL, 50 MEMCG_SWAP_HIGH, 51 MEMCG_SWAP_MAX, 52 MEMCG_SWAP_FAIL, 53 MEMCG_NR_MEMORY_EVENTS, 54 }; 55 56 struct mem_cgroup_reclaim_cookie { 57 pg_data_t *pgdat; 58 unsigned int generation; 59 }; 60 61 #ifdef CONFIG_MEMCG 62 63 #define MEM_CGROUP_ID_SHIFT 16 64 #define MEM_CGROUP_ID_MAX USHRT_MAX 65 66 struct mem_cgroup_id { 67 int id; 68 refcount_t ref; 69 }; 70 71 /* 72 * Per memcg event counter is incremented at every pagein/pageout. With THP, 73 * it will be incremented by the number of pages. This counter is used 74 * to trigger some periodic events. This is straightforward and better 75 * than using jiffies etc. to handle periodic memcg event. 76 */ 77 enum mem_cgroup_events_target { 78 MEM_CGROUP_TARGET_THRESH, 79 MEM_CGROUP_TARGET_SOFTLIMIT, 80 MEM_CGROUP_NTARGETS, 81 }; 82 83 struct memcg_vmstats_percpu { 84 /* Local (CPU and cgroup) page state & events */ 85 long state[MEMCG_NR_STAT]; 86 unsigned long events[NR_VM_EVENT_ITEMS]; 87 88 /* Delta calculation for lockless upward propagation */ 89 long state_prev[MEMCG_NR_STAT]; 90 unsigned long events_prev[NR_VM_EVENT_ITEMS]; 91 92 /* Cgroup1: threshold notifications & softlimit tree updates */ 93 unsigned long nr_page_events; 94 unsigned long targets[MEM_CGROUP_NTARGETS]; 95 }; 96 97 struct memcg_vmstats { 98 /* Aggregated (CPU and subtree) page state & events */ 99 long state[MEMCG_NR_STAT]; 100 unsigned long events[NR_VM_EVENT_ITEMS]; 101 102 /* Pending child counts during tree propagation */ 103 long state_pending[MEMCG_NR_STAT]; 104 unsigned long events_pending[NR_VM_EVENT_ITEMS]; 105 }; 106 107 struct mem_cgroup_reclaim_iter { 108 struct mem_cgroup *position; 109 /* scan generation, increased every round-trip */ 110 unsigned int generation; 111 }; 112 113 /* 114 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware 115 * shrinkers, which have elements charged to this memcg. 116 */ 117 struct shrinker_info { 118 struct rcu_head rcu; 119 atomic_long_t *nr_deferred; 120 unsigned long *map; 121 }; 122 123 struct lruvec_stats_percpu { 124 /* Local (CPU and cgroup) state */ 125 long state[NR_VM_NODE_STAT_ITEMS]; 126 127 /* Delta calculation for lockless upward propagation */ 128 long state_prev[NR_VM_NODE_STAT_ITEMS]; 129 }; 130 131 struct lruvec_stats { 132 /* Aggregated (CPU and subtree) state */ 133 long state[NR_VM_NODE_STAT_ITEMS]; 134 135 /* Pending child counts during tree propagation */ 136 long state_pending[NR_VM_NODE_STAT_ITEMS]; 137 }; 138 139 /* 140 * per-node information in memory controller. 141 */ 142 struct mem_cgroup_per_node { 143 struct lruvec lruvec; 144 145 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 146 struct lruvec_stats lruvec_stats; 147 148 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 149 150 struct mem_cgroup_reclaim_iter iter; 151 152 struct shrinker_info __rcu *shrinker_info; 153 154 struct rb_node tree_node; /* RB tree node */ 155 unsigned long usage_in_excess;/* Set to the value by which */ 156 /* the soft limit is exceeded*/ 157 bool on_tree; 158 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 159 /* use container_of */ 160 }; 161 162 struct mem_cgroup_threshold { 163 struct eventfd_ctx *eventfd; 164 unsigned long threshold; 165 }; 166 167 /* For threshold */ 168 struct mem_cgroup_threshold_ary { 169 /* An array index points to threshold just below or equal to usage. */ 170 int current_threshold; 171 /* Size of entries[] */ 172 unsigned int size; 173 /* Array of thresholds */ 174 struct mem_cgroup_threshold entries[]; 175 }; 176 177 struct mem_cgroup_thresholds { 178 /* Primary thresholds array */ 179 struct mem_cgroup_threshold_ary *primary; 180 /* 181 * Spare threshold array. 182 * This is needed to make mem_cgroup_unregister_event() "never fail". 183 * It must be able to store at least primary->size - 1 entries. 184 */ 185 struct mem_cgroup_threshold_ary *spare; 186 }; 187 188 #if defined(CONFIG_SMP) 189 struct memcg_padding { 190 char x[0]; 191 } ____cacheline_internodealigned_in_smp; 192 #define MEMCG_PADDING(name) struct memcg_padding name 193 #else 194 #define MEMCG_PADDING(name) 195 #endif 196 197 /* 198 * Remember four most recent foreign writebacks with dirty pages in this 199 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 200 * one in a given round, we're likely to catch it later if it keeps 201 * foreign-dirtying, so a fairly low count should be enough. 202 * 203 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 204 */ 205 #define MEMCG_CGWB_FRN_CNT 4 206 207 struct memcg_cgwb_frn { 208 u64 bdi_id; /* bdi->id of the foreign inode */ 209 int memcg_id; /* memcg->css.id of foreign inode */ 210 u64 at; /* jiffies_64 at the time of dirtying */ 211 struct wb_completion done; /* tracks in-flight foreign writebacks */ 212 }; 213 214 /* 215 * Bucket for arbitrarily byte-sized objects charged to a memory 216 * cgroup. The bucket can be reparented in one piece when the cgroup 217 * is destroyed, without having to round up the individual references 218 * of all live memory objects in the wild. 219 */ 220 struct obj_cgroup { 221 struct percpu_ref refcnt; 222 struct mem_cgroup *memcg; 223 atomic_t nr_charged_bytes; 224 union { 225 struct list_head list; /* protected by objcg_lock */ 226 struct rcu_head rcu; 227 }; 228 }; 229 230 /* 231 * The memory controller data structure. The memory controller controls both 232 * page cache and RSS per cgroup. We would eventually like to provide 233 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 234 * to help the administrator determine what knobs to tune. 235 */ 236 struct mem_cgroup { 237 struct cgroup_subsys_state css; 238 239 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 240 struct mem_cgroup_id id; 241 242 /* Accounted resources */ 243 struct page_counter memory; /* Both v1 & v2 */ 244 245 union { 246 struct page_counter swap; /* v2 only */ 247 struct page_counter memsw; /* v1 only */ 248 }; 249 250 /* Legacy consumer-oriented counters */ 251 struct page_counter kmem; /* v1 only */ 252 struct page_counter tcpmem; /* v1 only */ 253 254 /* Range enforcement for interrupt charges */ 255 struct work_struct high_work; 256 257 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 258 unsigned long zswap_max; 259 #endif 260 261 unsigned long soft_limit; 262 263 /* vmpressure notifications */ 264 struct vmpressure vmpressure; 265 266 /* 267 * Should the OOM killer kill all belonging tasks, had it kill one? 268 */ 269 bool oom_group; 270 271 /* protected by memcg_oom_lock */ 272 bool oom_lock; 273 int under_oom; 274 275 int swappiness; 276 /* OOM-Killer disable */ 277 int oom_kill_disable; 278 279 /* memory.events and memory.events.local */ 280 struct cgroup_file events_file; 281 struct cgroup_file events_local_file; 282 283 /* handle for "memory.swap.events" */ 284 struct cgroup_file swap_events_file; 285 286 /* protect arrays of thresholds */ 287 struct mutex thresholds_lock; 288 289 /* thresholds for memory usage. RCU-protected */ 290 struct mem_cgroup_thresholds thresholds; 291 292 /* thresholds for mem+swap usage. RCU-protected */ 293 struct mem_cgroup_thresholds memsw_thresholds; 294 295 /* For oom notifier event fd */ 296 struct list_head oom_notify; 297 298 /* 299 * Should we move charges of a task when a task is moved into this 300 * mem_cgroup ? And what type of charges should we move ? 301 */ 302 unsigned long move_charge_at_immigrate; 303 /* taken only while moving_account > 0 */ 304 spinlock_t move_lock; 305 unsigned long move_lock_flags; 306 307 MEMCG_PADDING(_pad1_); 308 309 /* memory.stat */ 310 struct memcg_vmstats vmstats; 311 312 /* memory.events */ 313 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 314 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 315 316 unsigned long socket_pressure; 317 318 /* Legacy tcp memory accounting */ 319 bool tcpmem_active; 320 int tcpmem_pressure; 321 322 #ifdef CONFIG_MEMCG_KMEM 323 int kmemcg_id; 324 struct obj_cgroup __rcu *objcg; 325 /* list of inherited objcgs, protected by objcg_lock */ 326 struct list_head objcg_list; 327 #endif 328 329 MEMCG_PADDING(_pad2_); 330 331 /* 332 * set > 0 if pages under this cgroup are moving to other cgroup. 333 */ 334 atomic_t moving_account; 335 struct task_struct *move_lock_task; 336 337 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 338 339 #ifdef CONFIG_CGROUP_WRITEBACK 340 struct list_head cgwb_list; 341 struct wb_domain cgwb_domain; 342 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 343 #endif 344 345 /* List of events which userspace want to receive */ 346 struct list_head event_list; 347 spinlock_t event_list_lock; 348 349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 350 struct deferred_split deferred_split_queue; 351 #endif 352 353 struct mem_cgroup_per_node *nodeinfo[]; 354 }; 355 356 /* 357 * size of first charge trial. "32" comes from vmscan.c's magic value. 358 * TODO: maybe necessary to use big numbers in big irons. 359 */ 360 #define MEMCG_CHARGE_BATCH 32U 361 362 extern struct mem_cgroup *root_mem_cgroup; 363 364 enum page_memcg_data_flags { 365 /* page->memcg_data is a pointer to an objcgs vector */ 366 MEMCG_DATA_OBJCGS = (1UL << 0), 367 /* page has been accounted as a non-slab kernel page */ 368 MEMCG_DATA_KMEM = (1UL << 1), 369 /* the next bit after the last actual flag */ 370 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 371 }; 372 373 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 374 375 static inline bool folio_memcg_kmem(struct folio *folio); 376 377 /* 378 * After the initialization objcg->memcg is always pointing at 379 * a valid memcg, but can be atomically swapped to the parent memcg. 380 * 381 * The caller must ensure that the returned memcg won't be released: 382 * e.g. acquire the rcu_read_lock or css_set_lock. 383 */ 384 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 385 { 386 return READ_ONCE(objcg->memcg); 387 } 388 389 /* 390 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 391 * @folio: Pointer to the folio. 392 * 393 * Returns a pointer to the memory cgroup associated with the folio, 394 * or NULL. This function assumes that the folio is known to have a 395 * proper memory cgroup pointer. It's not safe to call this function 396 * against some type of folios, e.g. slab folios or ex-slab folios or 397 * kmem folios. 398 */ 399 static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 400 { 401 unsigned long memcg_data = folio->memcg_data; 402 403 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 404 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 405 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 406 407 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 408 } 409 410 /* 411 * __folio_objcg - get the object cgroup associated with a kmem folio. 412 * @folio: Pointer to the folio. 413 * 414 * Returns a pointer to the object cgroup associated with the folio, 415 * or NULL. This function assumes that the folio is known to have a 416 * proper object cgroup pointer. It's not safe to call this function 417 * against some type of folios, e.g. slab folios or ex-slab folios or 418 * LRU folios. 419 */ 420 static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 421 { 422 unsigned long memcg_data = folio->memcg_data; 423 424 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 425 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 426 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 427 428 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 429 } 430 431 /* 432 * folio_memcg - Get the memory cgroup associated with a folio. 433 * @folio: Pointer to the folio. 434 * 435 * Returns a pointer to the memory cgroup associated with the folio, 436 * or NULL. This function assumes that the folio is known to have a 437 * proper memory cgroup pointer. It's not safe to call this function 438 * against some type of folios, e.g. slab folios or ex-slab folios. 439 * 440 * For a non-kmem folio any of the following ensures folio and memcg binding 441 * stability: 442 * 443 * - the folio lock 444 * - LRU isolation 445 * - lock_page_memcg() 446 * - exclusive reference 447 * 448 * For a kmem folio a caller should hold an rcu read lock to protect memcg 449 * associated with a kmem folio from being released. 450 */ 451 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 452 { 453 if (folio_memcg_kmem(folio)) 454 return obj_cgroup_memcg(__folio_objcg(folio)); 455 return __folio_memcg(folio); 456 } 457 458 static inline struct mem_cgroup *page_memcg(struct page *page) 459 { 460 return folio_memcg(page_folio(page)); 461 } 462 463 /** 464 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 465 * @folio: Pointer to the folio. 466 * 467 * This function assumes that the folio is known to have a 468 * proper memory cgroup pointer. It's not safe to call this function 469 * against some type of folios, e.g. slab folios or ex-slab folios. 470 * 471 * Return: A pointer to the memory cgroup associated with the folio, 472 * or NULL. 473 */ 474 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 475 { 476 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 477 478 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 479 WARN_ON_ONCE(!rcu_read_lock_held()); 480 481 if (memcg_data & MEMCG_DATA_KMEM) { 482 struct obj_cgroup *objcg; 483 484 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 485 return obj_cgroup_memcg(objcg); 486 } 487 488 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 489 } 490 491 /* 492 * page_memcg_check - get the memory cgroup associated with a page 493 * @page: a pointer to the page struct 494 * 495 * Returns a pointer to the memory cgroup associated with the page, 496 * or NULL. This function unlike page_memcg() can take any page 497 * as an argument. It has to be used in cases when it's not known if a page 498 * has an associated memory cgroup pointer or an object cgroups vector or 499 * an object cgroup. 500 * 501 * For a non-kmem page any of the following ensures page and memcg binding 502 * stability: 503 * 504 * - the page lock 505 * - LRU isolation 506 * - lock_page_memcg() 507 * - exclusive reference 508 * 509 * For a kmem page a caller should hold an rcu read lock to protect memcg 510 * associated with a kmem page from being released. 511 */ 512 static inline struct mem_cgroup *page_memcg_check(struct page *page) 513 { 514 /* 515 * Because page->memcg_data might be changed asynchronously 516 * for slab pages, READ_ONCE() should be used here. 517 */ 518 unsigned long memcg_data = READ_ONCE(page->memcg_data); 519 520 if (memcg_data & MEMCG_DATA_OBJCGS) 521 return NULL; 522 523 if (memcg_data & MEMCG_DATA_KMEM) { 524 struct obj_cgroup *objcg; 525 526 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 527 return obj_cgroup_memcg(objcg); 528 } 529 530 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 531 } 532 533 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 534 { 535 struct mem_cgroup *memcg; 536 537 rcu_read_lock(); 538 retry: 539 memcg = obj_cgroup_memcg(objcg); 540 if (unlikely(!css_tryget(&memcg->css))) 541 goto retry; 542 rcu_read_unlock(); 543 544 return memcg; 545 } 546 547 #ifdef CONFIG_MEMCG_KMEM 548 /* 549 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 550 * @folio: Pointer to the folio. 551 * 552 * Checks if the folio has MemcgKmem flag set. The caller must ensure 553 * that the folio has an associated memory cgroup. It's not safe to call 554 * this function against some types of folios, e.g. slab folios. 555 */ 556 static inline bool folio_memcg_kmem(struct folio *folio) 557 { 558 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 559 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio); 560 return folio->memcg_data & MEMCG_DATA_KMEM; 561 } 562 563 564 #else 565 static inline bool folio_memcg_kmem(struct folio *folio) 566 { 567 return false; 568 } 569 570 #endif 571 572 static inline bool PageMemcgKmem(struct page *page) 573 { 574 return folio_memcg_kmem(page_folio(page)); 575 } 576 577 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 578 { 579 return (memcg == root_mem_cgroup); 580 } 581 582 static inline bool mem_cgroup_disabled(void) 583 { 584 return !cgroup_subsys_enabled(memory_cgrp_subsys); 585 } 586 587 static inline void mem_cgroup_protection(struct mem_cgroup *root, 588 struct mem_cgroup *memcg, 589 unsigned long *min, 590 unsigned long *low) 591 { 592 *min = *low = 0; 593 594 if (mem_cgroup_disabled()) 595 return; 596 597 /* 598 * There is no reclaim protection applied to a targeted reclaim. 599 * We are special casing this specific case here because 600 * mem_cgroup_protected calculation is not robust enough to keep 601 * the protection invariant for calculated effective values for 602 * parallel reclaimers with different reclaim target. This is 603 * especially a problem for tail memcgs (as they have pages on LRU) 604 * which would want to have effective values 0 for targeted reclaim 605 * but a different value for external reclaim. 606 * 607 * Example 608 * Let's have global and A's reclaim in parallel: 609 * | 610 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 611 * |\ 612 * | C (low = 1G, usage = 2.5G) 613 * B (low = 1G, usage = 0.5G) 614 * 615 * For the global reclaim 616 * A.elow = A.low 617 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 618 * C.elow = min(C.usage, C.low) 619 * 620 * With the effective values resetting we have A reclaim 621 * A.elow = 0 622 * B.elow = B.low 623 * C.elow = C.low 624 * 625 * If the global reclaim races with A's reclaim then 626 * B.elow = C.elow = 0 because children_low_usage > A.elow) 627 * is possible and reclaiming B would be violating the protection. 628 * 629 */ 630 if (root == memcg) 631 return; 632 633 *min = READ_ONCE(memcg->memory.emin); 634 *low = READ_ONCE(memcg->memory.elow); 635 } 636 637 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 638 struct mem_cgroup *memcg); 639 640 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 641 { 642 /* 643 * The root memcg doesn't account charges, and doesn't support 644 * protection. 645 */ 646 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 647 648 } 649 650 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 651 { 652 if (!mem_cgroup_supports_protection(memcg)) 653 return false; 654 655 return READ_ONCE(memcg->memory.elow) >= 656 page_counter_read(&memcg->memory); 657 } 658 659 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 660 { 661 if (!mem_cgroup_supports_protection(memcg)) 662 return false; 663 664 return READ_ONCE(memcg->memory.emin) >= 665 page_counter_read(&memcg->memory); 666 } 667 668 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 669 670 /** 671 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 672 * @folio: Folio to charge. 673 * @mm: mm context of the allocating task. 674 * @gfp: Reclaim mode. 675 * 676 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 677 * pages according to @gfp if necessary. If @mm is NULL, try to 678 * charge to the active memcg. 679 * 680 * Do not use this for folios allocated for swapin. 681 * 682 * Return: 0 on success. Otherwise, an error code is returned. 683 */ 684 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 685 gfp_t gfp) 686 { 687 if (mem_cgroup_disabled()) 688 return 0; 689 return __mem_cgroup_charge(folio, mm, gfp); 690 } 691 692 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 693 gfp_t gfp, swp_entry_t entry); 694 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 695 696 void __mem_cgroup_uncharge(struct folio *folio); 697 698 /** 699 * mem_cgroup_uncharge - Uncharge a folio. 700 * @folio: Folio to uncharge. 701 * 702 * Uncharge a folio previously charged with mem_cgroup_charge(). 703 */ 704 static inline void mem_cgroup_uncharge(struct folio *folio) 705 { 706 if (mem_cgroup_disabled()) 707 return; 708 __mem_cgroup_uncharge(folio); 709 } 710 711 void __mem_cgroup_uncharge_list(struct list_head *page_list); 712 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 713 { 714 if (mem_cgroup_disabled()) 715 return; 716 __mem_cgroup_uncharge_list(page_list); 717 } 718 719 void mem_cgroup_migrate(struct folio *old, struct folio *new); 720 721 /** 722 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 723 * @memcg: memcg of the wanted lruvec 724 * @pgdat: pglist_data 725 * 726 * Returns the lru list vector holding pages for a given @memcg & 727 * @pgdat combination. This can be the node lruvec, if the memory 728 * controller is disabled. 729 */ 730 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 731 struct pglist_data *pgdat) 732 { 733 struct mem_cgroup_per_node *mz; 734 struct lruvec *lruvec; 735 736 if (mem_cgroup_disabled()) { 737 lruvec = &pgdat->__lruvec; 738 goto out; 739 } 740 741 if (!memcg) 742 memcg = root_mem_cgroup; 743 744 mz = memcg->nodeinfo[pgdat->node_id]; 745 lruvec = &mz->lruvec; 746 out: 747 /* 748 * Since a node can be onlined after the mem_cgroup was created, 749 * we have to be prepared to initialize lruvec->pgdat here; 750 * and if offlined then reonlined, we need to reinitialize it. 751 */ 752 if (unlikely(lruvec->pgdat != pgdat)) 753 lruvec->pgdat = pgdat; 754 return lruvec; 755 } 756 757 /** 758 * folio_lruvec - return lruvec for isolating/putting an LRU folio 759 * @folio: Pointer to the folio. 760 * 761 * This function relies on folio->mem_cgroup being stable. 762 */ 763 static inline struct lruvec *folio_lruvec(struct folio *folio) 764 { 765 struct mem_cgroup *memcg = folio_memcg(folio); 766 767 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 768 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 769 } 770 771 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 772 773 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 774 775 struct lruvec *folio_lruvec_lock(struct folio *folio); 776 struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 777 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 778 unsigned long *flags); 779 780 #ifdef CONFIG_DEBUG_VM 781 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 782 #else 783 static inline 784 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 785 { 786 } 787 #endif 788 789 static inline 790 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 791 return css ? container_of(css, struct mem_cgroup, css) : NULL; 792 } 793 794 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 795 { 796 return percpu_ref_tryget(&objcg->refcnt); 797 } 798 799 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 800 { 801 percpu_ref_get(&objcg->refcnt); 802 } 803 804 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 805 unsigned long nr) 806 { 807 percpu_ref_get_many(&objcg->refcnt, nr); 808 } 809 810 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 811 { 812 percpu_ref_put(&objcg->refcnt); 813 } 814 815 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 816 { 817 if (memcg) 818 css_put(&memcg->css); 819 } 820 821 #define mem_cgroup_from_counter(counter, member) \ 822 container_of(counter, struct mem_cgroup, member) 823 824 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 825 struct mem_cgroup *, 826 struct mem_cgroup_reclaim_cookie *); 827 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 828 int mem_cgroup_scan_tasks(struct mem_cgroup *, 829 int (*)(struct task_struct *, void *), void *); 830 831 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 832 { 833 if (mem_cgroup_disabled()) 834 return 0; 835 836 return memcg->id.id; 837 } 838 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 839 840 #ifdef CONFIG_SHRINKER_DEBUG 841 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 842 { 843 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 844 } 845 846 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 847 #endif 848 849 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 850 { 851 return mem_cgroup_from_css(seq_css(m)); 852 } 853 854 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 855 { 856 struct mem_cgroup_per_node *mz; 857 858 if (mem_cgroup_disabled()) 859 return NULL; 860 861 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 862 return mz->memcg; 863 } 864 865 /** 866 * parent_mem_cgroup - find the accounting parent of a memcg 867 * @memcg: memcg whose parent to find 868 * 869 * Returns the parent memcg, or NULL if this is the root or the memory 870 * controller is in legacy no-hierarchy mode. 871 */ 872 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 873 { 874 return mem_cgroup_from_css(memcg->css.parent); 875 } 876 877 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 878 struct mem_cgroup *root) 879 { 880 if (root == memcg) 881 return true; 882 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 883 } 884 885 static inline bool mm_match_cgroup(struct mm_struct *mm, 886 struct mem_cgroup *memcg) 887 { 888 struct mem_cgroup *task_memcg; 889 bool match = false; 890 891 rcu_read_lock(); 892 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 893 if (task_memcg) 894 match = mem_cgroup_is_descendant(task_memcg, memcg); 895 rcu_read_unlock(); 896 return match; 897 } 898 899 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 900 ino_t page_cgroup_ino(struct page *page); 901 902 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 903 { 904 if (mem_cgroup_disabled()) 905 return true; 906 return !!(memcg->css.flags & CSS_ONLINE); 907 } 908 909 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 910 int zid, int nr_pages); 911 912 static inline 913 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 914 enum lru_list lru, int zone_idx) 915 { 916 struct mem_cgroup_per_node *mz; 917 918 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 919 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 920 } 921 922 void mem_cgroup_handle_over_high(void); 923 924 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 925 926 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 927 928 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 929 struct task_struct *p); 930 931 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 932 933 static inline void mem_cgroup_enter_user_fault(void) 934 { 935 WARN_ON(current->in_user_fault); 936 current->in_user_fault = 1; 937 } 938 939 static inline void mem_cgroup_exit_user_fault(void) 940 { 941 WARN_ON(!current->in_user_fault); 942 current->in_user_fault = 0; 943 } 944 945 static inline bool task_in_memcg_oom(struct task_struct *p) 946 { 947 return p->memcg_in_oom; 948 } 949 950 bool mem_cgroup_oom_synchronize(bool wait); 951 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 952 struct mem_cgroup *oom_domain); 953 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 954 955 void folio_memcg_lock(struct folio *folio); 956 void folio_memcg_unlock(struct folio *folio); 957 void lock_page_memcg(struct page *page); 958 void unlock_page_memcg(struct page *page); 959 960 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 961 962 /* idx can be of type enum memcg_stat_item or node_stat_item */ 963 static inline void mod_memcg_state(struct mem_cgroup *memcg, 964 int idx, int val) 965 { 966 unsigned long flags; 967 968 local_irq_save(flags); 969 __mod_memcg_state(memcg, idx, val); 970 local_irq_restore(flags); 971 } 972 973 static inline void mod_memcg_page_state(struct page *page, 974 int idx, int val) 975 { 976 struct mem_cgroup *memcg; 977 978 if (mem_cgroup_disabled()) 979 return; 980 981 rcu_read_lock(); 982 memcg = page_memcg(page); 983 if (memcg) 984 mod_memcg_state(memcg, idx, val); 985 rcu_read_unlock(); 986 } 987 988 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 989 { 990 long x = READ_ONCE(memcg->vmstats.state[idx]); 991 #ifdef CONFIG_SMP 992 if (x < 0) 993 x = 0; 994 #endif 995 return x; 996 } 997 998 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 999 enum node_stat_item idx) 1000 { 1001 struct mem_cgroup_per_node *pn; 1002 long x; 1003 1004 if (mem_cgroup_disabled()) 1005 return node_page_state(lruvec_pgdat(lruvec), idx); 1006 1007 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1008 x = READ_ONCE(pn->lruvec_stats.state[idx]); 1009 #ifdef CONFIG_SMP 1010 if (x < 0) 1011 x = 0; 1012 #endif 1013 return x; 1014 } 1015 1016 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1017 enum node_stat_item idx) 1018 { 1019 struct mem_cgroup_per_node *pn; 1020 long x = 0; 1021 int cpu; 1022 1023 if (mem_cgroup_disabled()) 1024 return node_page_state(lruvec_pgdat(lruvec), idx); 1025 1026 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1027 for_each_possible_cpu(cpu) 1028 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu); 1029 #ifdef CONFIG_SMP 1030 if (x < 0) 1031 x = 0; 1032 #endif 1033 return x; 1034 } 1035 1036 void mem_cgroup_flush_stats(void); 1037 void mem_cgroup_flush_stats_delayed(void); 1038 1039 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1040 int val); 1041 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1042 1043 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1044 int val) 1045 { 1046 unsigned long flags; 1047 1048 local_irq_save(flags); 1049 __mod_lruvec_kmem_state(p, idx, val); 1050 local_irq_restore(flags); 1051 } 1052 1053 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1054 enum node_stat_item idx, int val) 1055 { 1056 unsigned long flags; 1057 1058 local_irq_save(flags); 1059 __mod_memcg_lruvec_state(lruvec, idx, val); 1060 local_irq_restore(flags); 1061 } 1062 1063 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1064 unsigned long count); 1065 1066 static inline void count_memcg_events(struct mem_cgroup *memcg, 1067 enum vm_event_item idx, 1068 unsigned long count) 1069 { 1070 unsigned long flags; 1071 1072 local_irq_save(flags); 1073 __count_memcg_events(memcg, idx, count); 1074 local_irq_restore(flags); 1075 } 1076 1077 static inline void count_memcg_page_event(struct page *page, 1078 enum vm_event_item idx) 1079 { 1080 struct mem_cgroup *memcg = page_memcg(page); 1081 1082 if (memcg) 1083 count_memcg_events(memcg, idx, 1); 1084 } 1085 1086 static inline void count_memcg_folio_events(struct folio *folio, 1087 enum vm_event_item idx, unsigned long nr) 1088 { 1089 struct mem_cgroup *memcg = folio_memcg(folio); 1090 1091 if (memcg) 1092 count_memcg_events(memcg, idx, nr); 1093 } 1094 1095 static inline void count_memcg_event_mm(struct mm_struct *mm, 1096 enum vm_event_item idx) 1097 { 1098 struct mem_cgroup *memcg; 1099 1100 if (mem_cgroup_disabled()) 1101 return; 1102 1103 rcu_read_lock(); 1104 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1105 if (likely(memcg)) 1106 count_memcg_events(memcg, idx, 1); 1107 rcu_read_unlock(); 1108 } 1109 1110 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1111 enum memcg_memory_event event) 1112 { 1113 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1114 event == MEMCG_SWAP_FAIL; 1115 1116 atomic_long_inc(&memcg->memory_events_local[event]); 1117 if (!swap_event) 1118 cgroup_file_notify(&memcg->events_local_file); 1119 1120 do { 1121 atomic_long_inc(&memcg->memory_events[event]); 1122 if (swap_event) 1123 cgroup_file_notify(&memcg->swap_events_file); 1124 else 1125 cgroup_file_notify(&memcg->events_file); 1126 1127 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1128 break; 1129 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1130 break; 1131 } while ((memcg = parent_mem_cgroup(memcg)) && 1132 !mem_cgroup_is_root(memcg)); 1133 } 1134 1135 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1136 enum memcg_memory_event event) 1137 { 1138 struct mem_cgroup *memcg; 1139 1140 if (mem_cgroup_disabled()) 1141 return; 1142 1143 rcu_read_lock(); 1144 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1145 if (likely(memcg)) 1146 memcg_memory_event(memcg, event); 1147 rcu_read_unlock(); 1148 } 1149 1150 void split_page_memcg(struct page *head, unsigned int nr); 1151 1152 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1153 gfp_t gfp_mask, 1154 unsigned long *total_scanned); 1155 1156 #else /* CONFIG_MEMCG */ 1157 1158 #define MEM_CGROUP_ID_SHIFT 0 1159 #define MEM_CGROUP_ID_MAX 0 1160 1161 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1162 { 1163 return NULL; 1164 } 1165 1166 static inline struct mem_cgroup *page_memcg(struct page *page) 1167 { 1168 return NULL; 1169 } 1170 1171 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1172 { 1173 WARN_ON_ONCE(!rcu_read_lock_held()); 1174 return NULL; 1175 } 1176 1177 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1178 { 1179 return NULL; 1180 } 1181 1182 static inline bool folio_memcg_kmem(struct folio *folio) 1183 { 1184 return false; 1185 } 1186 1187 static inline bool PageMemcgKmem(struct page *page) 1188 { 1189 return false; 1190 } 1191 1192 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1193 { 1194 return true; 1195 } 1196 1197 static inline bool mem_cgroup_disabled(void) 1198 { 1199 return true; 1200 } 1201 1202 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1203 enum memcg_memory_event event) 1204 { 1205 } 1206 1207 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1208 enum memcg_memory_event event) 1209 { 1210 } 1211 1212 static inline void mem_cgroup_protection(struct mem_cgroup *root, 1213 struct mem_cgroup *memcg, 1214 unsigned long *min, 1215 unsigned long *low) 1216 { 1217 *min = *low = 0; 1218 } 1219 1220 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1221 struct mem_cgroup *memcg) 1222 { 1223 } 1224 1225 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 1226 { 1227 return false; 1228 } 1229 1230 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 1231 { 1232 return false; 1233 } 1234 1235 static inline int mem_cgroup_charge(struct folio *folio, 1236 struct mm_struct *mm, gfp_t gfp) 1237 { 1238 return 0; 1239 } 1240 1241 static inline int mem_cgroup_swapin_charge_page(struct page *page, 1242 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1243 { 1244 return 0; 1245 } 1246 1247 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1248 { 1249 } 1250 1251 static inline void mem_cgroup_uncharge(struct folio *folio) 1252 { 1253 } 1254 1255 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1256 { 1257 } 1258 1259 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1260 { 1261 } 1262 1263 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1264 struct pglist_data *pgdat) 1265 { 1266 return &pgdat->__lruvec; 1267 } 1268 1269 static inline struct lruvec *folio_lruvec(struct folio *folio) 1270 { 1271 struct pglist_data *pgdat = folio_pgdat(folio); 1272 return &pgdat->__lruvec; 1273 } 1274 1275 static inline 1276 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1277 { 1278 } 1279 1280 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1281 { 1282 return NULL; 1283 } 1284 1285 static inline bool mm_match_cgroup(struct mm_struct *mm, 1286 struct mem_cgroup *memcg) 1287 { 1288 return true; 1289 } 1290 1291 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1292 { 1293 return NULL; 1294 } 1295 1296 static inline 1297 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1298 { 1299 return NULL; 1300 } 1301 1302 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1303 { 1304 } 1305 1306 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1307 { 1308 } 1309 1310 static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1311 { 1312 struct pglist_data *pgdat = folio_pgdat(folio); 1313 1314 spin_lock(&pgdat->__lruvec.lru_lock); 1315 return &pgdat->__lruvec; 1316 } 1317 1318 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1319 { 1320 struct pglist_data *pgdat = folio_pgdat(folio); 1321 1322 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1323 return &pgdat->__lruvec; 1324 } 1325 1326 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1327 unsigned long *flagsp) 1328 { 1329 struct pglist_data *pgdat = folio_pgdat(folio); 1330 1331 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1332 return &pgdat->__lruvec; 1333 } 1334 1335 static inline struct mem_cgroup * 1336 mem_cgroup_iter(struct mem_cgroup *root, 1337 struct mem_cgroup *prev, 1338 struct mem_cgroup_reclaim_cookie *reclaim) 1339 { 1340 return NULL; 1341 } 1342 1343 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1344 struct mem_cgroup *prev) 1345 { 1346 } 1347 1348 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1349 int (*fn)(struct task_struct *, void *), void *arg) 1350 { 1351 return 0; 1352 } 1353 1354 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1355 { 1356 return 0; 1357 } 1358 1359 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1360 { 1361 WARN_ON_ONCE(id); 1362 /* XXX: This should always return root_mem_cgroup */ 1363 return NULL; 1364 } 1365 1366 #ifdef CONFIG_SHRINKER_DEBUG 1367 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1368 { 1369 return 0; 1370 } 1371 1372 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1373 { 1374 return NULL; 1375 } 1376 #endif 1377 1378 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1379 { 1380 return NULL; 1381 } 1382 1383 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1384 { 1385 return NULL; 1386 } 1387 1388 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1389 { 1390 return true; 1391 } 1392 1393 static inline 1394 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1395 enum lru_list lru, int zone_idx) 1396 { 1397 return 0; 1398 } 1399 1400 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1401 { 1402 return 0; 1403 } 1404 1405 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1406 { 1407 return 0; 1408 } 1409 1410 static inline void 1411 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1412 { 1413 } 1414 1415 static inline void 1416 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1417 { 1418 } 1419 1420 static inline void lock_page_memcg(struct page *page) 1421 { 1422 } 1423 1424 static inline void unlock_page_memcg(struct page *page) 1425 { 1426 } 1427 1428 static inline void folio_memcg_lock(struct folio *folio) 1429 { 1430 } 1431 1432 static inline void folio_memcg_unlock(struct folio *folio) 1433 { 1434 } 1435 1436 static inline void mem_cgroup_handle_over_high(void) 1437 { 1438 } 1439 1440 static inline void mem_cgroup_enter_user_fault(void) 1441 { 1442 } 1443 1444 static inline void mem_cgroup_exit_user_fault(void) 1445 { 1446 } 1447 1448 static inline bool task_in_memcg_oom(struct task_struct *p) 1449 { 1450 return false; 1451 } 1452 1453 static inline bool mem_cgroup_oom_synchronize(bool wait) 1454 { 1455 return false; 1456 } 1457 1458 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1459 struct task_struct *victim, struct mem_cgroup *oom_domain) 1460 { 1461 return NULL; 1462 } 1463 1464 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1465 { 1466 } 1467 1468 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1469 int idx, 1470 int nr) 1471 { 1472 } 1473 1474 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1475 int idx, 1476 int nr) 1477 { 1478 } 1479 1480 static inline void mod_memcg_page_state(struct page *page, 1481 int idx, int val) 1482 { 1483 } 1484 1485 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1486 { 1487 return 0; 1488 } 1489 1490 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1491 enum node_stat_item idx) 1492 { 1493 return node_page_state(lruvec_pgdat(lruvec), idx); 1494 } 1495 1496 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1497 enum node_stat_item idx) 1498 { 1499 return node_page_state(lruvec_pgdat(lruvec), idx); 1500 } 1501 1502 static inline void mem_cgroup_flush_stats(void) 1503 { 1504 } 1505 1506 static inline void mem_cgroup_flush_stats_delayed(void) 1507 { 1508 } 1509 1510 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1511 enum node_stat_item idx, int val) 1512 { 1513 } 1514 1515 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1516 int val) 1517 { 1518 struct page *page = virt_to_head_page(p); 1519 1520 __mod_node_page_state(page_pgdat(page), idx, val); 1521 } 1522 1523 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1524 int val) 1525 { 1526 struct page *page = virt_to_head_page(p); 1527 1528 mod_node_page_state(page_pgdat(page), idx, val); 1529 } 1530 1531 static inline void count_memcg_events(struct mem_cgroup *memcg, 1532 enum vm_event_item idx, 1533 unsigned long count) 1534 { 1535 } 1536 1537 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1538 enum vm_event_item idx, 1539 unsigned long count) 1540 { 1541 } 1542 1543 static inline void count_memcg_page_event(struct page *page, 1544 int idx) 1545 { 1546 } 1547 1548 static inline void count_memcg_folio_events(struct folio *folio, 1549 enum vm_event_item idx, unsigned long nr) 1550 { 1551 } 1552 1553 static inline 1554 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1555 { 1556 } 1557 1558 static inline void split_page_memcg(struct page *head, unsigned int nr) 1559 { 1560 } 1561 1562 static inline 1563 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1564 gfp_t gfp_mask, 1565 unsigned long *total_scanned) 1566 { 1567 return 0; 1568 } 1569 #endif /* CONFIG_MEMCG */ 1570 1571 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1572 { 1573 __mod_lruvec_kmem_state(p, idx, 1); 1574 } 1575 1576 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1577 { 1578 __mod_lruvec_kmem_state(p, idx, -1); 1579 } 1580 1581 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1582 { 1583 struct mem_cgroup *memcg; 1584 1585 memcg = lruvec_memcg(lruvec); 1586 if (!memcg) 1587 return NULL; 1588 memcg = parent_mem_cgroup(memcg); 1589 if (!memcg) 1590 return NULL; 1591 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1592 } 1593 1594 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1595 { 1596 spin_unlock(&lruvec->lru_lock); 1597 } 1598 1599 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1600 { 1601 spin_unlock_irq(&lruvec->lru_lock); 1602 } 1603 1604 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1605 unsigned long flags) 1606 { 1607 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1608 } 1609 1610 /* Test requires a stable page->memcg binding, see page_memcg() */ 1611 static inline bool folio_matches_lruvec(struct folio *folio, 1612 struct lruvec *lruvec) 1613 { 1614 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1615 lruvec_memcg(lruvec) == folio_memcg(folio); 1616 } 1617 1618 /* Don't lock again iff page's lruvec locked */ 1619 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1620 struct lruvec *locked_lruvec) 1621 { 1622 if (locked_lruvec) { 1623 if (folio_matches_lruvec(folio, locked_lruvec)) 1624 return locked_lruvec; 1625 1626 unlock_page_lruvec_irq(locked_lruvec); 1627 } 1628 1629 return folio_lruvec_lock_irq(folio); 1630 } 1631 1632 /* Don't lock again iff page's lruvec locked */ 1633 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio, 1634 struct lruvec *locked_lruvec, unsigned long *flags) 1635 { 1636 if (locked_lruvec) { 1637 if (folio_matches_lruvec(folio, locked_lruvec)) 1638 return locked_lruvec; 1639 1640 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1641 } 1642 1643 return folio_lruvec_lock_irqsave(folio, flags); 1644 } 1645 1646 #ifdef CONFIG_CGROUP_WRITEBACK 1647 1648 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1649 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1650 unsigned long *pheadroom, unsigned long *pdirty, 1651 unsigned long *pwriteback); 1652 1653 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1654 struct bdi_writeback *wb); 1655 1656 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1657 struct bdi_writeback *wb) 1658 { 1659 if (mem_cgroup_disabled()) 1660 return; 1661 1662 if (unlikely(&folio_memcg(folio)->css != wb->memcg_css)) 1663 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1664 } 1665 1666 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1667 1668 #else /* CONFIG_CGROUP_WRITEBACK */ 1669 1670 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1671 { 1672 return NULL; 1673 } 1674 1675 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1676 unsigned long *pfilepages, 1677 unsigned long *pheadroom, 1678 unsigned long *pdirty, 1679 unsigned long *pwriteback) 1680 { 1681 } 1682 1683 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1684 struct bdi_writeback *wb) 1685 { 1686 } 1687 1688 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1689 { 1690 } 1691 1692 #endif /* CONFIG_CGROUP_WRITEBACK */ 1693 1694 struct sock; 1695 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1696 gfp_t gfp_mask); 1697 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1698 #ifdef CONFIG_MEMCG 1699 extern struct static_key_false memcg_sockets_enabled_key; 1700 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1701 void mem_cgroup_sk_alloc(struct sock *sk); 1702 void mem_cgroup_sk_free(struct sock *sk); 1703 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1704 { 1705 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1706 return true; 1707 do { 1708 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1709 return true; 1710 } while ((memcg = parent_mem_cgroup(memcg))); 1711 return false; 1712 } 1713 1714 int alloc_shrinker_info(struct mem_cgroup *memcg); 1715 void free_shrinker_info(struct mem_cgroup *memcg); 1716 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1717 void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1718 #else 1719 #define mem_cgroup_sockets_enabled 0 1720 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1721 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1722 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1723 { 1724 return false; 1725 } 1726 1727 static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1728 int nid, int shrinker_id) 1729 { 1730 } 1731 #endif 1732 1733 #ifdef CONFIG_MEMCG_KMEM 1734 bool mem_cgroup_kmem_disabled(void); 1735 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1736 void __memcg_kmem_uncharge_page(struct page *page, int order); 1737 1738 struct obj_cgroup *get_obj_cgroup_from_current(void); 1739 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page); 1740 1741 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1742 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1743 1744 extern struct static_key_false memcg_kmem_enabled_key; 1745 1746 static inline bool memcg_kmem_enabled(void) 1747 { 1748 return static_branch_likely(&memcg_kmem_enabled_key); 1749 } 1750 1751 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1752 int order) 1753 { 1754 if (memcg_kmem_enabled()) 1755 return __memcg_kmem_charge_page(page, gfp, order); 1756 return 0; 1757 } 1758 1759 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1760 { 1761 if (memcg_kmem_enabled()) 1762 __memcg_kmem_uncharge_page(page, order); 1763 } 1764 1765 /* 1766 * A helper for accessing memcg's kmem_id, used for getting 1767 * corresponding LRU lists. 1768 */ 1769 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1770 { 1771 return memcg ? memcg->kmemcg_id : -1; 1772 } 1773 1774 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1775 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1776 1777 static inline void count_objcg_event(struct obj_cgroup *objcg, 1778 enum vm_event_item idx) 1779 { 1780 struct mem_cgroup *memcg; 1781 1782 if (mem_cgroup_kmem_disabled()) 1783 return; 1784 1785 rcu_read_lock(); 1786 memcg = obj_cgroup_memcg(objcg); 1787 count_memcg_events(memcg, idx, 1); 1788 rcu_read_unlock(); 1789 } 1790 1791 /** 1792 * get_mem_cgroup_from_obj - get a memcg associated with passed kernel object. 1793 * @p: pointer to object from which memcg should be extracted. It can be NULL. 1794 * 1795 * Retrieves the memory group into which the memory of the pointed kernel 1796 * object is accounted. If memcg is found, its reference is taken. 1797 * If a passed kernel object is uncharged, or if proper memcg cannot be found, 1798 * as well as if mem_cgroup is disabled, NULL is returned. 1799 * 1800 * Return: valid memcg pointer with taken reference or NULL. 1801 */ 1802 static inline struct mem_cgroup *get_mem_cgroup_from_obj(void *p) 1803 { 1804 struct mem_cgroup *memcg; 1805 1806 rcu_read_lock(); 1807 do { 1808 memcg = mem_cgroup_from_obj(p); 1809 } while (memcg && !css_tryget(&memcg->css)); 1810 rcu_read_unlock(); 1811 return memcg; 1812 } 1813 1814 /** 1815 * mem_cgroup_or_root - always returns a pointer to a valid memory cgroup. 1816 * @memcg: pointer to a valid memory cgroup or NULL. 1817 * 1818 * If passed argument is not NULL, returns it without any additional checks 1819 * and changes. Otherwise, root_mem_cgroup is returned. 1820 * 1821 * NOTE: root_mem_cgroup can be NULL during early boot. 1822 */ 1823 static inline struct mem_cgroup *mem_cgroup_or_root(struct mem_cgroup *memcg) 1824 { 1825 return memcg ? memcg : root_mem_cgroup; 1826 } 1827 #else 1828 static inline bool mem_cgroup_kmem_disabled(void) 1829 { 1830 return true; 1831 } 1832 1833 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1834 int order) 1835 { 1836 return 0; 1837 } 1838 1839 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1840 { 1841 } 1842 1843 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1844 int order) 1845 { 1846 return 0; 1847 } 1848 1849 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1850 { 1851 } 1852 1853 static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 1854 { 1855 return NULL; 1856 } 1857 1858 static inline bool memcg_kmem_enabled(void) 1859 { 1860 return false; 1861 } 1862 1863 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1864 { 1865 return -1; 1866 } 1867 1868 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1869 { 1870 return NULL; 1871 } 1872 1873 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1874 { 1875 return NULL; 1876 } 1877 1878 static inline void count_objcg_event(struct obj_cgroup *objcg, 1879 enum vm_event_item idx) 1880 { 1881 } 1882 1883 static inline struct mem_cgroup *get_mem_cgroup_from_obj(void *p) 1884 { 1885 return NULL; 1886 } 1887 1888 static inline struct mem_cgroup *mem_cgroup_or_root(struct mem_cgroup *memcg) 1889 { 1890 return NULL; 1891 } 1892 #endif /* CONFIG_MEMCG_KMEM */ 1893 1894 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1895 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1896 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1897 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1898 #else 1899 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1900 { 1901 return true; 1902 } 1903 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1904 size_t size) 1905 { 1906 } 1907 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1908 size_t size) 1909 { 1910 } 1911 #endif 1912 1913 #endif /* _LINUX_MEMCONTROL_H */ 1914