1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 27 struct mem_cgroup; 28 struct page_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* 34 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, 35 * These two lists should keep in accord with each other. 36 */ 37 enum mem_cgroup_stat_index { 38 /* 39 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 40 */ 41 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 42 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 43 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 44 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 45 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ 46 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 47 MEM_CGROUP_STAT_NSTATS, 48 }; 49 50 struct mem_cgroup_reclaim_cookie { 51 struct zone *zone; 52 int priority; 53 unsigned int generation; 54 }; 55 56 #ifdef CONFIG_MEMCG 57 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 58 gfp_t gfp_mask, struct mem_cgroup **memcgp); 59 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 60 bool lrucare); 61 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg); 62 void mem_cgroup_uncharge(struct page *page); 63 void mem_cgroup_uncharge_list(struct list_head *page_list); 64 65 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage, 66 bool lrucare); 67 68 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 69 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 70 71 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 72 struct mem_cgroup *memcg); 73 bool task_in_mem_cgroup(struct task_struct *task, 74 const struct mem_cgroup *memcg); 75 76 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page); 77 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 78 79 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); 80 extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css); 81 82 static inline 83 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg) 84 { 85 struct mem_cgroup *task_memcg; 86 bool match; 87 88 rcu_read_lock(); 89 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 90 match = __mem_cgroup_same_or_subtree(memcg, task_memcg); 91 rcu_read_unlock(); 92 return match; 93 } 94 95 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg); 96 97 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 98 struct mem_cgroup *, 99 struct mem_cgroup_reclaim_cookie *); 100 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 101 102 /* 103 * For memory reclaim. 104 */ 105 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec); 106 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 107 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list); 108 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); 109 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 110 struct task_struct *p); 111 112 static inline void mem_cgroup_oom_enable(void) 113 { 114 WARN_ON(current->memcg_oom.may_oom); 115 current->memcg_oom.may_oom = 1; 116 } 117 118 static inline void mem_cgroup_oom_disable(void) 119 { 120 WARN_ON(!current->memcg_oom.may_oom); 121 current->memcg_oom.may_oom = 0; 122 } 123 124 static inline bool task_in_memcg_oom(struct task_struct *p) 125 { 126 return p->memcg_oom.memcg; 127 } 128 129 bool mem_cgroup_oom_synchronize(bool wait); 130 131 #ifdef CONFIG_MEMCG_SWAP 132 extern int do_swap_account; 133 #endif 134 135 static inline bool mem_cgroup_disabled(void) 136 { 137 if (memory_cgrp_subsys.disabled) 138 return true; 139 return false; 140 } 141 142 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, bool *locked, 143 unsigned long *flags); 144 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked, 145 unsigned long flags); 146 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg, 147 enum mem_cgroup_stat_index idx, int val); 148 149 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg, 150 enum mem_cgroup_stat_index idx) 151 { 152 mem_cgroup_update_page_stat(memcg, idx, 1); 153 } 154 155 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg, 156 enum mem_cgroup_stat_index idx) 157 { 158 mem_cgroup_update_page_stat(memcg, idx, -1); 159 } 160 161 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 162 gfp_t gfp_mask, 163 unsigned long *total_scanned); 164 165 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx); 166 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 167 enum vm_event_item idx) 168 { 169 if (mem_cgroup_disabled()) 170 return; 171 __mem_cgroup_count_vm_event(mm, idx); 172 } 173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 174 void mem_cgroup_split_huge_fixup(struct page *head); 175 #endif 176 177 #ifdef CONFIG_DEBUG_VM 178 bool mem_cgroup_bad_page_check(struct page *page); 179 void mem_cgroup_print_bad_page(struct page *page); 180 #endif 181 #else /* CONFIG_MEMCG */ 182 struct mem_cgroup; 183 184 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 185 gfp_t gfp_mask, 186 struct mem_cgroup **memcgp) 187 { 188 *memcgp = NULL; 189 return 0; 190 } 191 192 static inline void mem_cgroup_commit_charge(struct page *page, 193 struct mem_cgroup *memcg, 194 bool lrucare) 195 { 196 } 197 198 static inline void mem_cgroup_cancel_charge(struct page *page, 199 struct mem_cgroup *memcg) 200 { 201 } 202 203 static inline void mem_cgroup_uncharge(struct page *page) 204 { 205 } 206 207 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 208 { 209 } 210 211 static inline void mem_cgroup_migrate(struct page *oldpage, 212 struct page *newpage, 213 bool lrucare) 214 { 215 } 216 217 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 218 struct mem_cgroup *memcg) 219 { 220 return &zone->lruvec; 221 } 222 223 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 224 struct zone *zone) 225 { 226 return &zone->lruvec; 227 } 228 229 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 230 { 231 return NULL; 232 } 233 234 static inline bool mm_match_cgroup(struct mm_struct *mm, 235 struct mem_cgroup *memcg) 236 { 237 return true; 238 } 239 240 static inline bool task_in_mem_cgroup(struct task_struct *task, 241 const struct mem_cgroup *memcg) 242 { 243 return true; 244 } 245 246 static inline struct cgroup_subsys_state 247 *mem_cgroup_css(struct mem_cgroup *memcg) 248 { 249 return NULL; 250 } 251 252 static inline struct mem_cgroup * 253 mem_cgroup_iter(struct mem_cgroup *root, 254 struct mem_cgroup *prev, 255 struct mem_cgroup_reclaim_cookie *reclaim) 256 { 257 return NULL; 258 } 259 260 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 261 struct mem_cgroup *prev) 262 { 263 } 264 265 static inline bool mem_cgroup_disabled(void) 266 { 267 return true; 268 } 269 270 static inline int 271 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 272 { 273 return 1; 274 } 275 276 static inline unsigned long 277 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 278 { 279 return 0; 280 } 281 282 static inline void 283 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 284 int increment) 285 { 286 } 287 288 static inline void 289 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 290 { 291 } 292 293 static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, 294 bool *locked, unsigned long *flags) 295 { 296 return NULL; 297 } 298 299 static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, 300 bool locked, unsigned long flags) 301 { 302 } 303 304 static inline void mem_cgroup_oom_enable(void) 305 { 306 } 307 308 static inline void mem_cgroup_oom_disable(void) 309 { 310 } 311 312 static inline bool task_in_memcg_oom(struct task_struct *p) 313 { 314 return false; 315 } 316 317 static inline bool mem_cgroup_oom_synchronize(bool wait) 318 { 319 return false; 320 } 321 322 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg, 323 enum mem_cgroup_stat_index idx) 324 { 325 } 326 327 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg, 328 enum mem_cgroup_stat_index idx) 329 { 330 } 331 332 static inline 333 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 334 gfp_t gfp_mask, 335 unsigned long *total_scanned) 336 { 337 return 0; 338 } 339 340 static inline void mem_cgroup_split_huge_fixup(struct page *head) 341 { 342 } 343 344 static inline 345 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 346 { 347 } 348 #endif /* CONFIG_MEMCG */ 349 350 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM) 351 static inline bool 352 mem_cgroup_bad_page_check(struct page *page) 353 { 354 return false; 355 } 356 357 static inline void 358 mem_cgroup_print_bad_page(struct page *page) 359 { 360 } 361 #endif 362 363 enum { 364 UNDER_LIMIT, 365 SOFT_LIMIT, 366 OVER_LIMIT, 367 }; 368 369 struct sock; 370 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 371 void sock_update_memcg(struct sock *sk); 372 void sock_release_memcg(struct sock *sk); 373 #else 374 static inline void sock_update_memcg(struct sock *sk) 375 { 376 } 377 static inline void sock_release_memcg(struct sock *sk) 378 { 379 } 380 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 381 382 #ifdef CONFIG_MEMCG_KMEM 383 extern struct static_key memcg_kmem_enabled_key; 384 385 extern int memcg_limited_groups_array_size; 386 387 /* 388 * Helper macro to loop through all memcg-specific caches. Callers must still 389 * check if the cache is valid (it is either valid or NULL). 390 * the slab_mutex must be held when looping through those caches 391 */ 392 #define for_each_memcg_cache_index(_idx) \ 393 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++) 394 395 static inline bool memcg_kmem_enabled(void) 396 { 397 return static_key_false(&memcg_kmem_enabled_key); 398 } 399 400 /* 401 * In general, we'll do everything in our power to not incur in any overhead 402 * for non-memcg users for the kmem functions. Not even a function call, if we 403 * can avoid it. 404 * 405 * Therefore, we'll inline all those functions so that in the best case, we'll 406 * see that kmemcg is off for everybody and proceed quickly. If it is on, 407 * we'll still do most of the flag checking inline. We check a lot of 408 * conditions, but because they are pretty simple, they are expected to be 409 * fast. 410 */ 411 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, 412 int order); 413 void __memcg_kmem_commit_charge(struct page *page, 414 struct mem_cgroup *memcg, int order); 415 void __memcg_kmem_uncharge_pages(struct page *page, int order); 416 417 int memcg_cache_id(struct mem_cgroup *memcg); 418 419 void memcg_update_array_size(int num_groups); 420 421 struct kmem_cache * 422 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp); 423 424 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order); 425 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order); 426 427 int __memcg_cleanup_cache_params(struct kmem_cache *s); 428 429 /** 430 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. 431 * @gfp: the gfp allocation flags. 432 * @memcg: a pointer to the memcg this was charged against. 433 * @order: allocation order. 434 * 435 * returns true if the memcg where the current task belongs can hold this 436 * allocation. 437 * 438 * We return true automatically if this allocation is not to be accounted to 439 * any memcg. 440 */ 441 static inline bool 442 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 443 { 444 if (!memcg_kmem_enabled()) 445 return true; 446 447 /* 448 * __GFP_NOFAIL allocations will move on even if charging is not 449 * possible. Therefore we don't even try, and have this allocation 450 * unaccounted. We could in theory charge it with 451 * res_counter_charge_nofail, but we hope those allocations are rare, 452 * and won't be worth the trouble. 453 */ 454 if (gfp & __GFP_NOFAIL) 455 return true; 456 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 457 return true; 458 459 /* If the test is dying, just let it go. */ 460 if (unlikely(fatal_signal_pending(current))) 461 return true; 462 463 return __memcg_kmem_newpage_charge(gfp, memcg, order); 464 } 465 466 /** 467 * memcg_kmem_uncharge_pages: uncharge pages from memcg 468 * @page: pointer to struct page being freed 469 * @order: allocation order. 470 * 471 * there is no need to specify memcg here, since it is embedded in page_cgroup 472 */ 473 static inline void 474 memcg_kmem_uncharge_pages(struct page *page, int order) 475 { 476 if (memcg_kmem_enabled()) 477 __memcg_kmem_uncharge_pages(page, order); 478 } 479 480 /** 481 * memcg_kmem_commit_charge: embeds correct memcg in a page 482 * @page: pointer to struct page recently allocated 483 * @memcg: the memcg structure we charged against 484 * @order: allocation order. 485 * 486 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or 487 * failure of the allocation. if @page is NULL, this function will revert the 488 * charges. Otherwise, it will commit the memcg given by @memcg to the 489 * corresponding page_cgroup. 490 */ 491 static inline void 492 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 493 { 494 if (memcg_kmem_enabled() && memcg) 495 __memcg_kmem_commit_charge(page, memcg, order); 496 } 497 498 /** 499 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 500 * @cachep: the original global kmem cache 501 * @gfp: allocation flags. 502 * 503 * All memory allocated from a per-memcg cache is charged to the owner memcg. 504 */ 505 static __always_inline struct kmem_cache * 506 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 507 { 508 if (!memcg_kmem_enabled()) 509 return cachep; 510 if (gfp & __GFP_NOFAIL) 511 return cachep; 512 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 513 return cachep; 514 if (unlikely(fatal_signal_pending(current))) 515 return cachep; 516 517 return __memcg_kmem_get_cache(cachep, gfp); 518 } 519 #else 520 #define for_each_memcg_cache_index(_idx) \ 521 for (; NULL; ) 522 523 static inline bool memcg_kmem_enabled(void) 524 { 525 return false; 526 } 527 528 static inline bool 529 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 530 { 531 return true; 532 } 533 534 static inline void memcg_kmem_uncharge_pages(struct page *page, int order) 535 { 536 } 537 538 static inline void 539 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 540 { 541 } 542 543 static inline int memcg_cache_id(struct mem_cgroup *memcg) 544 { 545 return -1; 546 } 547 548 static inline struct kmem_cache * 549 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 550 { 551 return cachep; 552 } 553 #endif /* CONFIG_MEMCG_KMEM */ 554 #endif /* _LINUX_MEMCONTROL_H */ 555 556