1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 27 struct mem_cgroup; 28 struct page_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* 34 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, 35 * These two lists should keep in accord with each other. 36 */ 37 enum mem_cgroup_stat_index { 38 /* 39 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 40 */ 41 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 42 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 43 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 44 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 45 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ 46 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 47 MEM_CGROUP_STAT_NSTATS, 48 }; 49 50 struct mem_cgroup_reclaim_cookie { 51 struct zone *zone; 52 int priority; 53 unsigned int generation; 54 }; 55 56 #ifdef CONFIG_MEMCG 57 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 58 gfp_t gfp_mask, struct mem_cgroup **memcgp); 59 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 60 bool lrucare); 61 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg); 62 void mem_cgroup_uncharge(struct page *page); 63 void mem_cgroup_uncharge_list(struct list_head *page_list); 64 65 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage, 66 bool lrucare); 67 68 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 69 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 70 71 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 72 struct mem_cgroup *memcg); 73 bool task_in_mem_cgroup(struct task_struct *task, 74 const struct mem_cgroup *memcg); 75 76 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page); 77 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 78 79 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); 80 extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css); 81 82 static inline 83 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg) 84 { 85 struct mem_cgroup *task_memcg; 86 bool match; 87 88 rcu_read_lock(); 89 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 90 match = __mem_cgroup_same_or_subtree(memcg, task_memcg); 91 rcu_read_unlock(); 92 return match; 93 } 94 95 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg); 96 97 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 98 struct mem_cgroup *, 99 struct mem_cgroup_reclaim_cookie *); 100 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 101 102 /* 103 * For memory reclaim. 104 */ 105 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec); 106 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 107 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list); 108 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); 109 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 110 struct task_struct *p); 111 112 static inline void mem_cgroup_oom_enable(void) 113 { 114 WARN_ON(current->memcg_oom.may_oom); 115 current->memcg_oom.may_oom = 1; 116 } 117 118 static inline void mem_cgroup_oom_disable(void) 119 { 120 WARN_ON(!current->memcg_oom.may_oom); 121 current->memcg_oom.may_oom = 0; 122 } 123 124 static inline bool task_in_memcg_oom(struct task_struct *p) 125 { 126 return p->memcg_oom.memcg; 127 } 128 129 bool mem_cgroup_oom_synchronize(bool wait); 130 131 #ifdef CONFIG_MEMCG_SWAP 132 extern int do_swap_account; 133 #endif 134 135 static inline bool mem_cgroup_disabled(void) 136 { 137 if (memory_cgrp_subsys.disabled) 138 return true; 139 return false; 140 } 141 142 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked, 143 unsigned long *flags); 144 145 extern atomic_t memcg_moving; 146 147 static inline void mem_cgroup_begin_update_page_stat(struct page *page, 148 bool *locked, unsigned long *flags) 149 { 150 if (mem_cgroup_disabled()) 151 return; 152 rcu_read_lock(); 153 *locked = false; 154 if (atomic_read(&memcg_moving)) 155 __mem_cgroup_begin_update_page_stat(page, locked, flags); 156 } 157 158 void __mem_cgroup_end_update_page_stat(struct page *page, 159 unsigned long *flags); 160 static inline void mem_cgroup_end_update_page_stat(struct page *page, 161 bool *locked, unsigned long *flags) 162 { 163 if (mem_cgroup_disabled()) 164 return; 165 if (*locked) 166 __mem_cgroup_end_update_page_stat(page, flags); 167 rcu_read_unlock(); 168 } 169 170 void mem_cgroup_update_page_stat(struct page *page, 171 enum mem_cgroup_stat_index idx, 172 int val); 173 174 static inline void mem_cgroup_inc_page_stat(struct page *page, 175 enum mem_cgroup_stat_index idx) 176 { 177 mem_cgroup_update_page_stat(page, idx, 1); 178 } 179 180 static inline void mem_cgroup_dec_page_stat(struct page *page, 181 enum mem_cgroup_stat_index idx) 182 { 183 mem_cgroup_update_page_stat(page, idx, -1); 184 } 185 186 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 187 gfp_t gfp_mask, 188 unsigned long *total_scanned); 189 190 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx); 191 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 192 enum vm_event_item idx) 193 { 194 if (mem_cgroup_disabled()) 195 return; 196 __mem_cgroup_count_vm_event(mm, idx); 197 } 198 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 199 void mem_cgroup_split_huge_fixup(struct page *head); 200 #endif 201 202 #ifdef CONFIG_DEBUG_VM 203 bool mem_cgroup_bad_page_check(struct page *page); 204 void mem_cgroup_print_bad_page(struct page *page); 205 #endif 206 #else /* CONFIG_MEMCG */ 207 struct mem_cgroup; 208 209 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 210 gfp_t gfp_mask, 211 struct mem_cgroup **memcgp) 212 { 213 *memcgp = NULL; 214 return 0; 215 } 216 217 static inline void mem_cgroup_commit_charge(struct page *page, 218 struct mem_cgroup *memcg, 219 bool lrucare) 220 { 221 } 222 223 static inline void mem_cgroup_cancel_charge(struct page *page, 224 struct mem_cgroup *memcg) 225 { 226 } 227 228 static inline void mem_cgroup_uncharge(struct page *page) 229 { 230 } 231 232 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 233 { 234 } 235 236 static inline void mem_cgroup_migrate(struct page *oldpage, 237 struct page *newpage, 238 bool lrucare) 239 { 240 } 241 242 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 243 struct mem_cgroup *memcg) 244 { 245 return &zone->lruvec; 246 } 247 248 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 249 struct zone *zone) 250 { 251 return &zone->lruvec; 252 } 253 254 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 255 { 256 return NULL; 257 } 258 259 static inline bool mm_match_cgroup(struct mm_struct *mm, 260 struct mem_cgroup *memcg) 261 { 262 return true; 263 } 264 265 static inline bool task_in_mem_cgroup(struct task_struct *task, 266 const struct mem_cgroup *memcg) 267 { 268 return true; 269 } 270 271 static inline struct cgroup_subsys_state 272 *mem_cgroup_css(struct mem_cgroup *memcg) 273 { 274 return NULL; 275 } 276 277 static inline struct mem_cgroup * 278 mem_cgroup_iter(struct mem_cgroup *root, 279 struct mem_cgroup *prev, 280 struct mem_cgroup_reclaim_cookie *reclaim) 281 { 282 return NULL; 283 } 284 285 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 286 struct mem_cgroup *prev) 287 { 288 } 289 290 static inline bool mem_cgroup_disabled(void) 291 { 292 return true; 293 } 294 295 static inline int 296 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 297 { 298 return 1; 299 } 300 301 static inline unsigned long 302 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 303 { 304 return 0; 305 } 306 307 static inline void 308 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 309 int increment) 310 { 311 } 312 313 static inline void 314 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 315 { 316 } 317 318 static inline void mem_cgroup_begin_update_page_stat(struct page *page, 319 bool *locked, unsigned long *flags) 320 { 321 } 322 323 static inline void mem_cgroup_end_update_page_stat(struct page *page, 324 bool *locked, unsigned long *flags) 325 { 326 } 327 328 static inline void mem_cgroup_oom_enable(void) 329 { 330 } 331 332 static inline void mem_cgroup_oom_disable(void) 333 { 334 } 335 336 static inline bool task_in_memcg_oom(struct task_struct *p) 337 { 338 return false; 339 } 340 341 static inline bool mem_cgroup_oom_synchronize(bool wait) 342 { 343 return false; 344 } 345 346 static inline void mem_cgroup_inc_page_stat(struct page *page, 347 enum mem_cgroup_stat_index idx) 348 { 349 } 350 351 static inline void mem_cgroup_dec_page_stat(struct page *page, 352 enum mem_cgroup_stat_index idx) 353 { 354 } 355 356 static inline 357 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 358 gfp_t gfp_mask, 359 unsigned long *total_scanned) 360 { 361 return 0; 362 } 363 364 static inline void mem_cgroup_split_huge_fixup(struct page *head) 365 { 366 } 367 368 static inline 369 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 370 { 371 } 372 #endif /* CONFIG_MEMCG */ 373 374 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM) 375 static inline bool 376 mem_cgroup_bad_page_check(struct page *page) 377 { 378 return false; 379 } 380 381 static inline void 382 mem_cgroup_print_bad_page(struct page *page) 383 { 384 } 385 #endif 386 387 enum { 388 UNDER_LIMIT, 389 SOFT_LIMIT, 390 OVER_LIMIT, 391 }; 392 393 struct sock; 394 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 395 void sock_update_memcg(struct sock *sk); 396 void sock_release_memcg(struct sock *sk); 397 #else 398 static inline void sock_update_memcg(struct sock *sk) 399 { 400 } 401 static inline void sock_release_memcg(struct sock *sk) 402 { 403 } 404 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 405 406 #ifdef CONFIG_MEMCG_KMEM 407 extern struct static_key memcg_kmem_enabled_key; 408 409 extern int memcg_limited_groups_array_size; 410 411 /* 412 * Helper macro to loop through all memcg-specific caches. Callers must still 413 * check if the cache is valid (it is either valid or NULL). 414 * the slab_mutex must be held when looping through those caches 415 */ 416 #define for_each_memcg_cache_index(_idx) \ 417 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++) 418 419 static inline bool memcg_kmem_enabled(void) 420 { 421 return static_key_false(&memcg_kmem_enabled_key); 422 } 423 424 /* 425 * In general, we'll do everything in our power to not incur in any overhead 426 * for non-memcg users for the kmem functions. Not even a function call, if we 427 * can avoid it. 428 * 429 * Therefore, we'll inline all those functions so that in the best case, we'll 430 * see that kmemcg is off for everybody and proceed quickly. If it is on, 431 * we'll still do most of the flag checking inline. We check a lot of 432 * conditions, but because they are pretty simple, they are expected to be 433 * fast. 434 */ 435 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, 436 int order); 437 void __memcg_kmem_commit_charge(struct page *page, 438 struct mem_cgroup *memcg, int order); 439 void __memcg_kmem_uncharge_pages(struct page *page, int order); 440 441 int memcg_cache_id(struct mem_cgroup *memcg); 442 443 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, 444 struct kmem_cache *root_cache); 445 void memcg_free_cache_params(struct kmem_cache *s); 446 447 int memcg_update_cache_size(struct kmem_cache *s, int num_groups); 448 void memcg_update_array_size(int num_groups); 449 450 struct kmem_cache * 451 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp); 452 453 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order); 454 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order); 455 456 int __memcg_cleanup_cache_params(struct kmem_cache *s); 457 458 /** 459 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. 460 * @gfp: the gfp allocation flags. 461 * @memcg: a pointer to the memcg this was charged against. 462 * @order: allocation order. 463 * 464 * returns true if the memcg where the current task belongs can hold this 465 * allocation. 466 * 467 * We return true automatically if this allocation is not to be accounted to 468 * any memcg. 469 */ 470 static inline bool 471 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 472 { 473 if (!memcg_kmem_enabled()) 474 return true; 475 476 /* 477 * __GFP_NOFAIL allocations will move on even if charging is not 478 * possible. Therefore we don't even try, and have this allocation 479 * unaccounted. We could in theory charge it with 480 * res_counter_charge_nofail, but we hope those allocations are rare, 481 * and won't be worth the trouble. 482 */ 483 if (gfp & __GFP_NOFAIL) 484 return true; 485 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 486 return true; 487 488 /* If the test is dying, just let it go. */ 489 if (unlikely(fatal_signal_pending(current))) 490 return true; 491 492 return __memcg_kmem_newpage_charge(gfp, memcg, order); 493 } 494 495 /** 496 * memcg_kmem_uncharge_pages: uncharge pages from memcg 497 * @page: pointer to struct page being freed 498 * @order: allocation order. 499 * 500 * there is no need to specify memcg here, since it is embedded in page_cgroup 501 */ 502 static inline void 503 memcg_kmem_uncharge_pages(struct page *page, int order) 504 { 505 if (memcg_kmem_enabled()) 506 __memcg_kmem_uncharge_pages(page, order); 507 } 508 509 /** 510 * memcg_kmem_commit_charge: embeds correct memcg in a page 511 * @page: pointer to struct page recently allocated 512 * @memcg: the memcg structure we charged against 513 * @order: allocation order. 514 * 515 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or 516 * failure of the allocation. if @page is NULL, this function will revert the 517 * charges. Otherwise, it will commit the memcg given by @memcg to the 518 * corresponding page_cgroup. 519 */ 520 static inline void 521 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 522 { 523 if (memcg_kmem_enabled() && memcg) 524 __memcg_kmem_commit_charge(page, memcg, order); 525 } 526 527 /** 528 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 529 * @cachep: the original global kmem cache 530 * @gfp: allocation flags. 531 * 532 * All memory allocated from a per-memcg cache is charged to the owner memcg. 533 */ 534 static __always_inline struct kmem_cache * 535 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 536 { 537 if (!memcg_kmem_enabled()) 538 return cachep; 539 if (gfp & __GFP_NOFAIL) 540 return cachep; 541 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 542 return cachep; 543 if (unlikely(fatal_signal_pending(current))) 544 return cachep; 545 546 return __memcg_kmem_get_cache(cachep, gfp); 547 } 548 #else 549 #define for_each_memcg_cache_index(_idx) \ 550 for (; NULL; ) 551 552 static inline bool memcg_kmem_enabled(void) 553 { 554 return false; 555 } 556 557 static inline bool 558 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 559 { 560 return true; 561 } 562 563 static inline void memcg_kmem_uncharge_pages(struct page *page, int order) 564 { 565 } 566 567 static inline void 568 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 569 { 570 } 571 572 static inline int memcg_cache_id(struct mem_cgroup *memcg) 573 { 574 return -1; 575 } 576 577 static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg, 578 struct kmem_cache *s, struct kmem_cache *root_cache) 579 { 580 return 0; 581 } 582 583 static inline void memcg_free_cache_params(struct kmem_cache *s) 584 { 585 } 586 587 static inline struct kmem_cache * 588 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 589 { 590 return cachep; 591 } 592 #endif /* CONFIG_MEMCG_KMEM */ 593 #endif /* _LINUX_MEMCONTROL_H */ 594 595