xref: /linux-6.15/include/linux/memcontrol.h (revision 3c2f85b8)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mmzone.h>
30 #include <linux/writeback.h>
31 
32 struct mem_cgroup;
33 struct page;
34 struct mm_struct;
35 struct kmem_cache;
36 
37 /*
38  * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
39  * These two lists should keep in accord with each other.
40  */
41 enum mem_cgroup_stat_index {
42 	/*
43 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
44 	 */
45 	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
46 	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
47 	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
48 	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
49 	MEM_CGROUP_STAT_DIRTY,          /* # of dirty pages in page cache */
50 	MEM_CGROUP_STAT_WRITEBACK,	/* # of pages under writeback */
51 	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
52 	MEM_CGROUP_STAT_NSTATS,
53 };
54 
55 struct mem_cgroup_reclaim_cookie {
56 	struct zone *zone;
57 	int priority;
58 	unsigned int generation;
59 };
60 
61 enum mem_cgroup_events_index {
62 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
63 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
64 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
65 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
66 	MEM_CGROUP_EVENTS_NSTATS,
67 	/* default hierarchy events */
68 	MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
69 	MEMCG_HIGH,
70 	MEMCG_MAX,
71 	MEMCG_OOM,
72 	MEMCG_NR_EVENTS,
73 };
74 
75 /*
76  * Per memcg event counter is incremented at every pagein/pageout. With THP,
77  * it will be incremated by the number of pages. This counter is used for
78  * for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  */
81 enum mem_cgroup_events_target {
82 	MEM_CGROUP_TARGET_THRESH,
83 	MEM_CGROUP_TARGET_SOFTLIMIT,
84 	MEM_CGROUP_TARGET_NUMAINFO,
85 	MEM_CGROUP_NTARGETS,
86 };
87 
88 /*
89  * Bits in struct cg_proto.flags
90  */
91 enum cg_proto_flags {
92 	/* Currently active and new sockets should be assigned to cgroups */
93 	MEMCG_SOCK_ACTIVE,
94 	/* It was ever activated; we must disarm static keys on destruction */
95 	MEMCG_SOCK_ACTIVATED,
96 };
97 
98 struct cg_proto {
99 	struct page_counter	memory_allocated;	/* Current allocated memory. */
100 	struct percpu_counter	sockets_allocated;	/* Current number of sockets. */
101 	int			memory_pressure;
102 	long			sysctl_mem[3];
103 	unsigned long		flags;
104 	/*
105 	 * memcg field is used to find which memcg we belong directly
106 	 * Each memcg struct can hold more than one cg_proto, so container_of
107 	 * won't really cut.
108 	 *
109 	 * The elegant solution would be having an inverse function to
110 	 * proto_cgroup in struct proto, but that means polluting the structure
111 	 * for everybody, instead of just for memcg users.
112 	 */
113 	struct mem_cgroup	*memcg;
114 };
115 
116 #ifdef CONFIG_MEMCG
117 struct mem_cgroup_stat_cpu {
118 	long count[MEM_CGROUP_STAT_NSTATS];
119 	unsigned long events[MEMCG_NR_EVENTS];
120 	unsigned long nr_page_events;
121 	unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123 
124 struct mem_cgroup_reclaim_iter {
125 	struct mem_cgroup *position;
126 	/* scan generation, increased every round-trip */
127 	unsigned int generation;
128 };
129 
130 /*
131  * per-zone information in memory controller.
132  */
133 struct mem_cgroup_per_zone {
134 	struct lruvec		lruvec;
135 	unsigned long		lru_size[NR_LRU_LISTS];
136 
137 	struct mem_cgroup_reclaim_iter	iter[DEF_PRIORITY + 1];
138 
139 	struct rb_node		tree_node;	/* RB tree node */
140 	unsigned long		usage_in_excess;/* Set to the value by which */
141 						/* the soft limit is exceeded*/
142 	bool			on_tree;
143 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
144 						/* use container_of	   */
145 };
146 
147 struct mem_cgroup_per_node {
148 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149 };
150 
151 struct mem_cgroup_threshold {
152 	struct eventfd_ctx *eventfd;
153 	unsigned long threshold;
154 };
155 
156 /* For threshold */
157 struct mem_cgroup_threshold_ary {
158 	/* An array index points to threshold just below or equal to usage. */
159 	int current_threshold;
160 	/* Size of entries[] */
161 	unsigned int size;
162 	/* Array of thresholds */
163 	struct mem_cgroup_threshold entries[0];
164 };
165 
166 struct mem_cgroup_thresholds {
167 	/* Primary thresholds array */
168 	struct mem_cgroup_threshold_ary *primary;
169 	/*
170 	 * Spare threshold array.
171 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
172 	 * It must be able to store at least primary->size - 1 entries.
173 	 */
174 	struct mem_cgroup_threshold_ary *spare;
175 };
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  */
183 struct mem_cgroup {
184 	struct cgroup_subsys_state css;
185 
186 	/* Accounted resources */
187 	struct page_counter memory;
188 	struct page_counter memsw;
189 	struct page_counter kmem;
190 
191 	/* Normal memory consumption range */
192 	unsigned long low;
193 	unsigned long high;
194 
195 	unsigned long soft_limit;
196 
197 	/* vmpressure notifications */
198 	struct vmpressure vmpressure;
199 
200 	/* css_online() has been completed */
201 	int initialized;
202 
203 	/*
204 	 * Should the accounting and control be hierarchical, per subtree?
205 	 */
206 	bool use_hierarchy;
207 
208 	/* protected by memcg_oom_lock */
209 	bool		oom_lock;
210 	int		under_oom;
211 
212 	int	swappiness;
213 	/* OOM-Killer disable */
214 	int		oom_kill_disable;
215 
216 	/* protect arrays of thresholds */
217 	struct mutex thresholds_lock;
218 
219 	/* thresholds for memory usage. RCU-protected */
220 	struct mem_cgroup_thresholds thresholds;
221 
222 	/* thresholds for mem+swap usage. RCU-protected */
223 	struct mem_cgroup_thresholds memsw_thresholds;
224 
225 	/* For oom notifier event fd */
226 	struct list_head oom_notify;
227 
228 	/*
229 	 * Should we move charges of a task when a task is moved into this
230 	 * mem_cgroup ? And what type of charges should we move ?
231 	 */
232 	unsigned long move_charge_at_immigrate;
233 	/*
234 	 * set > 0 if pages under this cgroup are moving to other cgroup.
235 	 */
236 	atomic_t		moving_account;
237 	/* taken only while moving_account > 0 */
238 	spinlock_t		move_lock;
239 	struct task_struct	*move_lock_task;
240 	unsigned long		move_lock_flags;
241 	/*
242 	 * percpu counter.
243 	 */
244 	struct mem_cgroup_stat_cpu __percpu *stat;
245 
246 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
247 	struct cg_proto tcp_mem;
248 #endif
249 #if defined(CONFIG_MEMCG_KMEM)
250         /* Index in the kmem_cache->memcg_params.memcg_caches array */
251 	int kmemcg_id;
252 	bool kmem_acct_activated;
253 	bool kmem_acct_active;
254 #endif
255 
256 	int last_scanned_node;
257 #if MAX_NUMNODES > 1
258 	nodemask_t	scan_nodes;
259 	atomic_t	numainfo_events;
260 	atomic_t	numainfo_updating;
261 #endif
262 
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 	struct list_head cgwb_list;
265 	struct wb_domain cgwb_domain;
266 #endif
267 
268 	/* List of events which userspace want to receive */
269 	struct list_head event_list;
270 	spinlock_t event_list_lock;
271 
272 	struct mem_cgroup_per_node *nodeinfo[0];
273 	/* WARNING: nodeinfo must be the last member here */
274 };
275 extern struct cgroup_subsys_state *mem_cgroup_root_css;
276 
277 /**
278  * mem_cgroup_events - count memory events against a cgroup
279  * @memcg: the memory cgroup
280  * @idx: the event index
281  * @nr: the number of events to account for
282  */
283 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
284 		       enum mem_cgroup_events_index idx,
285 		       unsigned int nr)
286 {
287 	this_cpu_add(memcg->stat->events[idx], nr);
288 }
289 
290 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
291 
292 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
293 			  gfp_t gfp_mask, struct mem_cgroup **memcgp);
294 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
295 			      bool lrucare);
296 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
297 void mem_cgroup_uncharge(struct page *page);
298 void mem_cgroup_uncharge_list(struct list_head *page_list);
299 
300 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
301 			bool lrucare);
302 
303 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
304 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
305 
306 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
307 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
308 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
309 
310 static inline
311 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
312 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
313 }
314 
315 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
316 				   struct mem_cgroup *,
317 				   struct mem_cgroup_reclaim_cookie *);
318 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
319 
320 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
321 			      struct mem_cgroup *root)
322 {
323 	if (root == memcg)
324 		return true;
325 	if (!root->use_hierarchy)
326 		return false;
327 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
328 }
329 
330 static inline bool mm_match_cgroup(struct mm_struct *mm,
331 				   struct mem_cgroup *memcg)
332 {
333 	struct mem_cgroup *task_memcg;
334 	bool match = false;
335 
336 	rcu_read_lock();
337 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
338 	if (task_memcg)
339 		match = mem_cgroup_is_descendant(task_memcg, memcg);
340 	rcu_read_unlock();
341 	return match;
342 }
343 
344 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
345 ino_t page_cgroup_ino(struct page *page);
346 
347 static inline bool mem_cgroup_disabled(void)
348 {
349 	if (memory_cgrp_subsys.disabled)
350 		return true;
351 	return false;
352 }
353 
354 /*
355  * For memory reclaim.
356  */
357 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
358 
359 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
360 		int nr_pages);
361 
362 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
363 {
364 	struct mem_cgroup_per_zone *mz;
365 	struct mem_cgroup *memcg;
366 
367 	if (mem_cgroup_disabled())
368 		return true;
369 
370 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
371 	memcg = mz->memcg;
372 
373 	return !!(memcg->css.flags & CSS_ONLINE);
374 }
375 
376 static inline
377 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
378 {
379 	struct mem_cgroup_per_zone *mz;
380 
381 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
382 	return mz->lru_size[lru];
383 }
384 
385 static inline int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
386 {
387 	unsigned long inactive_ratio;
388 	unsigned long inactive;
389 	unsigned long active;
390 	unsigned long gb;
391 
392 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
393 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
394 
395 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
396 	if (gb)
397 		inactive_ratio = int_sqrt(10 * gb);
398 	else
399 		inactive_ratio = 1;
400 
401 	return inactive * inactive_ratio < active;
402 }
403 
404 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
405 				struct task_struct *p);
406 
407 static inline void mem_cgroup_oom_enable(void)
408 {
409 	WARN_ON(current->memcg_oom.may_oom);
410 	current->memcg_oom.may_oom = 1;
411 }
412 
413 static inline void mem_cgroup_oom_disable(void)
414 {
415 	WARN_ON(!current->memcg_oom.may_oom);
416 	current->memcg_oom.may_oom = 0;
417 }
418 
419 static inline bool task_in_memcg_oom(struct task_struct *p)
420 {
421 	return p->memcg_oom.memcg;
422 }
423 
424 bool mem_cgroup_oom_synchronize(bool wait);
425 
426 #ifdef CONFIG_MEMCG_SWAP
427 extern int do_swap_account;
428 #endif
429 
430 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
431 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
432 
433 /**
434  * mem_cgroup_update_page_stat - update page state statistics
435  * @memcg: memcg to account against
436  * @idx: page state item to account
437  * @val: number of pages (positive or negative)
438  *
439  * See mem_cgroup_begin_page_stat() for locking requirements.
440  */
441 static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
442 				 enum mem_cgroup_stat_index idx, int val)
443 {
444 	VM_BUG_ON(!rcu_read_lock_held());
445 
446 	if (memcg)
447 		this_cpu_add(memcg->stat->count[idx], val);
448 }
449 
450 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
451 					    enum mem_cgroup_stat_index idx)
452 {
453 	mem_cgroup_update_page_stat(memcg, idx, 1);
454 }
455 
456 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
457 					    enum mem_cgroup_stat_index idx)
458 {
459 	mem_cgroup_update_page_stat(memcg, idx, -1);
460 }
461 
462 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
463 						gfp_t gfp_mask,
464 						unsigned long *total_scanned);
465 
466 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
467 					     enum vm_event_item idx)
468 {
469 	struct mem_cgroup *memcg;
470 
471 	if (mem_cgroup_disabled())
472 		return;
473 
474 	rcu_read_lock();
475 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
476 	if (unlikely(!memcg))
477 		goto out;
478 
479 	switch (idx) {
480 	case PGFAULT:
481 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
482 		break;
483 	case PGMAJFAULT:
484 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
485 		break;
486 	default:
487 		BUG();
488 	}
489 out:
490 	rcu_read_unlock();
491 }
492 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
493 void mem_cgroup_split_huge_fixup(struct page *head);
494 #endif
495 
496 #else /* CONFIG_MEMCG */
497 struct mem_cgroup;
498 
499 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
500 				     enum mem_cgroup_events_index idx,
501 				     unsigned int nr)
502 {
503 }
504 
505 static inline bool mem_cgroup_low(struct mem_cgroup *root,
506 				  struct mem_cgroup *memcg)
507 {
508 	return false;
509 }
510 
511 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
512 					gfp_t gfp_mask,
513 					struct mem_cgroup **memcgp)
514 {
515 	*memcgp = NULL;
516 	return 0;
517 }
518 
519 static inline void mem_cgroup_commit_charge(struct page *page,
520 					    struct mem_cgroup *memcg,
521 					    bool lrucare)
522 {
523 }
524 
525 static inline void mem_cgroup_cancel_charge(struct page *page,
526 					    struct mem_cgroup *memcg)
527 {
528 }
529 
530 static inline void mem_cgroup_uncharge(struct page *page)
531 {
532 }
533 
534 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
535 {
536 }
537 
538 static inline void mem_cgroup_migrate(struct page *oldpage,
539 				      struct page *newpage,
540 				      bool lrucare)
541 {
542 }
543 
544 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
545 						    struct mem_cgroup *memcg)
546 {
547 	return &zone->lruvec;
548 }
549 
550 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
551 						    struct zone *zone)
552 {
553 	return &zone->lruvec;
554 }
555 
556 static inline bool mm_match_cgroup(struct mm_struct *mm,
557 		struct mem_cgroup *memcg)
558 {
559 	return true;
560 }
561 
562 static inline bool task_in_mem_cgroup(struct task_struct *task,
563 				      const struct mem_cgroup *memcg)
564 {
565 	return true;
566 }
567 
568 static inline struct mem_cgroup *
569 mem_cgroup_iter(struct mem_cgroup *root,
570 		struct mem_cgroup *prev,
571 		struct mem_cgroup_reclaim_cookie *reclaim)
572 {
573 	return NULL;
574 }
575 
576 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
577 					 struct mem_cgroup *prev)
578 {
579 }
580 
581 static inline bool mem_cgroup_disabled(void)
582 {
583 	return true;
584 }
585 
586 static inline int
587 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
588 {
589 	return 1;
590 }
591 
592 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
593 {
594 	return true;
595 }
596 
597 static inline unsigned long
598 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
599 {
600 	return 0;
601 }
602 
603 static inline void
604 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
605 			      int increment)
606 {
607 }
608 
609 static inline void
610 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
611 {
612 }
613 
614 static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
615 {
616 	return NULL;
617 }
618 
619 static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
620 {
621 }
622 
623 static inline void mem_cgroup_oom_enable(void)
624 {
625 }
626 
627 static inline void mem_cgroup_oom_disable(void)
628 {
629 }
630 
631 static inline bool task_in_memcg_oom(struct task_struct *p)
632 {
633 	return false;
634 }
635 
636 static inline bool mem_cgroup_oom_synchronize(bool wait)
637 {
638 	return false;
639 }
640 
641 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
642 					    enum mem_cgroup_stat_index idx)
643 {
644 }
645 
646 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
647 					    enum mem_cgroup_stat_index idx)
648 {
649 }
650 
651 static inline
652 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
653 					    gfp_t gfp_mask,
654 					    unsigned long *total_scanned)
655 {
656 	return 0;
657 }
658 
659 static inline void mem_cgroup_split_huge_fixup(struct page *head)
660 {
661 }
662 
663 static inline
664 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
665 {
666 }
667 #endif /* CONFIG_MEMCG */
668 
669 enum {
670 	UNDER_LIMIT,
671 	SOFT_LIMIT,
672 	OVER_LIMIT,
673 };
674 
675 #ifdef CONFIG_CGROUP_WRITEBACK
676 
677 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
678 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
679 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
680 			 unsigned long *pheadroom, unsigned long *pdirty,
681 			 unsigned long *pwriteback);
682 
683 #else	/* CONFIG_CGROUP_WRITEBACK */
684 
685 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
686 {
687 	return NULL;
688 }
689 
690 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
691 				       unsigned long *pfilepages,
692 				       unsigned long *pheadroom,
693 				       unsigned long *pdirty,
694 				       unsigned long *pwriteback)
695 {
696 }
697 
698 #endif	/* CONFIG_CGROUP_WRITEBACK */
699 
700 struct sock;
701 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
702 void sock_update_memcg(struct sock *sk);
703 void sock_release_memcg(struct sock *sk);
704 #else
705 static inline void sock_update_memcg(struct sock *sk)
706 {
707 }
708 static inline void sock_release_memcg(struct sock *sk)
709 {
710 }
711 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
712 
713 #ifdef CONFIG_MEMCG_KMEM
714 extern struct static_key memcg_kmem_enabled_key;
715 
716 extern int memcg_nr_cache_ids;
717 void memcg_get_cache_ids(void);
718 void memcg_put_cache_ids(void);
719 
720 /*
721  * Helper macro to loop through all memcg-specific caches. Callers must still
722  * check if the cache is valid (it is either valid or NULL).
723  * the slab_mutex must be held when looping through those caches
724  */
725 #define for_each_memcg_cache_index(_idx)	\
726 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
727 
728 static inline bool memcg_kmem_enabled(void)
729 {
730 	return static_key_false(&memcg_kmem_enabled_key);
731 }
732 
733 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
734 {
735 	return memcg->kmem_acct_active;
736 }
737 
738 /*
739  * In general, we'll do everything in our power to not incur in any overhead
740  * for non-memcg users for the kmem functions. Not even a function call, if we
741  * can avoid it.
742  *
743  * Therefore, we'll inline all those functions so that in the best case, we'll
744  * see that kmemcg is off for everybody and proceed quickly.  If it is on,
745  * we'll still do most of the flag checking inline. We check a lot of
746  * conditions, but because they are pretty simple, they are expected to be
747  * fast.
748  */
749 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
750 					int order);
751 void __memcg_kmem_commit_charge(struct page *page,
752 				       struct mem_cgroup *memcg, int order);
753 void __memcg_kmem_uncharge_pages(struct page *page, int order);
754 
755 /*
756  * helper for acessing a memcg's index. It will be used as an index in the
757  * child cache array in kmem_cache, and also to derive its name. This function
758  * will return -1 when this is not a kmem-limited memcg.
759  */
760 static inline int memcg_cache_id(struct mem_cgroup *memcg)
761 {
762 	return memcg ? memcg->kmemcg_id : -1;
763 }
764 
765 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
766 void __memcg_kmem_put_cache(struct kmem_cache *cachep);
767 
768 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr);
769 
770 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
771 		      unsigned long nr_pages);
772 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages);
773 
774 /**
775  * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
776  * @gfp: the gfp allocation flags.
777  * @memcg: a pointer to the memcg this was charged against.
778  * @order: allocation order.
779  *
780  * returns true if the memcg where the current task belongs can hold this
781  * allocation.
782  *
783  * We return true automatically if this allocation is not to be accounted to
784  * any memcg.
785  */
786 static inline bool
787 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
788 {
789 	if (!memcg_kmem_enabled())
790 		return true;
791 
792 	if (gfp & __GFP_NOACCOUNT)
793 		return true;
794 	/*
795 	 * __GFP_NOFAIL allocations will move on even if charging is not
796 	 * possible. Therefore we don't even try, and have this allocation
797 	 * unaccounted. We could in theory charge it forcibly, but we hope
798 	 * those allocations are rare, and won't be worth the trouble.
799 	 */
800 	if (gfp & __GFP_NOFAIL)
801 		return true;
802 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
803 		return true;
804 
805 	/* If the test is dying, just let it go. */
806 	if (unlikely(fatal_signal_pending(current)))
807 		return true;
808 
809 	return __memcg_kmem_newpage_charge(gfp, memcg, order);
810 }
811 
812 /**
813  * memcg_kmem_uncharge_pages: uncharge pages from memcg
814  * @page: pointer to struct page being freed
815  * @order: allocation order.
816  */
817 static inline void
818 memcg_kmem_uncharge_pages(struct page *page, int order)
819 {
820 	if (memcg_kmem_enabled())
821 		__memcg_kmem_uncharge_pages(page, order);
822 }
823 
824 /**
825  * memcg_kmem_commit_charge: embeds correct memcg in a page
826  * @page: pointer to struct page recently allocated
827  * @memcg: the memcg structure we charged against
828  * @order: allocation order.
829  *
830  * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
831  * failure of the allocation. if @page is NULL, this function will revert the
832  * charges. Otherwise, it will commit @page to @memcg.
833  */
834 static inline void
835 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
836 {
837 	if (memcg_kmem_enabled() && memcg)
838 		__memcg_kmem_commit_charge(page, memcg, order);
839 }
840 
841 /**
842  * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
843  * @cachep: the original global kmem cache
844  * @gfp: allocation flags.
845  *
846  * All memory allocated from a per-memcg cache is charged to the owner memcg.
847  */
848 static __always_inline struct kmem_cache *
849 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
850 {
851 	if (!memcg_kmem_enabled())
852 		return cachep;
853 	if (gfp & __GFP_NOACCOUNT)
854 		return cachep;
855 	if (gfp & __GFP_NOFAIL)
856 		return cachep;
857 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
858 		return cachep;
859 	if (unlikely(fatal_signal_pending(current)))
860 		return cachep;
861 
862 	return __memcg_kmem_get_cache(cachep);
863 }
864 
865 static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
866 {
867 	if (memcg_kmem_enabled())
868 		__memcg_kmem_put_cache(cachep);
869 }
870 
871 static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
872 {
873 	if (!memcg_kmem_enabled())
874 		return NULL;
875 	return __mem_cgroup_from_kmem(ptr);
876 }
877 #else
878 #define for_each_memcg_cache_index(_idx)	\
879 	for (; NULL; )
880 
881 static inline bool memcg_kmem_enabled(void)
882 {
883 	return false;
884 }
885 
886 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
887 {
888 	return false;
889 }
890 
891 static inline bool
892 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
893 {
894 	return true;
895 }
896 
897 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
898 {
899 }
900 
901 static inline void
902 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
903 {
904 }
905 
906 static inline int memcg_cache_id(struct mem_cgroup *memcg)
907 {
908 	return -1;
909 }
910 
911 static inline void memcg_get_cache_ids(void)
912 {
913 }
914 
915 static inline void memcg_put_cache_ids(void)
916 {
917 }
918 
919 static inline struct kmem_cache *
920 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
921 {
922 	return cachep;
923 }
924 
925 static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
926 {
927 }
928 
929 static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
930 {
931 	return NULL;
932 }
933 #endif /* CONFIG_MEMCG_KMEM */
934 #endif /* _LINUX_MEMCONTROL_H */
935 
936