xref: /linux-6.15/include/linux/memcontrol.h (revision 43b3dfdd)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_VMALLOC,
37 	MEMCG_KMEM,
38 	MEMCG_ZSWAP_B,
39 	MEMCG_ZSWAPPED,
40 	MEMCG_NR_STAT,
41 };
42 
43 enum memcg_memory_event {
44 	MEMCG_LOW,
45 	MEMCG_HIGH,
46 	MEMCG_MAX,
47 	MEMCG_OOM,
48 	MEMCG_OOM_KILL,
49 	MEMCG_OOM_GROUP_KILL,
50 	MEMCG_SWAP_HIGH,
51 	MEMCG_SWAP_MAX,
52 	MEMCG_SWAP_FAIL,
53 	MEMCG_NR_MEMORY_EVENTS,
54 };
55 
56 struct mem_cgroup_reclaim_cookie {
57 	pg_data_t *pgdat;
58 	unsigned int generation;
59 };
60 
61 #ifdef CONFIG_MEMCG
62 
63 #define MEM_CGROUP_ID_SHIFT	16
64 
65 struct mem_cgroup_id {
66 	int id;
67 	refcount_t ref;
68 };
69 
70 /*
71  * Per memcg event counter is incremented at every pagein/pageout. With THP,
72  * it will be incremented by the number of pages. This counter is used
73  * to trigger some periodic events. This is straightforward and better
74  * than using jiffies etc. to handle periodic memcg event.
75  */
76 enum mem_cgroup_events_target {
77 	MEM_CGROUP_TARGET_THRESH,
78 	MEM_CGROUP_TARGET_SOFTLIMIT,
79 	MEM_CGROUP_NTARGETS,
80 };
81 
82 struct memcg_vmstats_percpu;
83 struct memcg_vmstats;
84 
85 struct mem_cgroup_reclaim_iter {
86 	struct mem_cgroup *position;
87 	/* scan generation, increased every round-trip */
88 	unsigned int generation;
89 };
90 
91 /*
92  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
93  * shrinkers, which have elements charged to this memcg.
94  */
95 struct shrinker_info {
96 	struct rcu_head rcu;
97 	atomic_long_t *nr_deferred;
98 	unsigned long *map;
99 	int map_nr_max;
100 };
101 
102 struct lruvec_stats_percpu {
103 	/* Local (CPU and cgroup) state */
104 	long state[NR_VM_NODE_STAT_ITEMS];
105 
106 	/* Delta calculation for lockless upward propagation */
107 	long state_prev[NR_VM_NODE_STAT_ITEMS];
108 };
109 
110 struct lruvec_stats {
111 	/* Aggregated (CPU and subtree) state */
112 	long state[NR_VM_NODE_STAT_ITEMS];
113 
114 	/* Pending child counts during tree propagation */
115 	long state_pending[NR_VM_NODE_STAT_ITEMS];
116 };
117 
118 /*
119  * per-node information in memory controller.
120  */
121 struct mem_cgroup_per_node {
122 	struct lruvec		lruvec;
123 
124 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
125 	struct lruvec_stats			lruvec_stats;
126 
127 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128 
129 	struct mem_cgroup_reclaim_iter	iter;
130 
131 	struct shrinker_info __rcu	*shrinker_info;
132 
133 	struct rb_node		tree_node;	/* RB tree node */
134 	unsigned long		usage_in_excess;/* Set to the value by which */
135 						/* the soft limit is exceeded*/
136 	bool			on_tree;
137 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
138 						/* use container_of	   */
139 };
140 
141 struct mem_cgroup_threshold {
142 	struct eventfd_ctx *eventfd;
143 	unsigned long threshold;
144 };
145 
146 /* For threshold */
147 struct mem_cgroup_threshold_ary {
148 	/* An array index points to threshold just below or equal to usage. */
149 	int current_threshold;
150 	/* Size of entries[] */
151 	unsigned int size;
152 	/* Array of thresholds */
153 	struct mem_cgroup_threshold entries[];
154 };
155 
156 struct mem_cgroup_thresholds {
157 	/* Primary thresholds array */
158 	struct mem_cgroup_threshold_ary *primary;
159 	/*
160 	 * Spare threshold array.
161 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
162 	 * It must be able to store at least primary->size - 1 entries.
163 	 */
164 	struct mem_cgroup_threshold_ary *spare;
165 };
166 
167 /*
168  * Remember four most recent foreign writebacks with dirty pages in this
169  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
170  * one in a given round, we're likely to catch it later if it keeps
171  * foreign-dirtying, so a fairly low count should be enough.
172  *
173  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
174  */
175 #define MEMCG_CGWB_FRN_CNT	4
176 
177 struct memcg_cgwb_frn {
178 	u64 bdi_id;			/* bdi->id of the foreign inode */
179 	int memcg_id;			/* memcg->css.id of foreign inode */
180 	u64 at;				/* jiffies_64 at the time of dirtying */
181 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
182 };
183 
184 /*
185  * Bucket for arbitrarily byte-sized objects charged to a memory
186  * cgroup. The bucket can be reparented in one piece when the cgroup
187  * is destroyed, without having to round up the individual references
188  * of all live memory objects in the wild.
189  */
190 struct obj_cgroup {
191 	struct percpu_ref refcnt;
192 	struct mem_cgroup *memcg;
193 	atomic_t nr_charged_bytes;
194 	union {
195 		struct list_head list; /* protected by objcg_lock */
196 		struct rcu_head rcu;
197 	};
198 };
199 
200 /*
201  * The memory controller data structure. The memory controller controls both
202  * page cache and RSS per cgroup. We would eventually like to provide
203  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
204  * to help the administrator determine what knobs to tune.
205  */
206 struct mem_cgroup {
207 	struct cgroup_subsys_state css;
208 
209 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
210 	struct mem_cgroup_id id;
211 
212 	/* Accounted resources */
213 	struct page_counter memory;		/* Both v1 & v2 */
214 
215 	union {
216 		struct page_counter swap;	/* v2 only */
217 		struct page_counter memsw;	/* v1 only */
218 	};
219 
220 	/* Legacy consumer-oriented counters */
221 	struct page_counter kmem;		/* v1 only */
222 	struct page_counter tcpmem;		/* v1 only */
223 
224 	/* Range enforcement for interrupt charges */
225 	struct work_struct high_work;
226 
227 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
228 	unsigned long zswap_max;
229 #endif
230 
231 	unsigned long soft_limit;
232 
233 	/* vmpressure notifications */
234 	struct vmpressure vmpressure;
235 
236 	/*
237 	 * Should the OOM killer kill all belonging tasks, had it kill one?
238 	 */
239 	bool oom_group;
240 
241 	/* protected by memcg_oom_lock */
242 	bool		oom_lock;
243 	int		under_oom;
244 
245 	int	swappiness;
246 	/* OOM-Killer disable */
247 	int		oom_kill_disable;
248 
249 	/* memory.events and memory.events.local */
250 	struct cgroup_file events_file;
251 	struct cgroup_file events_local_file;
252 
253 	/* handle for "memory.swap.events" */
254 	struct cgroup_file swap_events_file;
255 
256 	/* protect arrays of thresholds */
257 	struct mutex thresholds_lock;
258 
259 	/* thresholds for memory usage. RCU-protected */
260 	struct mem_cgroup_thresholds thresholds;
261 
262 	/* thresholds for mem+swap usage. RCU-protected */
263 	struct mem_cgroup_thresholds memsw_thresholds;
264 
265 	/* For oom notifier event fd */
266 	struct list_head oom_notify;
267 
268 	/*
269 	 * Should we move charges of a task when a task is moved into this
270 	 * mem_cgroup ? And what type of charges should we move ?
271 	 */
272 	unsigned long move_charge_at_immigrate;
273 	/* taken only while moving_account > 0 */
274 	spinlock_t		move_lock;
275 	unsigned long		move_lock_flags;
276 
277 	CACHELINE_PADDING(_pad1_);
278 
279 	/* memory.stat */
280 	struct memcg_vmstats	*vmstats;
281 
282 	/* memory.events */
283 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
284 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
285 
286 	unsigned long		socket_pressure;
287 
288 	/* Legacy tcp memory accounting */
289 	bool			tcpmem_active;
290 	int			tcpmem_pressure;
291 
292 #ifdef CONFIG_MEMCG_KMEM
293 	int kmemcg_id;
294 	struct obj_cgroup __rcu *objcg;
295 	/* list of inherited objcgs, protected by objcg_lock */
296 	struct list_head objcg_list;
297 #endif
298 
299 	CACHELINE_PADDING(_pad2_);
300 
301 	/*
302 	 * set > 0 if pages under this cgroup are moving to other cgroup.
303 	 */
304 	atomic_t		moving_account;
305 	struct task_struct	*move_lock_task;
306 
307 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
308 
309 #ifdef CONFIG_CGROUP_WRITEBACK
310 	struct list_head cgwb_list;
311 	struct wb_domain cgwb_domain;
312 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
313 #endif
314 
315 	/* List of events which userspace want to receive */
316 	struct list_head event_list;
317 	spinlock_t event_list_lock;
318 
319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
320 	struct deferred_split deferred_split_queue;
321 #endif
322 
323 #ifdef CONFIG_LRU_GEN
324 	/* per-memcg mm_struct list */
325 	struct lru_gen_mm_list mm_list;
326 #endif
327 
328 	struct mem_cgroup_per_node *nodeinfo[];
329 };
330 
331 /*
332  * size of first charge trial.
333  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
334  * workload.
335  */
336 #define MEMCG_CHARGE_BATCH 64U
337 
338 extern struct mem_cgroup *root_mem_cgroup;
339 
340 enum page_memcg_data_flags {
341 	/* page->memcg_data is a pointer to an objcgs vector */
342 	MEMCG_DATA_OBJCGS = (1UL << 0),
343 	/* page has been accounted as a non-slab kernel page */
344 	MEMCG_DATA_KMEM = (1UL << 1),
345 	/* the next bit after the last actual flag */
346 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
347 };
348 
349 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
350 
351 static inline bool folio_memcg_kmem(struct folio *folio);
352 
353 /*
354  * After the initialization objcg->memcg is always pointing at
355  * a valid memcg, but can be atomically swapped to the parent memcg.
356  *
357  * The caller must ensure that the returned memcg won't be released:
358  * e.g. acquire the rcu_read_lock or css_set_lock.
359  */
360 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
361 {
362 	return READ_ONCE(objcg->memcg);
363 }
364 
365 /*
366  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367  * @folio: Pointer to the folio.
368  *
369  * Returns a pointer to the memory cgroup associated with the folio,
370  * or NULL. This function assumes that the folio is known to have a
371  * proper memory cgroup pointer. It's not safe to call this function
372  * against some type of folios, e.g. slab folios or ex-slab folios or
373  * kmem folios.
374  */
375 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 {
377 	unsigned long memcg_data = folio->memcg_data;
378 
379 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
381 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382 
383 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
384 }
385 
386 /*
387  * __folio_objcg - get the object cgroup associated with a kmem folio.
388  * @folio: Pointer to the folio.
389  *
390  * Returns a pointer to the object cgroup associated with the folio,
391  * or NULL. This function assumes that the folio is known to have a
392  * proper object cgroup pointer. It's not safe to call this function
393  * against some type of folios, e.g. slab folios or ex-slab folios or
394  * LRU folios.
395  */
396 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 {
398 	unsigned long memcg_data = folio->memcg_data;
399 
400 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
402 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403 
404 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
405 }
406 
407 /*
408  * folio_memcg - Get the memory cgroup associated with a folio.
409  * @folio: Pointer to the folio.
410  *
411  * Returns a pointer to the memory cgroup associated with the folio,
412  * or NULL. This function assumes that the folio is known to have a
413  * proper memory cgroup pointer. It's not safe to call this function
414  * against some type of folios, e.g. slab folios or ex-slab folios.
415  *
416  * For a non-kmem folio any of the following ensures folio and memcg binding
417  * stability:
418  *
419  * - the folio lock
420  * - LRU isolation
421  * - folio_memcg_lock()
422  * - exclusive reference
423  * - mem_cgroup_trylock_pages()
424  *
425  * For a kmem folio a caller should hold an rcu read lock to protect memcg
426  * associated with a kmem folio from being released.
427  */
428 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
429 {
430 	if (folio_memcg_kmem(folio))
431 		return obj_cgroup_memcg(__folio_objcg(folio));
432 	return __folio_memcg(folio);
433 }
434 
435 static inline struct mem_cgroup *page_memcg(struct page *page)
436 {
437 	return folio_memcg(page_folio(page));
438 }
439 
440 /**
441  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
442  * @folio: Pointer to the folio.
443  *
444  * This function assumes that the folio is known to have a
445  * proper memory cgroup pointer. It's not safe to call this function
446  * against some type of folios, e.g. slab folios or ex-slab folios.
447  *
448  * Return: A pointer to the memory cgroup associated with the folio,
449  * or NULL.
450  */
451 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
452 {
453 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
454 
455 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
456 	WARN_ON_ONCE(!rcu_read_lock_held());
457 
458 	if (memcg_data & MEMCG_DATA_KMEM) {
459 		struct obj_cgroup *objcg;
460 
461 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
462 		return obj_cgroup_memcg(objcg);
463 	}
464 
465 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466 }
467 
468 /*
469  * folio_memcg_check - Get the memory cgroup associated with a folio.
470  * @folio: Pointer to the folio.
471  *
472  * Returns a pointer to the memory cgroup associated with the folio,
473  * or NULL. This function unlike folio_memcg() can take any folio
474  * as an argument. It has to be used in cases when it's not known if a folio
475  * has an associated memory cgroup pointer or an object cgroups vector or
476  * an object cgroup.
477  *
478  * For a non-kmem folio any of the following ensures folio and memcg binding
479  * stability:
480  *
481  * - the folio lock
482  * - LRU isolation
483  * - lock_folio_memcg()
484  * - exclusive reference
485  * - mem_cgroup_trylock_pages()
486  *
487  * For a kmem folio a caller should hold an rcu read lock to protect memcg
488  * associated with a kmem folio from being released.
489  */
490 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
491 {
492 	/*
493 	 * Because folio->memcg_data might be changed asynchronously
494 	 * for slabs, READ_ONCE() should be used here.
495 	 */
496 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
497 
498 	if (memcg_data & MEMCG_DATA_OBJCGS)
499 		return NULL;
500 
501 	if (memcg_data & MEMCG_DATA_KMEM) {
502 		struct obj_cgroup *objcg;
503 
504 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
505 		return obj_cgroup_memcg(objcg);
506 	}
507 
508 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
509 }
510 
511 static inline struct mem_cgroup *page_memcg_check(struct page *page)
512 {
513 	if (PageTail(page))
514 		return NULL;
515 	return folio_memcg_check((struct folio *)page);
516 }
517 
518 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
519 {
520 	struct mem_cgroup *memcg;
521 
522 	rcu_read_lock();
523 retry:
524 	memcg = obj_cgroup_memcg(objcg);
525 	if (unlikely(!css_tryget(&memcg->css)))
526 		goto retry;
527 	rcu_read_unlock();
528 
529 	return memcg;
530 }
531 
532 #ifdef CONFIG_MEMCG_KMEM
533 /*
534  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
535  * @folio: Pointer to the folio.
536  *
537  * Checks if the folio has MemcgKmem flag set. The caller must ensure
538  * that the folio has an associated memory cgroup. It's not safe to call
539  * this function against some types of folios, e.g. slab folios.
540  */
541 static inline bool folio_memcg_kmem(struct folio *folio)
542 {
543 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
544 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
545 	return folio->memcg_data & MEMCG_DATA_KMEM;
546 }
547 
548 
549 #else
550 static inline bool folio_memcg_kmem(struct folio *folio)
551 {
552 	return false;
553 }
554 
555 #endif
556 
557 static inline bool PageMemcgKmem(struct page *page)
558 {
559 	return folio_memcg_kmem(page_folio(page));
560 }
561 
562 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
563 {
564 	return (memcg == root_mem_cgroup);
565 }
566 
567 static inline bool mem_cgroup_disabled(void)
568 {
569 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
570 }
571 
572 static inline void mem_cgroup_protection(struct mem_cgroup *root,
573 					 struct mem_cgroup *memcg,
574 					 unsigned long *min,
575 					 unsigned long *low)
576 {
577 	*min = *low = 0;
578 
579 	if (mem_cgroup_disabled())
580 		return;
581 
582 	/*
583 	 * There is no reclaim protection applied to a targeted reclaim.
584 	 * We are special casing this specific case here because
585 	 * mem_cgroup_protected calculation is not robust enough to keep
586 	 * the protection invariant for calculated effective values for
587 	 * parallel reclaimers with different reclaim target. This is
588 	 * especially a problem for tail memcgs (as they have pages on LRU)
589 	 * which would want to have effective values 0 for targeted reclaim
590 	 * but a different value for external reclaim.
591 	 *
592 	 * Example
593 	 * Let's have global and A's reclaim in parallel:
594 	 *  |
595 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
596 	 *  |\
597 	 *  | C (low = 1G, usage = 2.5G)
598 	 *  B (low = 1G, usage = 0.5G)
599 	 *
600 	 * For the global reclaim
601 	 * A.elow = A.low
602 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
603 	 * C.elow = min(C.usage, C.low)
604 	 *
605 	 * With the effective values resetting we have A reclaim
606 	 * A.elow = 0
607 	 * B.elow = B.low
608 	 * C.elow = C.low
609 	 *
610 	 * If the global reclaim races with A's reclaim then
611 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
612 	 * is possible and reclaiming B would be violating the protection.
613 	 *
614 	 */
615 	if (root == memcg)
616 		return;
617 
618 	*min = READ_ONCE(memcg->memory.emin);
619 	*low = READ_ONCE(memcg->memory.elow);
620 }
621 
622 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
623 				     struct mem_cgroup *memcg);
624 
625 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
626 					  struct mem_cgroup *memcg)
627 {
628 	/*
629 	 * The root memcg doesn't account charges, and doesn't support
630 	 * protection. The target memcg's protection is ignored, see
631 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
632 	 */
633 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
634 		memcg == target;
635 }
636 
637 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
638 					struct mem_cgroup *memcg)
639 {
640 	if (mem_cgroup_unprotected(target, memcg))
641 		return false;
642 
643 	return READ_ONCE(memcg->memory.elow) >=
644 		page_counter_read(&memcg->memory);
645 }
646 
647 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
648 					struct mem_cgroup *memcg)
649 {
650 	if (mem_cgroup_unprotected(target, memcg))
651 		return false;
652 
653 	return READ_ONCE(memcg->memory.emin) >=
654 		page_counter_read(&memcg->memory);
655 }
656 
657 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
658 
659 /**
660  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
661  * @folio: Folio to charge.
662  * @mm: mm context of the allocating task.
663  * @gfp: Reclaim mode.
664  *
665  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
666  * pages according to @gfp if necessary.  If @mm is NULL, try to
667  * charge to the active memcg.
668  *
669  * Do not use this for folios allocated for swapin.
670  *
671  * Return: 0 on success. Otherwise, an error code is returned.
672  */
673 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
674 				    gfp_t gfp)
675 {
676 	if (mem_cgroup_disabled())
677 		return 0;
678 	return __mem_cgroup_charge(folio, mm, gfp);
679 }
680 
681 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
682 				  gfp_t gfp, swp_entry_t entry);
683 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
684 
685 void __mem_cgroup_uncharge(struct folio *folio);
686 
687 /**
688  * mem_cgroup_uncharge - Uncharge a folio.
689  * @folio: Folio to uncharge.
690  *
691  * Uncharge a folio previously charged with mem_cgroup_charge().
692  */
693 static inline void mem_cgroup_uncharge(struct folio *folio)
694 {
695 	if (mem_cgroup_disabled())
696 		return;
697 	__mem_cgroup_uncharge(folio);
698 }
699 
700 void __mem_cgroup_uncharge_list(struct list_head *page_list);
701 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
702 {
703 	if (mem_cgroup_disabled())
704 		return;
705 	__mem_cgroup_uncharge_list(page_list);
706 }
707 
708 void mem_cgroup_migrate(struct folio *old, struct folio *new);
709 
710 /**
711  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
712  * @memcg: memcg of the wanted lruvec
713  * @pgdat: pglist_data
714  *
715  * Returns the lru list vector holding pages for a given @memcg &
716  * @pgdat combination. This can be the node lruvec, if the memory
717  * controller is disabled.
718  */
719 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
720 					       struct pglist_data *pgdat)
721 {
722 	struct mem_cgroup_per_node *mz;
723 	struct lruvec *lruvec;
724 
725 	if (mem_cgroup_disabled()) {
726 		lruvec = &pgdat->__lruvec;
727 		goto out;
728 	}
729 
730 	if (!memcg)
731 		memcg = root_mem_cgroup;
732 
733 	mz = memcg->nodeinfo[pgdat->node_id];
734 	lruvec = &mz->lruvec;
735 out:
736 	/*
737 	 * Since a node can be onlined after the mem_cgroup was created,
738 	 * we have to be prepared to initialize lruvec->pgdat here;
739 	 * and if offlined then reonlined, we need to reinitialize it.
740 	 */
741 	if (unlikely(lruvec->pgdat != pgdat))
742 		lruvec->pgdat = pgdat;
743 	return lruvec;
744 }
745 
746 /**
747  * folio_lruvec - return lruvec for isolating/putting an LRU folio
748  * @folio: Pointer to the folio.
749  *
750  * This function relies on folio->mem_cgroup being stable.
751  */
752 static inline struct lruvec *folio_lruvec(struct folio *folio)
753 {
754 	struct mem_cgroup *memcg = folio_memcg(folio);
755 
756 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
757 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
758 }
759 
760 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
761 
762 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
763 
764 struct lruvec *folio_lruvec_lock(struct folio *folio);
765 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
766 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
767 						unsigned long *flags);
768 
769 #ifdef CONFIG_DEBUG_VM
770 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
771 #else
772 static inline
773 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
774 {
775 }
776 #endif
777 
778 static inline
779 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
780 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
781 }
782 
783 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
784 {
785 	return percpu_ref_tryget(&objcg->refcnt);
786 }
787 
788 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
789 {
790 	percpu_ref_get(&objcg->refcnt);
791 }
792 
793 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
794 				       unsigned long nr)
795 {
796 	percpu_ref_get_many(&objcg->refcnt, nr);
797 }
798 
799 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
800 {
801 	percpu_ref_put(&objcg->refcnt);
802 }
803 
804 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
805 {
806 	return !memcg || css_tryget(&memcg->css);
807 }
808 
809 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
810 {
811 	if (memcg)
812 		css_put(&memcg->css);
813 }
814 
815 #define mem_cgroup_from_counter(counter, member)	\
816 	container_of(counter, struct mem_cgroup, member)
817 
818 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
819 				   struct mem_cgroup *,
820 				   struct mem_cgroup_reclaim_cookie *);
821 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
822 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
823 			   int (*)(struct task_struct *, void *), void *arg);
824 
825 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
826 {
827 	if (mem_cgroup_disabled())
828 		return 0;
829 
830 	return memcg->id.id;
831 }
832 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
833 
834 #ifdef CONFIG_SHRINKER_DEBUG
835 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
836 {
837 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
838 }
839 
840 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
841 #endif
842 
843 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
844 {
845 	return mem_cgroup_from_css(seq_css(m));
846 }
847 
848 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
849 {
850 	struct mem_cgroup_per_node *mz;
851 
852 	if (mem_cgroup_disabled())
853 		return NULL;
854 
855 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
856 	return mz->memcg;
857 }
858 
859 /**
860  * parent_mem_cgroup - find the accounting parent of a memcg
861  * @memcg: memcg whose parent to find
862  *
863  * Returns the parent memcg, or NULL if this is the root or the memory
864  * controller is in legacy no-hierarchy mode.
865  */
866 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
867 {
868 	return mem_cgroup_from_css(memcg->css.parent);
869 }
870 
871 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
872 			      struct mem_cgroup *root)
873 {
874 	if (root == memcg)
875 		return true;
876 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
877 }
878 
879 static inline bool mm_match_cgroup(struct mm_struct *mm,
880 				   struct mem_cgroup *memcg)
881 {
882 	struct mem_cgroup *task_memcg;
883 	bool match = false;
884 
885 	rcu_read_lock();
886 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
887 	if (task_memcg)
888 		match = mem_cgroup_is_descendant(task_memcg, memcg);
889 	rcu_read_unlock();
890 	return match;
891 }
892 
893 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
894 ino_t page_cgroup_ino(struct page *page);
895 
896 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
897 {
898 	if (mem_cgroup_disabled())
899 		return true;
900 	return !!(memcg->css.flags & CSS_ONLINE);
901 }
902 
903 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
904 		int zid, int nr_pages);
905 
906 static inline
907 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
908 		enum lru_list lru, int zone_idx)
909 {
910 	struct mem_cgroup_per_node *mz;
911 
912 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
913 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
914 }
915 
916 void mem_cgroup_handle_over_high(void);
917 
918 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
919 
920 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
921 
922 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
923 				struct task_struct *p);
924 
925 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
926 
927 static inline void mem_cgroup_enter_user_fault(void)
928 {
929 	WARN_ON(current->in_user_fault);
930 	current->in_user_fault = 1;
931 }
932 
933 static inline void mem_cgroup_exit_user_fault(void)
934 {
935 	WARN_ON(!current->in_user_fault);
936 	current->in_user_fault = 0;
937 }
938 
939 static inline bool task_in_memcg_oom(struct task_struct *p)
940 {
941 	return p->memcg_in_oom;
942 }
943 
944 bool mem_cgroup_oom_synchronize(bool wait);
945 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
946 					    struct mem_cgroup *oom_domain);
947 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
948 
949 void folio_memcg_lock(struct folio *folio);
950 void folio_memcg_unlock(struct folio *folio);
951 
952 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
953 
954 /* try to stablize folio_memcg() for all the pages in a memcg */
955 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
956 {
957 	rcu_read_lock();
958 
959 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
960 		return true;
961 
962 	rcu_read_unlock();
963 	return false;
964 }
965 
966 static inline void mem_cgroup_unlock_pages(void)
967 {
968 	rcu_read_unlock();
969 }
970 
971 /* idx can be of type enum memcg_stat_item or node_stat_item */
972 static inline void mod_memcg_state(struct mem_cgroup *memcg,
973 				   int idx, int val)
974 {
975 	unsigned long flags;
976 
977 	local_irq_save(flags);
978 	__mod_memcg_state(memcg, idx, val);
979 	local_irq_restore(flags);
980 }
981 
982 static inline void mod_memcg_page_state(struct page *page,
983 					int idx, int val)
984 {
985 	struct mem_cgroup *memcg;
986 
987 	if (mem_cgroup_disabled())
988 		return;
989 
990 	rcu_read_lock();
991 	memcg = page_memcg(page);
992 	if (memcg)
993 		mod_memcg_state(memcg, idx, val);
994 	rcu_read_unlock();
995 }
996 
997 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
998 
999 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1000 					      enum node_stat_item idx)
1001 {
1002 	struct mem_cgroup_per_node *pn;
1003 	long x;
1004 
1005 	if (mem_cgroup_disabled())
1006 		return node_page_state(lruvec_pgdat(lruvec), idx);
1007 
1008 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1009 	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1010 #ifdef CONFIG_SMP
1011 	if (x < 0)
1012 		x = 0;
1013 #endif
1014 	return x;
1015 }
1016 
1017 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1018 						    enum node_stat_item idx)
1019 {
1020 	struct mem_cgroup_per_node *pn;
1021 	long x = 0;
1022 	int cpu;
1023 
1024 	if (mem_cgroup_disabled())
1025 		return node_page_state(lruvec_pgdat(lruvec), idx);
1026 
1027 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1028 	for_each_possible_cpu(cpu)
1029 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1030 #ifdef CONFIG_SMP
1031 	if (x < 0)
1032 		x = 0;
1033 #endif
1034 	return x;
1035 }
1036 
1037 void mem_cgroup_flush_stats(void);
1038 void mem_cgroup_flush_stats_ratelimited(void);
1039 
1040 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1041 			      int val);
1042 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1043 
1044 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1045 					 int val)
1046 {
1047 	unsigned long flags;
1048 
1049 	local_irq_save(flags);
1050 	__mod_lruvec_kmem_state(p, idx, val);
1051 	local_irq_restore(flags);
1052 }
1053 
1054 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1055 					  enum node_stat_item idx, int val)
1056 {
1057 	unsigned long flags;
1058 
1059 	local_irq_save(flags);
1060 	__mod_memcg_lruvec_state(lruvec, idx, val);
1061 	local_irq_restore(flags);
1062 }
1063 
1064 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1065 			  unsigned long count);
1066 
1067 static inline void count_memcg_events(struct mem_cgroup *memcg,
1068 				      enum vm_event_item idx,
1069 				      unsigned long count)
1070 {
1071 	unsigned long flags;
1072 
1073 	local_irq_save(flags);
1074 	__count_memcg_events(memcg, idx, count);
1075 	local_irq_restore(flags);
1076 }
1077 
1078 static inline void count_memcg_page_event(struct page *page,
1079 					  enum vm_event_item idx)
1080 {
1081 	struct mem_cgroup *memcg = page_memcg(page);
1082 
1083 	if (memcg)
1084 		count_memcg_events(memcg, idx, 1);
1085 }
1086 
1087 static inline void count_memcg_folio_events(struct folio *folio,
1088 		enum vm_event_item idx, unsigned long nr)
1089 {
1090 	struct mem_cgroup *memcg = folio_memcg(folio);
1091 
1092 	if (memcg)
1093 		count_memcg_events(memcg, idx, nr);
1094 }
1095 
1096 static inline void count_memcg_event_mm(struct mm_struct *mm,
1097 					enum vm_event_item idx)
1098 {
1099 	struct mem_cgroup *memcg;
1100 
1101 	if (mem_cgroup_disabled())
1102 		return;
1103 
1104 	rcu_read_lock();
1105 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1106 	if (likely(memcg))
1107 		count_memcg_events(memcg, idx, 1);
1108 	rcu_read_unlock();
1109 }
1110 
1111 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1112 				      enum memcg_memory_event event)
1113 {
1114 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1115 			  event == MEMCG_SWAP_FAIL;
1116 
1117 	atomic_long_inc(&memcg->memory_events_local[event]);
1118 	if (!swap_event)
1119 		cgroup_file_notify(&memcg->events_local_file);
1120 
1121 	do {
1122 		atomic_long_inc(&memcg->memory_events[event]);
1123 		if (swap_event)
1124 			cgroup_file_notify(&memcg->swap_events_file);
1125 		else
1126 			cgroup_file_notify(&memcg->events_file);
1127 
1128 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1129 			break;
1130 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1131 			break;
1132 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1133 		 !mem_cgroup_is_root(memcg));
1134 }
1135 
1136 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1137 					 enum memcg_memory_event event)
1138 {
1139 	struct mem_cgroup *memcg;
1140 
1141 	if (mem_cgroup_disabled())
1142 		return;
1143 
1144 	rcu_read_lock();
1145 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1146 	if (likely(memcg))
1147 		memcg_memory_event(memcg, event);
1148 	rcu_read_unlock();
1149 }
1150 
1151 void split_page_memcg(struct page *head, unsigned int nr);
1152 
1153 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1154 						gfp_t gfp_mask,
1155 						unsigned long *total_scanned);
1156 
1157 #else /* CONFIG_MEMCG */
1158 
1159 #define MEM_CGROUP_ID_SHIFT	0
1160 
1161 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1162 {
1163 	return NULL;
1164 }
1165 
1166 static inline struct mem_cgroup *page_memcg(struct page *page)
1167 {
1168 	return NULL;
1169 }
1170 
1171 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1172 {
1173 	WARN_ON_ONCE(!rcu_read_lock_held());
1174 	return NULL;
1175 }
1176 
1177 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1178 {
1179 	return NULL;
1180 }
1181 
1182 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1183 {
1184 	return NULL;
1185 }
1186 
1187 static inline bool folio_memcg_kmem(struct folio *folio)
1188 {
1189 	return false;
1190 }
1191 
1192 static inline bool PageMemcgKmem(struct page *page)
1193 {
1194 	return false;
1195 }
1196 
1197 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1198 {
1199 	return true;
1200 }
1201 
1202 static inline bool mem_cgroup_disabled(void)
1203 {
1204 	return true;
1205 }
1206 
1207 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1208 				      enum memcg_memory_event event)
1209 {
1210 }
1211 
1212 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1213 					 enum memcg_memory_event event)
1214 {
1215 }
1216 
1217 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1218 					 struct mem_cgroup *memcg,
1219 					 unsigned long *min,
1220 					 unsigned long *low)
1221 {
1222 	*min = *low = 0;
1223 }
1224 
1225 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1226 						   struct mem_cgroup *memcg)
1227 {
1228 }
1229 
1230 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1231 					  struct mem_cgroup *memcg)
1232 {
1233 	return true;
1234 }
1235 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1236 					struct mem_cgroup *memcg)
1237 {
1238 	return false;
1239 }
1240 
1241 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1242 					struct mem_cgroup *memcg)
1243 {
1244 	return false;
1245 }
1246 
1247 static inline int mem_cgroup_charge(struct folio *folio,
1248 		struct mm_struct *mm, gfp_t gfp)
1249 {
1250 	return 0;
1251 }
1252 
1253 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1254 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1255 {
1256 	return 0;
1257 }
1258 
1259 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1260 {
1261 }
1262 
1263 static inline void mem_cgroup_uncharge(struct folio *folio)
1264 {
1265 }
1266 
1267 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1268 {
1269 }
1270 
1271 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1272 {
1273 }
1274 
1275 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1276 					       struct pglist_data *pgdat)
1277 {
1278 	return &pgdat->__lruvec;
1279 }
1280 
1281 static inline struct lruvec *folio_lruvec(struct folio *folio)
1282 {
1283 	struct pglist_data *pgdat = folio_pgdat(folio);
1284 	return &pgdat->__lruvec;
1285 }
1286 
1287 static inline
1288 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1289 {
1290 }
1291 
1292 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1293 {
1294 	return NULL;
1295 }
1296 
1297 static inline bool mm_match_cgroup(struct mm_struct *mm,
1298 		struct mem_cgroup *memcg)
1299 {
1300 	return true;
1301 }
1302 
1303 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1304 {
1305 	return NULL;
1306 }
1307 
1308 static inline
1309 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1310 {
1311 	return NULL;
1312 }
1313 
1314 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1315 {
1316 }
1317 
1318 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1319 {
1320 	return true;
1321 }
1322 
1323 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1324 {
1325 }
1326 
1327 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1328 {
1329 	struct pglist_data *pgdat = folio_pgdat(folio);
1330 
1331 	spin_lock(&pgdat->__lruvec.lru_lock);
1332 	return &pgdat->__lruvec;
1333 }
1334 
1335 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1336 {
1337 	struct pglist_data *pgdat = folio_pgdat(folio);
1338 
1339 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1340 	return &pgdat->__lruvec;
1341 }
1342 
1343 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1344 		unsigned long *flagsp)
1345 {
1346 	struct pglist_data *pgdat = folio_pgdat(folio);
1347 
1348 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1349 	return &pgdat->__lruvec;
1350 }
1351 
1352 static inline struct mem_cgroup *
1353 mem_cgroup_iter(struct mem_cgroup *root,
1354 		struct mem_cgroup *prev,
1355 		struct mem_cgroup_reclaim_cookie *reclaim)
1356 {
1357 	return NULL;
1358 }
1359 
1360 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1361 					 struct mem_cgroup *prev)
1362 {
1363 }
1364 
1365 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1366 		int (*fn)(struct task_struct *, void *), void *arg)
1367 {
1368 }
1369 
1370 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1371 {
1372 	return 0;
1373 }
1374 
1375 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1376 {
1377 	WARN_ON_ONCE(id);
1378 	/* XXX: This should always return root_mem_cgroup */
1379 	return NULL;
1380 }
1381 
1382 #ifdef CONFIG_SHRINKER_DEBUG
1383 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1384 {
1385 	return 0;
1386 }
1387 
1388 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1389 {
1390 	return NULL;
1391 }
1392 #endif
1393 
1394 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1395 {
1396 	return NULL;
1397 }
1398 
1399 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1400 {
1401 	return NULL;
1402 }
1403 
1404 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1405 {
1406 	return true;
1407 }
1408 
1409 static inline
1410 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1411 		enum lru_list lru, int zone_idx)
1412 {
1413 	return 0;
1414 }
1415 
1416 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1417 {
1418 	return 0;
1419 }
1420 
1421 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1422 {
1423 	return 0;
1424 }
1425 
1426 static inline void
1427 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1428 {
1429 }
1430 
1431 static inline void
1432 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1433 {
1434 }
1435 
1436 static inline void folio_memcg_lock(struct folio *folio)
1437 {
1438 }
1439 
1440 static inline void folio_memcg_unlock(struct folio *folio)
1441 {
1442 }
1443 
1444 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1445 {
1446 	/* to match folio_memcg_rcu() */
1447 	rcu_read_lock();
1448 	return true;
1449 }
1450 
1451 static inline void mem_cgroup_unlock_pages(void)
1452 {
1453 	rcu_read_unlock();
1454 }
1455 
1456 static inline void mem_cgroup_handle_over_high(void)
1457 {
1458 }
1459 
1460 static inline void mem_cgroup_enter_user_fault(void)
1461 {
1462 }
1463 
1464 static inline void mem_cgroup_exit_user_fault(void)
1465 {
1466 }
1467 
1468 static inline bool task_in_memcg_oom(struct task_struct *p)
1469 {
1470 	return false;
1471 }
1472 
1473 static inline bool mem_cgroup_oom_synchronize(bool wait)
1474 {
1475 	return false;
1476 }
1477 
1478 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1479 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1480 {
1481 	return NULL;
1482 }
1483 
1484 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1485 {
1486 }
1487 
1488 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1489 				     int idx,
1490 				     int nr)
1491 {
1492 }
1493 
1494 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1495 				   int idx,
1496 				   int nr)
1497 {
1498 }
1499 
1500 static inline void mod_memcg_page_state(struct page *page,
1501 					int idx, int val)
1502 {
1503 }
1504 
1505 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1506 {
1507 	return 0;
1508 }
1509 
1510 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1511 					      enum node_stat_item idx)
1512 {
1513 	return node_page_state(lruvec_pgdat(lruvec), idx);
1514 }
1515 
1516 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1517 						    enum node_stat_item idx)
1518 {
1519 	return node_page_state(lruvec_pgdat(lruvec), idx);
1520 }
1521 
1522 static inline void mem_cgroup_flush_stats(void)
1523 {
1524 }
1525 
1526 static inline void mem_cgroup_flush_stats_ratelimited(void)
1527 {
1528 }
1529 
1530 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1531 					    enum node_stat_item idx, int val)
1532 {
1533 }
1534 
1535 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1536 					   int val)
1537 {
1538 	struct page *page = virt_to_head_page(p);
1539 
1540 	__mod_node_page_state(page_pgdat(page), idx, val);
1541 }
1542 
1543 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1544 					 int val)
1545 {
1546 	struct page *page = virt_to_head_page(p);
1547 
1548 	mod_node_page_state(page_pgdat(page), idx, val);
1549 }
1550 
1551 static inline void count_memcg_events(struct mem_cgroup *memcg,
1552 				      enum vm_event_item idx,
1553 				      unsigned long count)
1554 {
1555 }
1556 
1557 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1558 					enum vm_event_item idx,
1559 					unsigned long count)
1560 {
1561 }
1562 
1563 static inline void count_memcg_page_event(struct page *page,
1564 					  int idx)
1565 {
1566 }
1567 
1568 static inline void count_memcg_folio_events(struct folio *folio,
1569 		enum vm_event_item idx, unsigned long nr)
1570 {
1571 }
1572 
1573 static inline
1574 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1575 {
1576 }
1577 
1578 static inline void split_page_memcg(struct page *head, unsigned int nr)
1579 {
1580 }
1581 
1582 static inline
1583 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1584 					    gfp_t gfp_mask,
1585 					    unsigned long *total_scanned)
1586 {
1587 	return 0;
1588 }
1589 #endif /* CONFIG_MEMCG */
1590 
1591 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1592 {
1593 	__mod_lruvec_kmem_state(p, idx, 1);
1594 }
1595 
1596 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1597 {
1598 	__mod_lruvec_kmem_state(p, idx, -1);
1599 }
1600 
1601 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1602 {
1603 	struct mem_cgroup *memcg;
1604 
1605 	memcg = lruvec_memcg(lruvec);
1606 	if (!memcg)
1607 		return NULL;
1608 	memcg = parent_mem_cgroup(memcg);
1609 	if (!memcg)
1610 		return NULL;
1611 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1612 }
1613 
1614 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1615 {
1616 	spin_unlock(&lruvec->lru_lock);
1617 }
1618 
1619 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1620 {
1621 	spin_unlock_irq(&lruvec->lru_lock);
1622 }
1623 
1624 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1625 		unsigned long flags)
1626 {
1627 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1628 }
1629 
1630 /* Test requires a stable page->memcg binding, see page_memcg() */
1631 static inline bool folio_matches_lruvec(struct folio *folio,
1632 		struct lruvec *lruvec)
1633 {
1634 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1635 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1636 }
1637 
1638 /* Don't lock again iff page's lruvec locked */
1639 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1640 		struct lruvec *locked_lruvec)
1641 {
1642 	if (locked_lruvec) {
1643 		if (folio_matches_lruvec(folio, locked_lruvec))
1644 			return locked_lruvec;
1645 
1646 		unlock_page_lruvec_irq(locked_lruvec);
1647 	}
1648 
1649 	return folio_lruvec_lock_irq(folio);
1650 }
1651 
1652 /* Don't lock again iff page's lruvec locked */
1653 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1654 		struct lruvec *locked_lruvec, unsigned long *flags)
1655 {
1656 	if (locked_lruvec) {
1657 		if (folio_matches_lruvec(folio, locked_lruvec))
1658 			return locked_lruvec;
1659 
1660 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1661 	}
1662 
1663 	return folio_lruvec_lock_irqsave(folio, flags);
1664 }
1665 
1666 #ifdef CONFIG_CGROUP_WRITEBACK
1667 
1668 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1669 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1670 			 unsigned long *pheadroom, unsigned long *pdirty,
1671 			 unsigned long *pwriteback);
1672 
1673 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1674 					     struct bdi_writeback *wb);
1675 
1676 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1677 						  struct bdi_writeback *wb)
1678 {
1679 	struct mem_cgroup *memcg;
1680 
1681 	if (mem_cgroup_disabled())
1682 		return;
1683 
1684 	memcg = folio_memcg(folio);
1685 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1686 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1687 }
1688 
1689 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1690 
1691 #else	/* CONFIG_CGROUP_WRITEBACK */
1692 
1693 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1694 {
1695 	return NULL;
1696 }
1697 
1698 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1699 				       unsigned long *pfilepages,
1700 				       unsigned long *pheadroom,
1701 				       unsigned long *pdirty,
1702 				       unsigned long *pwriteback)
1703 {
1704 }
1705 
1706 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1707 						  struct bdi_writeback *wb)
1708 {
1709 }
1710 
1711 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1712 {
1713 }
1714 
1715 #endif	/* CONFIG_CGROUP_WRITEBACK */
1716 
1717 struct sock;
1718 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1719 			     gfp_t gfp_mask);
1720 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1721 #ifdef CONFIG_MEMCG
1722 extern struct static_key_false memcg_sockets_enabled_key;
1723 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1724 void mem_cgroup_sk_alloc(struct sock *sk);
1725 void mem_cgroup_sk_free(struct sock *sk);
1726 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1727 {
1728 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1729 		return true;
1730 	do {
1731 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1732 			return true;
1733 	} while ((memcg = parent_mem_cgroup(memcg)));
1734 	return false;
1735 }
1736 
1737 int alloc_shrinker_info(struct mem_cgroup *memcg);
1738 void free_shrinker_info(struct mem_cgroup *memcg);
1739 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1740 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1741 #else
1742 #define mem_cgroup_sockets_enabled 0
1743 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1744 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1745 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1746 {
1747 	return false;
1748 }
1749 
1750 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1751 				    int nid, int shrinker_id)
1752 {
1753 }
1754 #endif
1755 
1756 #ifdef CONFIG_MEMCG_KMEM
1757 bool mem_cgroup_kmem_disabled(void);
1758 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1759 void __memcg_kmem_uncharge_page(struct page *page, int order);
1760 
1761 struct obj_cgroup *get_obj_cgroup_from_current(void);
1762 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1763 
1764 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1765 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1766 
1767 extern struct static_key_false memcg_bpf_enabled_key;
1768 static inline bool memcg_bpf_enabled(void)
1769 {
1770 	return static_branch_likely(&memcg_bpf_enabled_key);
1771 }
1772 
1773 extern struct static_key_false memcg_kmem_online_key;
1774 
1775 static inline bool memcg_kmem_online(void)
1776 {
1777 	return static_branch_likely(&memcg_kmem_online_key);
1778 }
1779 
1780 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1781 					 int order)
1782 {
1783 	if (memcg_kmem_online())
1784 		return __memcg_kmem_charge_page(page, gfp, order);
1785 	return 0;
1786 }
1787 
1788 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1789 {
1790 	if (memcg_kmem_online())
1791 		__memcg_kmem_uncharge_page(page, order);
1792 }
1793 
1794 /*
1795  * A helper for accessing memcg's kmem_id, used for getting
1796  * corresponding LRU lists.
1797  */
1798 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1799 {
1800 	return memcg ? memcg->kmemcg_id : -1;
1801 }
1802 
1803 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1804 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1805 
1806 static inline void count_objcg_event(struct obj_cgroup *objcg,
1807 				     enum vm_event_item idx)
1808 {
1809 	struct mem_cgroup *memcg;
1810 
1811 	if (!memcg_kmem_online())
1812 		return;
1813 
1814 	rcu_read_lock();
1815 	memcg = obj_cgroup_memcg(objcg);
1816 	count_memcg_events(memcg, idx, 1);
1817 	rcu_read_unlock();
1818 }
1819 
1820 #else
1821 static inline bool mem_cgroup_kmem_disabled(void)
1822 {
1823 	return true;
1824 }
1825 
1826 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1827 					 int order)
1828 {
1829 	return 0;
1830 }
1831 
1832 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1833 {
1834 }
1835 
1836 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1837 					   int order)
1838 {
1839 	return 0;
1840 }
1841 
1842 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1843 {
1844 }
1845 
1846 static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1847 {
1848 	return NULL;
1849 }
1850 
1851 static inline bool memcg_bpf_enabled(void)
1852 {
1853 	return false;
1854 }
1855 
1856 static inline bool memcg_kmem_online(void)
1857 {
1858 	return false;
1859 }
1860 
1861 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1862 {
1863 	return -1;
1864 }
1865 
1866 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1867 {
1868 	return NULL;
1869 }
1870 
1871 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1872 {
1873 	return NULL;
1874 }
1875 
1876 static inline void count_objcg_event(struct obj_cgroup *objcg,
1877 				     enum vm_event_item idx)
1878 {
1879 }
1880 
1881 #endif /* CONFIG_MEMCG_KMEM */
1882 
1883 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1884 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1885 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1886 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1887 #else
1888 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1889 {
1890 	return true;
1891 }
1892 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1893 					   size_t size)
1894 {
1895 }
1896 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1897 					     size_t size)
1898 {
1899 }
1900 #endif
1901 
1902 #endif /* _LINUX_MEMCONTROL_H */
1903