1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 #include <linux/shrinker.h> 25 26 struct mem_cgroup; 27 struct obj_cgroup; 28 struct page; 29 struct mm_struct; 30 struct kmem_cache; 31 32 /* Cgroup-specific page state, on top of universal node page state */ 33 enum memcg_stat_item { 34 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 35 MEMCG_SOCK, 36 MEMCG_PERCPU_B, 37 MEMCG_VMALLOC, 38 MEMCG_KMEM, 39 MEMCG_ZSWAP_B, 40 MEMCG_ZSWAPPED, 41 MEMCG_NR_STAT, 42 }; 43 44 enum memcg_memory_event { 45 MEMCG_LOW, 46 MEMCG_HIGH, 47 MEMCG_MAX, 48 MEMCG_OOM, 49 MEMCG_OOM_KILL, 50 MEMCG_OOM_GROUP_KILL, 51 MEMCG_SWAP_HIGH, 52 MEMCG_SWAP_MAX, 53 MEMCG_SWAP_FAIL, 54 MEMCG_NR_MEMORY_EVENTS, 55 }; 56 57 struct mem_cgroup_reclaim_cookie { 58 pg_data_t *pgdat; 59 unsigned int generation; 60 }; 61 62 #ifdef CONFIG_MEMCG 63 64 #define MEM_CGROUP_ID_SHIFT 16 65 66 struct mem_cgroup_id { 67 int id; 68 refcount_t ref; 69 }; 70 71 /* 72 * Per memcg event counter is incremented at every pagein/pageout. With THP, 73 * it will be incremented by the number of pages. This counter is used 74 * to trigger some periodic events. This is straightforward and better 75 * than using jiffies etc. to handle periodic memcg event. 76 */ 77 enum mem_cgroup_events_target { 78 MEM_CGROUP_TARGET_THRESH, 79 MEM_CGROUP_TARGET_SOFTLIMIT, 80 MEM_CGROUP_NTARGETS, 81 }; 82 83 struct memcg_vmstats_percpu; 84 struct memcg_vmstats; 85 86 struct mem_cgroup_reclaim_iter { 87 struct mem_cgroup *position; 88 /* scan generation, increased every round-trip */ 89 unsigned int generation; 90 }; 91 92 struct lruvec_stats_percpu { 93 /* Local (CPU and cgroup) state */ 94 long state[NR_VM_NODE_STAT_ITEMS]; 95 96 /* Delta calculation for lockless upward propagation */ 97 long state_prev[NR_VM_NODE_STAT_ITEMS]; 98 }; 99 100 struct lruvec_stats { 101 /* Aggregated (CPU and subtree) state */ 102 long state[NR_VM_NODE_STAT_ITEMS]; 103 104 /* Non-hierarchical (CPU aggregated) state */ 105 long state_local[NR_VM_NODE_STAT_ITEMS]; 106 107 /* Pending child counts during tree propagation */ 108 long state_pending[NR_VM_NODE_STAT_ITEMS]; 109 }; 110 111 /* 112 * per-node information in memory controller. 113 */ 114 struct mem_cgroup_per_node { 115 struct lruvec lruvec; 116 117 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 118 struct lruvec_stats lruvec_stats; 119 120 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 121 122 struct mem_cgroup_reclaim_iter iter; 123 124 struct shrinker_info __rcu *shrinker_info; 125 126 struct rb_node tree_node; /* RB tree node */ 127 unsigned long usage_in_excess;/* Set to the value by which */ 128 /* the soft limit is exceeded*/ 129 bool on_tree; 130 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 131 /* use container_of */ 132 }; 133 134 struct mem_cgroup_threshold { 135 struct eventfd_ctx *eventfd; 136 unsigned long threshold; 137 }; 138 139 /* For threshold */ 140 struct mem_cgroup_threshold_ary { 141 /* An array index points to threshold just below or equal to usage. */ 142 int current_threshold; 143 /* Size of entries[] */ 144 unsigned int size; 145 /* Array of thresholds */ 146 struct mem_cgroup_threshold entries[] __counted_by(size); 147 }; 148 149 struct mem_cgroup_thresholds { 150 /* Primary thresholds array */ 151 struct mem_cgroup_threshold_ary *primary; 152 /* 153 * Spare threshold array. 154 * This is needed to make mem_cgroup_unregister_event() "never fail". 155 * It must be able to store at least primary->size - 1 entries. 156 */ 157 struct mem_cgroup_threshold_ary *spare; 158 }; 159 160 /* 161 * Remember four most recent foreign writebacks with dirty pages in this 162 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 163 * one in a given round, we're likely to catch it later if it keeps 164 * foreign-dirtying, so a fairly low count should be enough. 165 * 166 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 167 */ 168 #define MEMCG_CGWB_FRN_CNT 4 169 170 struct memcg_cgwb_frn { 171 u64 bdi_id; /* bdi->id of the foreign inode */ 172 int memcg_id; /* memcg->css.id of foreign inode */ 173 u64 at; /* jiffies_64 at the time of dirtying */ 174 struct wb_completion done; /* tracks in-flight foreign writebacks */ 175 }; 176 177 /* 178 * Bucket for arbitrarily byte-sized objects charged to a memory 179 * cgroup. The bucket can be reparented in one piece when the cgroup 180 * is destroyed, without having to round up the individual references 181 * of all live memory objects in the wild. 182 */ 183 struct obj_cgroup { 184 struct percpu_ref refcnt; 185 struct mem_cgroup *memcg; 186 atomic_t nr_charged_bytes; 187 union { 188 struct list_head list; /* protected by objcg_lock */ 189 struct rcu_head rcu; 190 }; 191 }; 192 193 /* 194 * The memory controller data structure. The memory controller controls both 195 * page cache and RSS per cgroup. We would eventually like to provide 196 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 197 * to help the administrator determine what knobs to tune. 198 */ 199 struct mem_cgroup { 200 struct cgroup_subsys_state css; 201 202 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 203 struct mem_cgroup_id id; 204 205 /* Accounted resources */ 206 struct page_counter memory; /* Both v1 & v2 */ 207 208 union { 209 struct page_counter swap; /* v2 only */ 210 struct page_counter memsw; /* v1 only */ 211 }; 212 213 /* Legacy consumer-oriented counters */ 214 struct page_counter kmem; /* v1 only */ 215 struct page_counter tcpmem; /* v1 only */ 216 217 /* Range enforcement for interrupt charges */ 218 struct work_struct high_work; 219 220 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 221 unsigned long zswap_max; 222 #endif 223 224 unsigned long soft_limit; 225 226 /* vmpressure notifications */ 227 struct vmpressure vmpressure; 228 229 /* 230 * Should the OOM killer kill all belonging tasks, had it kill one? 231 */ 232 bool oom_group; 233 234 /* protected by memcg_oom_lock */ 235 bool oom_lock; 236 int under_oom; 237 238 int swappiness; 239 /* OOM-Killer disable */ 240 int oom_kill_disable; 241 242 /* memory.events and memory.events.local */ 243 struct cgroup_file events_file; 244 struct cgroup_file events_local_file; 245 246 /* handle for "memory.swap.events" */ 247 struct cgroup_file swap_events_file; 248 249 /* protect arrays of thresholds */ 250 struct mutex thresholds_lock; 251 252 /* thresholds for memory usage. RCU-protected */ 253 struct mem_cgroup_thresholds thresholds; 254 255 /* thresholds for mem+swap usage. RCU-protected */ 256 struct mem_cgroup_thresholds memsw_thresholds; 257 258 /* For oom notifier event fd */ 259 struct list_head oom_notify; 260 261 /* 262 * Should we move charges of a task when a task is moved into this 263 * mem_cgroup ? And what type of charges should we move ? 264 */ 265 unsigned long move_charge_at_immigrate; 266 /* taken only while moving_account > 0 */ 267 spinlock_t move_lock; 268 unsigned long move_lock_flags; 269 270 CACHELINE_PADDING(_pad1_); 271 272 /* memory.stat */ 273 struct memcg_vmstats *vmstats; 274 275 /* memory.events */ 276 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 277 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 278 279 /* 280 * Hint of reclaim pressure for socket memroy management. Note 281 * that this indicator should NOT be used in legacy cgroup mode 282 * where socket memory is accounted/charged separately. 283 */ 284 unsigned long socket_pressure; 285 286 /* Legacy tcp memory accounting */ 287 bool tcpmem_active; 288 int tcpmem_pressure; 289 290 #ifdef CONFIG_MEMCG_KMEM 291 int kmemcg_id; 292 struct obj_cgroup __rcu *objcg; 293 /* list of inherited objcgs, protected by objcg_lock */ 294 struct list_head objcg_list; 295 #endif 296 297 CACHELINE_PADDING(_pad2_); 298 299 /* 300 * set > 0 if pages under this cgroup are moving to other cgroup. 301 */ 302 atomic_t moving_account; 303 struct task_struct *move_lock_task; 304 305 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 306 307 #ifdef CONFIG_CGROUP_WRITEBACK 308 struct list_head cgwb_list; 309 struct wb_domain cgwb_domain; 310 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 311 #endif 312 313 /* List of events which userspace want to receive */ 314 struct list_head event_list; 315 spinlock_t event_list_lock; 316 317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 struct deferred_split deferred_split_queue; 319 #endif 320 321 #ifdef CONFIG_LRU_GEN 322 /* per-memcg mm_struct list */ 323 struct lru_gen_mm_list mm_list; 324 #endif 325 326 struct mem_cgroup_per_node *nodeinfo[]; 327 }; 328 329 /* 330 * size of first charge trial. 331 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 332 * workload. 333 */ 334 #define MEMCG_CHARGE_BATCH 64U 335 336 extern struct mem_cgroup *root_mem_cgroup; 337 338 enum page_memcg_data_flags { 339 /* page->memcg_data is a pointer to an objcgs vector */ 340 MEMCG_DATA_OBJCGS = (1UL << 0), 341 /* page has been accounted as a non-slab kernel page */ 342 MEMCG_DATA_KMEM = (1UL << 1), 343 /* the next bit after the last actual flag */ 344 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 345 }; 346 347 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 348 349 static inline bool folio_memcg_kmem(struct folio *folio); 350 351 /* 352 * After the initialization objcg->memcg is always pointing at 353 * a valid memcg, but can be atomically swapped to the parent memcg. 354 * 355 * The caller must ensure that the returned memcg won't be released: 356 * e.g. acquire the rcu_read_lock or css_set_lock. 357 */ 358 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 359 { 360 return READ_ONCE(objcg->memcg); 361 } 362 363 /* 364 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 365 * @folio: Pointer to the folio. 366 * 367 * Returns a pointer to the memory cgroup associated with the folio, 368 * or NULL. This function assumes that the folio is known to have a 369 * proper memory cgroup pointer. It's not safe to call this function 370 * against some type of folios, e.g. slab folios or ex-slab folios or 371 * kmem folios. 372 */ 373 static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 374 { 375 unsigned long memcg_data = folio->memcg_data; 376 377 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 378 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 379 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 380 381 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 382 } 383 384 /* 385 * __folio_objcg - get the object cgroup associated with a kmem folio. 386 * @folio: Pointer to the folio. 387 * 388 * Returns a pointer to the object cgroup associated with the folio, 389 * or NULL. This function assumes that the folio is known to have a 390 * proper object cgroup pointer. It's not safe to call this function 391 * against some type of folios, e.g. slab folios or ex-slab folios or 392 * LRU folios. 393 */ 394 static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 395 { 396 unsigned long memcg_data = folio->memcg_data; 397 398 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 399 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 400 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 401 402 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 403 } 404 405 /* 406 * folio_memcg - Get the memory cgroup associated with a folio. 407 * @folio: Pointer to the folio. 408 * 409 * Returns a pointer to the memory cgroup associated with the folio, 410 * or NULL. This function assumes that the folio is known to have a 411 * proper memory cgroup pointer. It's not safe to call this function 412 * against some type of folios, e.g. slab folios or ex-slab folios. 413 * 414 * For a non-kmem folio any of the following ensures folio and memcg binding 415 * stability: 416 * 417 * - the folio lock 418 * - LRU isolation 419 * - folio_memcg_lock() 420 * - exclusive reference 421 * - mem_cgroup_trylock_pages() 422 * 423 * For a kmem folio a caller should hold an rcu read lock to protect memcg 424 * associated with a kmem folio from being released. 425 */ 426 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 427 { 428 if (folio_memcg_kmem(folio)) 429 return obj_cgroup_memcg(__folio_objcg(folio)); 430 return __folio_memcg(folio); 431 } 432 433 static inline struct mem_cgroup *page_memcg(struct page *page) 434 { 435 return folio_memcg(page_folio(page)); 436 } 437 438 /** 439 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 440 * @folio: Pointer to the folio. 441 * 442 * This function assumes that the folio is known to have a 443 * proper memory cgroup pointer. It's not safe to call this function 444 * against some type of folios, e.g. slab folios or ex-slab folios. 445 * 446 * Return: A pointer to the memory cgroup associated with the folio, 447 * or NULL. 448 */ 449 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 450 { 451 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 452 453 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 454 WARN_ON_ONCE(!rcu_read_lock_held()); 455 456 if (memcg_data & MEMCG_DATA_KMEM) { 457 struct obj_cgroup *objcg; 458 459 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 460 return obj_cgroup_memcg(objcg); 461 } 462 463 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 464 } 465 466 /* 467 * folio_memcg_check - Get the memory cgroup associated with a folio. 468 * @folio: Pointer to the folio. 469 * 470 * Returns a pointer to the memory cgroup associated with the folio, 471 * or NULL. This function unlike folio_memcg() can take any folio 472 * as an argument. It has to be used in cases when it's not known if a folio 473 * has an associated memory cgroup pointer or an object cgroups vector or 474 * an object cgroup. 475 * 476 * For a non-kmem folio any of the following ensures folio and memcg binding 477 * stability: 478 * 479 * - the folio lock 480 * - LRU isolation 481 * - lock_folio_memcg() 482 * - exclusive reference 483 * - mem_cgroup_trylock_pages() 484 * 485 * For a kmem folio a caller should hold an rcu read lock to protect memcg 486 * associated with a kmem folio from being released. 487 */ 488 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 489 { 490 /* 491 * Because folio->memcg_data might be changed asynchronously 492 * for slabs, READ_ONCE() should be used here. 493 */ 494 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 495 496 if (memcg_data & MEMCG_DATA_OBJCGS) 497 return NULL; 498 499 if (memcg_data & MEMCG_DATA_KMEM) { 500 struct obj_cgroup *objcg; 501 502 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 503 return obj_cgroup_memcg(objcg); 504 } 505 506 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 507 } 508 509 static inline struct mem_cgroup *page_memcg_check(struct page *page) 510 { 511 if (PageTail(page)) 512 return NULL; 513 return folio_memcg_check((struct folio *)page); 514 } 515 516 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 517 { 518 struct mem_cgroup *memcg; 519 520 rcu_read_lock(); 521 retry: 522 memcg = obj_cgroup_memcg(objcg); 523 if (unlikely(!css_tryget(&memcg->css))) 524 goto retry; 525 rcu_read_unlock(); 526 527 return memcg; 528 } 529 530 #ifdef CONFIG_MEMCG_KMEM 531 /* 532 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 533 * @folio: Pointer to the folio. 534 * 535 * Checks if the folio has MemcgKmem flag set. The caller must ensure 536 * that the folio has an associated memory cgroup. It's not safe to call 537 * this function against some types of folios, e.g. slab folios. 538 */ 539 static inline bool folio_memcg_kmem(struct folio *folio) 540 { 541 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 542 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio); 543 return folio->memcg_data & MEMCG_DATA_KMEM; 544 } 545 546 547 #else 548 static inline bool folio_memcg_kmem(struct folio *folio) 549 { 550 return false; 551 } 552 553 #endif 554 555 static inline bool PageMemcgKmem(struct page *page) 556 { 557 return folio_memcg_kmem(page_folio(page)); 558 } 559 560 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 561 { 562 return (memcg == root_mem_cgroup); 563 } 564 565 static inline bool mem_cgroup_disabled(void) 566 { 567 return !cgroup_subsys_enabled(memory_cgrp_subsys); 568 } 569 570 static inline void mem_cgroup_protection(struct mem_cgroup *root, 571 struct mem_cgroup *memcg, 572 unsigned long *min, 573 unsigned long *low) 574 { 575 *min = *low = 0; 576 577 if (mem_cgroup_disabled()) 578 return; 579 580 /* 581 * There is no reclaim protection applied to a targeted reclaim. 582 * We are special casing this specific case here because 583 * mem_cgroup_calculate_protection is not robust enough to keep 584 * the protection invariant for calculated effective values for 585 * parallel reclaimers with different reclaim target. This is 586 * especially a problem for tail memcgs (as they have pages on LRU) 587 * which would want to have effective values 0 for targeted reclaim 588 * but a different value for external reclaim. 589 * 590 * Example 591 * Let's have global and A's reclaim in parallel: 592 * | 593 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 594 * |\ 595 * | C (low = 1G, usage = 2.5G) 596 * B (low = 1G, usage = 0.5G) 597 * 598 * For the global reclaim 599 * A.elow = A.low 600 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 601 * C.elow = min(C.usage, C.low) 602 * 603 * With the effective values resetting we have A reclaim 604 * A.elow = 0 605 * B.elow = B.low 606 * C.elow = C.low 607 * 608 * If the global reclaim races with A's reclaim then 609 * B.elow = C.elow = 0 because children_low_usage > A.elow) 610 * is possible and reclaiming B would be violating the protection. 611 * 612 */ 613 if (root == memcg) 614 return; 615 616 *min = READ_ONCE(memcg->memory.emin); 617 *low = READ_ONCE(memcg->memory.elow); 618 } 619 620 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 621 struct mem_cgroup *memcg); 622 623 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 624 struct mem_cgroup *memcg) 625 { 626 /* 627 * The root memcg doesn't account charges, and doesn't support 628 * protection. The target memcg's protection is ignored, see 629 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 630 */ 631 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 632 memcg == target; 633 } 634 635 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 636 struct mem_cgroup *memcg) 637 { 638 if (mem_cgroup_unprotected(target, memcg)) 639 return false; 640 641 return READ_ONCE(memcg->memory.elow) >= 642 page_counter_read(&memcg->memory); 643 } 644 645 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 646 struct mem_cgroup *memcg) 647 { 648 if (mem_cgroup_unprotected(target, memcg)) 649 return false; 650 651 return READ_ONCE(memcg->memory.emin) >= 652 page_counter_read(&memcg->memory); 653 } 654 655 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 656 657 /** 658 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 659 * @folio: Folio to charge. 660 * @mm: mm context of the allocating task. 661 * @gfp: Reclaim mode. 662 * 663 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 664 * pages according to @gfp if necessary. If @mm is NULL, try to 665 * charge to the active memcg. 666 * 667 * Do not use this for folios allocated for swapin. 668 * 669 * Return: 0 on success. Otherwise, an error code is returned. 670 */ 671 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 672 gfp_t gfp) 673 { 674 if (mem_cgroup_disabled()) 675 return 0; 676 return __mem_cgroup_charge(folio, mm, gfp); 677 } 678 679 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 680 gfp_t gfp, swp_entry_t entry); 681 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 682 683 void __mem_cgroup_uncharge(struct folio *folio); 684 685 /** 686 * mem_cgroup_uncharge - Uncharge a folio. 687 * @folio: Folio to uncharge. 688 * 689 * Uncharge a folio previously charged with mem_cgroup_charge(). 690 */ 691 static inline void mem_cgroup_uncharge(struct folio *folio) 692 { 693 if (mem_cgroup_disabled()) 694 return; 695 __mem_cgroup_uncharge(folio); 696 } 697 698 void __mem_cgroup_uncharge_list(struct list_head *page_list); 699 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 700 { 701 if (mem_cgroup_disabled()) 702 return; 703 __mem_cgroup_uncharge_list(page_list); 704 } 705 706 void mem_cgroup_migrate(struct folio *old, struct folio *new); 707 708 /** 709 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 710 * @memcg: memcg of the wanted lruvec 711 * @pgdat: pglist_data 712 * 713 * Returns the lru list vector holding pages for a given @memcg & 714 * @pgdat combination. This can be the node lruvec, if the memory 715 * controller is disabled. 716 */ 717 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 718 struct pglist_data *pgdat) 719 { 720 struct mem_cgroup_per_node *mz; 721 struct lruvec *lruvec; 722 723 if (mem_cgroup_disabled()) { 724 lruvec = &pgdat->__lruvec; 725 goto out; 726 } 727 728 if (!memcg) 729 memcg = root_mem_cgroup; 730 731 mz = memcg->nodeinfo[pgdat->node_id]; 732 lruvec = &mz->lruvec; 733 out: 734 /* 735 * Since a node can be onlined after the mem_cgroup was created, 736 * we have to be prepared to initialize lruvec->pgdat here; 737 * and if offlined then reonlined, we need to reinitialize it. 738 */ 739 if (unlikely(lruvec->pgdat != pgdat)) 740 lruvec->pgdat = pgdat; 741 return lruvec; 742 } 743 744 /** 745 * folio_lruvec - return lruvec for isolating/putting an LRU folio 746 * @folio: Pointer to the folio. 747 * 748 * This function relies on folio->mem_cgroup being stable. 749 */ 750 static inline struct lruvec *folio_lruvec(struct folio *folio) 751 { 752 struct mem_cgroup *memcg = folio_memcg(folio); 753 754 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 755 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 756 } 757 758 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 759 760 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 761 762 struct lruvec *folio_lruvec_lock(struct folio *folio); 763 struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 764 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 765 unsigned long *flags); 766 767 #ifdef CONFIG_DEBUG_VM 768 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 769 #else 770 static inline 771 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 772 { 773 } 774 #endif 775 776 static inline 777 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 778 return css ? container_of(css, struct mem_cgroup, css) : NULL; 779 } 780 781 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 782 { 783 return percpu_ref_tryget(&objcg->refcnt); 784 } 785 786 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 787 { 788 percpu_ref_get(&objcg->refcnt); 789 } 790 791 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 792 unsigned long nr) 793 { 794 percpu_ref_get_many(&objcg->refcnt, nr); 795 } 796 797 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 798 { 799 percpu_ref_put(&objcg->refcnt); 800 } 801 802 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 803 { 804 return !memcg || css_tryget(&memcg->css); 805 } 806 807 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 808 { 809 if (memcg) 810 css_put(&memcg->css); 811 } 812 813 #define mem_cgroup_from_counter(counter, member) \ 814 container_of(counter, struct mem_cgroup, member) 815 816 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 817 struct mem_cgroup *, 818 struct mem_cgroup_reclaim_cookie *); 819 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 820 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 821 int (*)(struct task_struct *, void *), void *arg); 822 823 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 824 { 825 if (mem_cgroup_disabled()) 826 return 0; 827 828 return memcg->id.id; 829 } 830 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 831 832 #ifdef CONFIG_SHRINKER_DEBUG 833 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 834 { 835 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 836 } 837 838 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 839 #endif 840 841 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 842 { 843 return mem_cgroup_from_css(seq_css(m)); 844 } 845 846 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 847 { 848 struct mem_cgroup_per_node *mz; 849 850 if (mem_cgroup_disabled()) 851 return NULL; 852 853 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 854 return mz->memcg; 855 } 856 857 /** 858 * parent_mem_cgroup - find the accounting parent of a memcg 859 * @memcg: memcg whose parent to find 860 * 861 * Returns the parent memcg, or NULL if this is the root. 862 */ 863 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 864 { 865 return mem_cgroup_from_css(memcg->css.parent); 866 } 867 868 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 869 struct mem_cgroup *root) 870 { 871 if (root == memcg) 872 return true; 873 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 874 } 875 876 static inline bool mm_match_cgroup(struct mm_struct *mm, 877 struct mem_cgroup *memcg) 878 { 879 struct mem_cgroup *task_memcg; 880 bool match = false; 881 882 rcu_read_lock(); 883 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 884 if (task_memcg) 885 match = mem_cgroup_is_descendant(task_memcg, memcg); 886 rcu_read_unlock(); 887 return match; 888 } 889 890 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 891 ino_t page_cgroup_ino(struct page *page); 892 893 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 894 { 895 if (mem_cgroup_disabled()) 896 return true; 897 return !!(memcg->css.flags & CSS_ONLINE); 898 } 899 900 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 901 int zid, int nr_pages); 902 903 static inline 904 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 905 enum lru_list lru, int zone_idx) 906 { 907 struct mem_cgroup_per_node *mz; 908 909 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 910 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 911 } 912 913 void mem_cgroup_handle_over_high(gfp_t gfp_mask); 914 915 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 916 917 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 918 919 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 920 struct task_struct *p); 921 922 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 923 924 static inline void mem_cgroup_enter_user_fault(void) 925 { 926 WARN_ON(current->in_user_fault); 927 current->in_user_fault = 1; 928 } 929 930 static inline void mem_cgroup_exit_user_fault(void) 931 { 932 WARN_ON(!current->in_user_fault); 933 current->in_user_fault = 0; 934 } 935 936 static inline bool task_in_memcg_oom(struct task_struct *p) 937 { 938 return p->memcg_in_oom; 939 } 940 941 bool mem_cgroup_oom_synchronize(bool wait); 942 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 943 struct mem_cgroup *oom_domain); 944 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 945 946 void folio_memcg_lock(struct folio *folio); 947 void folio_memcg_unlock(struct folio *folio); 948 949 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 950 951 /* try to stablize folio_memcg() for all the pages in a memcg */ 952 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 953 { 954 rcu_read_lock(); 955 956 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 957 return true; 958 959 rcu_read_unlock(); 960 return false; 961 } 962 963 static inline void mem_cgroup_unlock_pages(void) 964 { 965 rcu_read_unlock(); 966 } 967 968 /* idx can be of type enum memcg_stat_item or node_stat_item */ 969 static inline void mod_memcg_state(struct mem_cgroup *memcg, 970 int idx, int val) 971 { 972 unsigned long flags; 973 974 local_irq_save(flags); 975 __mod_memcg_state(memcg, idx, val); 976 local_irq_restore(flags); 977 } 978 979 static inline void mod_memcg_page_state(struct page *page, 980 int idx, int val) 981 { 982 struct mem_cgroup *memcg; 983 984 if (mem_cgroup_disabled()) 985 return; 986 987 rcu_read_lock(); 988 memcg = page_memcg(page); 989 if (memcg) 990 mod_memcg_state(memcg, idx, val); 991 rcu_read_unlock(); 992 } 993 994 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 995 996 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 997 enum node_stat_item idx) 998 { 999 struct mem_cgroup_per_node *pn; 1000 long x; 1001 1002 if (mem_cgroup_disabled()) 1003 return node_page_state(lruvec_pgdat(lruvec), idx); 1004 1005 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1006 x = READ_ONCE(pn->lruvec_stats.state[idx]); 1007 #ifdef CONFIG_SMP 1008 if (x < 0) 1009 x = 0; 1010 #endif 1011 return x; 1012 } 1013 1014 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1015 enum node_stat_item idx) 1016 { 1017 struct mem_cgroup_per_node *pn; 1018 long x = 0; 1019 1020 if (mem_cgroup_disabled()) 1021 return node_page_state(lruvec_pgdat(lruvec), idx); 1022 1023 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1024 x = READ_ONCE(pn->lruvec_stats.state_local[idx]); 1025 #ifdef CONFIG_SMP 1026 if (x < 0) 1027 x = 0; 1028 #endif 1029 return x; 1030 } 1031 1032 void mem_cgroup_flush_stats(void); 1033 void mem_cgroup_flush_stats_ratelimited(void); 1034 1035 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1036 int val); 1037 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1038 1039 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1040 int val) 1041 { 1042 unsigned long flags; 1043 1044 local_irq_save(flags); 1045 __mod_lruvec_kmem_state(p, idx, val); 1046 local_irq_restore(flags); 1047 } 1048 1049 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1050 enum node_stat_item idx, int val) 1051 { 1052 unsigned long flags; 1053 1054 local_irq_save(flags); 1055 __mod_memcg_lruvec_state(lruvec, idx, val); 1056 local_irq_restore(flags); 1057 } 1058 1059 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1060 unsigned long count); 1061 1062 static inline void count_memcg_events(struct mem_cgroup *memcg, 1063 enum vm_event_item idx, 1064 unsigned long count) 1065 { 1066 unsigned long flags; 1067 1068 local_irq_save(flags); 1069 __count_memcg_events(memcg, idx, count); 1070 local_irq_restore(flags); 1071 } 1072 1073 static inline void count_memcg_page_event(struct page *page, 1074 enum vm_event_item idx) 1075 { 1076 struct mem_cgroup *memcg = page_memcg(page); 1077 1078 if (memcg) 1079 count_memcg_events(memcg, idx, 1); 1080 } 1081 1082 static inline void count_memcg_folio_events(struct folio *folio, 1083 enum vm_event_item idx, unsigned long nr) 1084 { 1085 struct mem_cgroup *memcg = folio_memcg(folio); 1086 1087 if (memcg) 1088 count_memcg_events(memcg, idx, nr); 1089 } 1090 1091 static inline void count_memcg_event_mm(struct mm_struct *mm, 1092 enum vm_event_item idx) 1093 { 1094 struct mem_cgroup *memcg; 1095 1096 if (mem_cgroup_disabled()) 1097 return; 1098 1099 rcu_read_lock(); 1100 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1101 if (likely(memcg)) 1102 count_memcg_events(memcg, idx, 1); 1103 rcu_read_unlock(); 1104 } 1105 1106 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1107 enum memcg_memory_event event) 1108 { 1109 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1110 event == MEMCG_SWAP_FAIL; 1111 1112 atomic_long_inc(&memcg->memory_events_local[event]); 1113 if (!swap_event) 1114 cgroup_file_notify(&memcg->events_local_file); 1115 1116 do { 1117 atomic_long_inc(&memcg->memory_events[event]); 1118 if (swap_event) 1119 cgroup_file_notify(&memcg->swap_events_file); 1120 else 1121 cgroup_file_notify(&memcg->events_file); 1122 1123 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1124 break; 1125 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1126 break; 1127 } while ((memcg = parent_mem_cgroup(memcg)) && 1128 !mem_cgroup_is_root(memcg)); 1129 } 1130 1131 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1132 enum memcg_memory_event event) 1133 { 1134 struct mem_cgroup *memcg; 1135 1136 if (mem_cgroup_disabled()) 1137 return; 1138 1139 rcu_read_lock(); 1140 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1141 if (likely(memcg)) 1142 memcg_memory_event(memcg, event); 1143 rcu_read_unlock(); 1144 } 1145 1146 void split_page_memcg(struct page *head, unsigned int nr); 1147 1148 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1149 gfp_t gfp_mask, 1150 unsigned long *total_scanned); 1151 1152 #else /* CONFIG_MEMCG */ 1153 1154 #define MEM_CGROUP_ID_SHIFT 0 1155 1156 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1157 { 1158 return NULL; 1159 } 1160 1161 static inline struct mem_cgroup *page_memcg(struct page *page) 1162 { 1163 return NULL; 1164 } 1165 1166 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1167 { 1168 WARN_ON_ONCE(!rcu_read_lock_held()); 1169 return NULL; 1170 } 1171 1172 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1173 { 1174 return NULL; 1175 } 1176 1177 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1178 { 1179 return NULL; 1180 } 1181 1182 static inline bool folio_memcg_kmem(struct folio *folio) 1183 { 1184 return false; 1185 } 1186 1187 static inline bool PageMemcgKmem(struct page *page) 1188 { 1189 return false; 1190 } 1191 1192 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1193 { 1194 return true; 1195 } 1196 1197 static inline bool mem_cgroup_disabled(void) 1198 { 1199 return true; 1200 } 1201 1202 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1203 enum memcg_memory_event event) 1204 { 1205 } 1206 1207 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1208 enum memcg_memory_event event) 1209 { 1210 } 1211 1212 static inline void mem_cgroup_protection(struct mem_cgroup *root, 1213 struct mem_cgroup *memcg, 1214 unsigned long *min, 1215 unsigned long *low) 1216 { 1217 *min = *low = 0; 1218 } 1219 1220 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1221 struct mem_cgroup *memcg) 1222 { 1223 } 1224 1225 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1226 struct mem_cgroup *memcg) 1227 { 1228 return true; 1229 } 1230 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1231 struct mem_cgroup *memcg) 1232 { 1233 return false; 1234 } 1235 1236 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1237 struct mem_cgroup *memcg) 1238 { 1239 return false; 1240 } 1241 1242 static inline int mem_cgroup_charge(struct folio *folio, 1243 struct mm_struct *mm, gfp_t gfp) 1244 { 1245 return 0; 1246 } 1247 1248 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1249 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1250 { 1251 return 0; 1252 } 1253 1254 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1255 { 1256 } 1257 1258 static inline void mem_cgroup_uncharge(struct folio *folio) 1259 { 1260 } 1261 1262 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1263 { 1264 } 1265 1266 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1267 { 1268 } 1269 1270 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1271 struct pglist_data *pgdat) 1272 { 1273 return &pgdat->__lruvec; 1274 } 1275 1276 static inline struct lruvec *folio_lruvec(struct folio *folio) 1277 { 1278 struct pglist_data *pgdat = folio_pgdat(folio); 1279 return &pgdat->__lruvec; 1280 } 1281 1282 static inline 1283 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1284 { 1285 } 1286 1287 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1288 { 1289 return NULL; 1290 } 1291 1292 static inline bool mm_match_cgroup(struct mm_struct *mm, 1293 struct mem_cgroup *memcg) 1294 { 1295 return true; 1296 } 1297 1298 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1299 { 1300 return NULL; 1301 } 1302 1303 static inline 1304 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1305 { 1306 return NULL; 1307 } 1308 1309 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1310 { 1311 } 1312 1313 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1314 { 1315 return true; 1316 } 1317 1318 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1319 { 1320 } 1321 1322 static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1323 { 1324 struct pglist_data *pgdat = folio_pgdat(folio); 1325 1326 spin_lock(&pgdat->__lruvec.lru_lock); 1327 return &pgdat->__lruvec; 1328 } 1329 1330 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1331 { 1332 struct pglist_data *pgdat = folio_pgdat(folio); 1333 1334 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1335 return &pgdat->__lruvec; 1336 } 1337 1338 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1339 unsigned long *flagsp) 1340 { 1341 struct pglist_data *pgdat = folio_pgdat(folio); 1342 1343 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1344 return &pgdat->__lruvec; 1345 } 1346 1347 static inline struct mem_cgroup * 1348 mem_cgroup_iter(struct mem_cgroup *root, 1349 struct mem_cgroup *prev, 1350 struct mem_cgroup_reclaim_cookie *reclaim) 1351 { 1352 return NULL; 1353 } 1354 1355 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1356 struct mem_cgroup *prev) 1357 { 1358 } 1359 1360 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1361 int (*fn)(struct task_struct *, void *), void *arg) 1362 { 1363 } 1364 1365 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1366 { 1367 return 0; 1368 } 1369 1370 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1371 { 1372 WARN_ON_ONCE(id); 1373 /* XXX: This should always return root_mem_cgroup */ 1374 return NULL; 1375 } 1376 1377 #ifdef CONFIG_SHRINKER_DEBUG 1378 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1379 { 1380 return 0; 1381 } 1382 1383 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1384 { 1385 return NULL; 1386 } 1387 #endif 1388 1389 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1390 { 1391 return NULL; 1392 } 1393 1394 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1395 { 1396 return NULL; 1397 } 1398 1399 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1400 { 1401 return true; 1402 } 1403 1404 static inline 1405 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1406 enum lru_list lru, int zone_idx) 1407 { 1408 return 0; 1409 } 1410 1411 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1412 { 1413 return 0; 1414 } 1415 1416 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1417 { 1418 return 0; 1419 } 1420 1421 static inline void 1422 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1423 { 1424 } 1425 1426 static inline void 1427 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1428 { 1429 } 1430 1431 static inline void folio_memcg_lock(struct folio *folio) 1432 { 1433 } 1434 1435 static inline void folio_memcg_unlock(struct folio *folio) 1436 { 1437 } 1438 1439 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1440 { 1441 /* to match folio_memcg_rcu() */ 1442 rcu_read_lock(); 1443 return true; 1444 } 1445 1446 static inline void mem_cgroup_unlock_pages(void) 1447 { 1448 rcu_read_unlock(); 1449 } 1450 1451 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1452 { 1453 } 1454 1455 static inline void mem_cgroup_enter_user_fault(void) 1456 { 1457 } 1458 1459 static inline void mem_cgroup_exit_user_fault(void) 1460 { 1461 } 1462 1463 static inline bool task_in_memcg_oom(struct task_struct *p) 1464 { 1465 return false; 1466 } 1467 1468 static inline bool mem_cgroup_oom_synchronize(bool wait) 1469 { 1470 return false; 1471 } 1472 1473 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1474 struct task_struct *victim, struct mem_cgroup *oom_domain) 1475 { 1476 return NULL; 1477 } 1478 1479 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1480 { 1481 } 1482 1483 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1484 int idx, 1485 int nr) 1486 { 1487 } 1488 1489 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1490 int idx, 1491 int nr) 1492 { 1493 } 1494 1495 static inline void mod_memcg_page_state(struct page *page, 1496 int idx, int val) 1497 { 1498 } 1499 1500 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1501 { 1502 return 0; 1503 } 1504 1505 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1506 enum node_stat_item idx) 1507 { 1508 return node_page_state(lruvec_pgdat(lruvec), idx); 1509 } 1510 1511 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1512 enum node_stat_item idx) 1513 { 1514 return node_page_state(lruvec_pgdat(lruvec), idx); 1515 } 1516 1517 static inline void mem_cgroup_flush_stats(void) 1518 { 1519 } 1520 1521 static inline void mem_cgroup_flush_stats_ratelimited(void) 1522 { 1523 } 1524 1525 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1526 enum node_stat_item idx, int val) 1527 { 1528 } 1529 1530 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1531 int val) 1532 { 1533 struct page *page = virt_to_head_page(p); 1534 1535 __mod_node_page_state(page_pgdat(page), idx, val); 1536 } 1537 1538 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1539 int val) 1540 { 1541 struct page *page = virt_to_head_page(p); 1542 1543 mod_node_page_state(page_pgdat(page), idx, val); 1544 } 1545 1546 static inline void count_memcg_events(struct mem_cgroup *memcg, 1547 enum vm_event_item idx, 1548 unsigned long count) 1549 { 1550 } 1551 1552 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1553 enum vm_event_item idx, 1554 unsigned long count) 1555 { 1556 } 1557 1558 static inline void count_memcg_page_event(struct page *page, 1559 int idx) 1560 { 1561 } 1562 1563 static inline void count_memcg_folio_events(struct folio *folio, 1564 enum vm_event_item idx, unsigned long nr) 1565 { 1566 } 1567 1568 static inline 1569 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1570 { 1571 } 1572 1573 static inline void split_page_memcg(struct page *head, unsigned int nr) 1574 { 1575 } 1576 1577 static inline 1578 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1579 gfp_t gfp_mask, 1580 unsigned long *total_scanned) 1581 { 1582 return 0; 1583 } 1584 #endif /* CONFIG_MEMCG */ 1585 1586 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1587 { 1588 __mod_lruvec_kmem_state(p, idx, 1); 1589 } 1590 1591 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1592 { 1593 __mod_lruvec_kmem_state(p, idx, -1); 1594 } 1595 1596 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1597 { 1598 struct mem_cgroup *memcg; 1599 1600 memcg = lruvec_memcg(lruvec); 1601 if (!memcg) 1602 return NULL; 1603 memcg = parent_mem_cgroup(memcg); 1604 if (!memcg) 1605 return NULL; 1606 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1607 } 1608 1609 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1610 { 1611 spin_unlock(&lruvec->lru_lock); 1612 } 1613 1614 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1615 { 1616 spin_unlock_irq(&lruvec->lru_lock); 1617 } 1618 1619 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1620 unsigned long flags) 1621 { 1622 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1623 } 1624 1625 /* Test requires a stable page->memcg binding, see page_memcg() */ 1626 static inline bool folio_matches_lruvec(struct folio *folio, 1627 struct lruvec *lruvec) 1628 { 1629 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1630 lruvec_memcg(lruvec) == folio_memcg(folio); 1631 } 1632 1633 /* Don't lock again iff page's lruvec locked */ 1634 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1635 struct lruvec *locked_lruvec) 1636 { 1637 if (locked_lruvec) { 1638 if (folio_matches_lruvec(folio, locked_lruvec)) 1639 return locked_lruvec; 1640 1641 unlock_page_lruvec_irq(locked_lruvec); 1642 } 1643 1644 return folio_lruvec_lock_irq(folio); 1645 } 1646 1647 /* Don't lock again iff page's lruvec locked */ 1648 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio, 1649 struct lruvec *locked_lruvec, unsigned long *flags) 1650 { 1651 if (locked_lruvec) { 1652 if (folio_matches_lruvec(folio, locked_lruvec)) 1653 return locked_lruvec; 1654 1655 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1656 } 1657 1658 return folio_lruvec_lock_irqsave(folio, flags); 1659 } 1660 1661 #ifdef CONFIG_CGROUP_WRITEBACK 1662 1663 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1664 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1665 unsigned long *pheadroom, unsigned long *pdirty, 1666 unsigned long *pwriteback); 1667 1668 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1669 struct bdi_writeback *wb); 1670 1671 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1672 struct bdi_writeback *wb) 1673 { 1674 struct mem_cgroup *memcg; 1675 1676 if (mem_cgroup_disabled()) 1677 return; 1678 1679 memcg = folio_memcg(folio); 1680 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1681 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1682 } 1683 1684 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1685 1686 #else /* CONFIG_CGROUP_WRITEBACK */ 1687 1688 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1689 { 1690 return NULL; 1691 } 1692 1693 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1694 unsigned long *pfilepages, 1695 unsigned long *pheadroom, 1696 unsigned long *pdirty, 1697 unsigned long *pwriteback) 1698 { 1699 } 1700 1701 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1702 struct bdi_writeback *wb) 1703 { 1704 } 1705 1706 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1707 { 1708 } 1709 1710 #endif /* CONFIG_CGROUP_WRITEBACK */ 1711 1712 struct sock; 1713 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1714 gfp_t gfp_mask); 1715 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1716 #ifdef CONFIG_MEMCG 1717 extern struct static_key_false memcg_sockets_enabled_key; 1718 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1719 void mem_cgroup_sk_alloc(struct sock *sk); 1720 void mem_cgroup_sk_free(struct sock *sk); 1721 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1722 { 1723 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1724 return !!memcg->tcpmem_pressure; 1725 do { 1726 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1727 return true; 1728 } while ((memcg = parent_mem_cgroup(memcg))); 1729 return false; 1730 } 1731 1732 int alloc_shrinker_info(struct mem_cgroup *memcg); 1733 void free_shrinker_info(struct mem_cgroup *memcg); 1734 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1735 void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1736 #else 1737 #define mem_cgroup_sockets_enabled 0 1738 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1739 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1740 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1741 { 1742 return false; 1743 } 1744 1745 static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1746 int nid, int shrinker_id) 1747 { 1748 } 1749 #endif 1750 1751 #ifdef CONFIG_MEMCG_KMEM 1752 bool mem_cgroup_kmem_disabled(void); 1753 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1754 void __memcg_kmem_uncharge_page(struct page *page, int order); 1755 1756 struct obj_cgroup *get_obj_cgroup_from_current(void); 1757 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1758 1759 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1760 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1761 1762 extern struct static_key_false memcg_bpf_enabled_key; 1763 static inline bool memcg_bpf_enabled(void) 1764 { 1765 return static_branch_likely(&memcg_bpf_enabled_key); 1766 } 1767 1768 extern struct static_key_false memcg_kmem_online_key; 1769 1770 static inline bool memcg_kmem_online(void) 1771 { 1772 return static_branch_likely(&memcg_kmem_online_key); 1773 } 1774 1775 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1776 int order) 1777 { 1778 if (memcg_kmem_online()) 1779 return __memcg_kmem_charge_page(page, gfp, order); 1780 return 0; 1781 } 1782 1783 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1784 { 1785 if (memcg_kmem_online()) 1786 __memcg_kmem_uncharge_page(page, order); 1787 } 1788 1789 /* 1790 * A helper for accessing memcg's kmem_id, used for getting 1791 * corresponding LRU lists. 1792 */ 1793 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1794 { 1795 return memcg ? memcg->kmemcg_id : -1; 1796 } 1797 1798 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1799 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1800 1801 static inline void count_objcg_event(struct obj_cgroup *objcg, 1802 enum vm_event_item idx) 1803 { 1804 struct mem_cgroup *memcg; 1805 1806 if (!memcg_kmem_online()) 1807 return; 1808 1809 rcu_read_lock(); 1810 memcg = obj_cgroup_memcg(objcg); 1811 count_memcg_events(memcg, idx, 1); 1812 rcu_read_unlock(); 1813 } 1814 1815 #else 1816 static inline bool mem_cgroup_kmem_disabled(void) 1817 { 1818 return true; 1819 } 1820 1821 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1822 int order) 1823 { 1824 return 0; 1825 } 1826 1827 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1828 { 1829 } 1830 1831 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1832 int order) 1833 { 1834 return 0; 1835 } 1836 1837 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1838 { 1839 } 1840 1841 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1842 { 1843 return NULL; 1844 } 1845 1846 static inline bool memcg_bpf_enabled(void) 1847 { 1848 return false; 1849 } 1850 1851 static inline bool memcg_kmem_online(void) 1852 { 1853 return false; 1854 } 1855 1856 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1857 { 1858 return -1; 1859 } 1860 1861 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1862 { 1863 return NULL; 1864 } 1865 1866 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1867 { 1868 return NULL; 1869 } 1870 1871 static inline void count_objcg_event(struct obj_cgroup *objcg, 1872 enum vm_event_item idx) 1873 { 1874 } 1875 1876 #endif /* CONFIG_MEMCG_KMEM */ 1877 1878 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1879 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1880 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1881 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1882 #else 1883 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1884 { 1885 return true; 1886 } 1887 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1888 size_t size) 1889 { 1890 } 1891 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1892 size_t size) 1893 { 1894 } 1895 #endif 1896 1897 #endif /* _LINUX_MEMCONTROL_H */ 1898