1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 25 struct mem_cgroup; 26 struct obj_cgroup; 27 struct page; 28 struct mm_struct; 29 struct kmem_cache; 30 31 /* Cgroup-specific page state, on top of universal node page state */ 32 enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_NR_STAT, 36 }; 37 38 enum memcg_memory_event { 39 MEMCG_LOW, 40 MEMCG_HIGH, 41 MEMCG_MAX, 42 MEMCG_OOM, 43 MEMCG_OOM_KILL, 44 MEMCG_SWAP_HIGH, 45 MEMCG_SWAP_MAX, 46 MEMCG_SWAP_FAIL, 47 MEMCG_NR_MEMORY_EVENTS, 48 }; 49 50 struct mem_cgroup_reclaim_cookie { 51 pg_data_t *pgdat; 52 unsigned int generation; 53 }; 54 55 #ifdef CONFIG_MEMCG 56 57 #define MEM_CGROUP_ID_SHIFT 16 58 #define MEM_CGROUP_ID_MAX USHRT_MAX 59 60 struct mem_cgroup_id { 61 int id; 62 refcount_t ref; 63 }; 64 65 /* 66 * Per memcg event counter is incremented at every pagein/pageout. With THP, 67 * it will be incremated by the number of pages. This counter is used for 68 * for trigger some periodic events. This is straightforward and better 69 * than using jiffies etc. to handle periodic memcg event. 70 */ 71 enum mem_cgroup_events_target { 72 MEM_CGROUP_TARGET_THRESH, 73 MEM_CGROUP_TARGET_SOFTLIMIT, 74 MEM_CGROUP_NTARGETS, 75 }; 76 77 struct memcg_vmstats_percpu { 78 long stat[MEMCG_NR_STAT]; 79 unsigned long events[NR_VM_EVENT_ITEMS]; 80 unsigned long nr_page_events; 81 unsigned long targets[MEM_CGROUP_NTARGETS]; 82 }; 83 84 struct mem_cgroup_reclaim_iter { 85 struct mem_cgroup *position; 86 /* scan generation, increased every round-trip */ 87 unsigned int generation; 88 }; 89 90 struct lruvec_stat { 91 long count[NR_VM_NODE_STAT_ITEMS]; 92 }; 93 94 /* 95 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 96 * which have elements charged to this memcg. 97 */ 98 struct memcg_shrinker_map { 99 struct rcu_head rcu; 100 unsigned long map[]; 101 }; 102 103 /* 104 * per-node information in memory controller. 105 */ 106 struct mem_cgroup_per_node { 107 struct lruvec lruvec; 108 109 /* Legacy local VM stats */ 110 struct lruvec_stat __percpu *lruvec_stat_local; 111 112 /* Subtree VM stats (batched updates) */ 113 struct lruvec_stat __percpu *lruvec_stat_cpu; 114 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 115 116 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 117 118 struct mem_cgroup_reclaim_iter iter; 119 120 struct memcg_shrinker_map __rcu *shrinker_map; 121 122 struct rb_node tree_node; /* RB tree node */ 123 unsigned long usage_in_excess;/* Set to the value by which */ 124 /* the soft limit is exceeded*/ 125 bool on_tree; 126 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 127 /* use container_of */ 128 }; 129 130 struct mem_cgroup_threshold { 131 struct eventfd_ctx *eventfd; 132 unsigned long threshold; 133 }; 134 135 /* For threshold */ 136 struct mem_cgroup_threshold_ary { 137 /* An array index points to threshold just below or equal to usage. */ 138 int current_threshold; 139 /* Size of entries[] */ 140 unsigned int size; 141 /* Array of thresholds */ 142 struct mem_cgroup_threshold entries[]; 143 }; 144 145 struct mem_cgroup_thresholds { 146 /* Primary thresholds array */ 147 struct mem_cgroup_threshold_ary *primary; 148 /* 149 * Spare threshold array. 150 * This is needed to make mem_cgroup_unregister_event() "never fail". 151 * It must be able to store at least primary->size - 1 entries. 152 */ 153 struct mem_cgroup_threshold_ary *spare; 154 }; 155 156 enum memcg_kmem_state { 157 KMEM_NONE, 158 KMEM_ALLOCATED, 159 KMEM_ONLINE, 160 }; 161 162 #if defined(CONFIG_SMP) 163 struct memcg_padding { 164 char x[0]; 165 } ____cacheline_internodealigned_in_smp; 166 #define MEMCG_PADDING(name) struct memcg_padding name; 167 #else 168 #define MEMCG_PADDING(name) 169 #endif 170 171 /* 172 * Remember four most recent foreign writebacks with dirty pages in this 173 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 174 * one in a given round, we're likely to catch it later if it keeps 175 * foreign-dirtying, so a fairly low count should be enough. 176 * 177 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 178 */ 179 #define MEMCG_CGWB_FRN_CNT 4 180 181 struct memcg_cgwb_frn { 182 u64 bdi_id; /* bdi->id of the foreign inode */ 183 int memcg_id; /* memcg->css.id of foreign inode */ 184 u64 at; /* jiffies_64 at the time of dirtying */ 185 struct wb_completion done; /* tracks in-flight foreign writebacks */ 186 }; 187 188 /* 189 * Bucket for arbitrarily byte-sized objects charged to a memory 190 * cgroup. The bucket can be reparented in one piece when the cgroup 191 * is destroyed, without having to round up the individual references 192 * of all live memory objects in the wild. 193 */ 194 struct obj_cgroup { 195 struct percpu_ref refcnt; 196 struct mem_cgroup *memcg; 197 atomic_t nr_charged_bytes; 198 union { 199 struct list_head list; 200 struct rcu_head rcu; 201 }; 202 }; 203 204 /* 205 * The memory controller data structure. The memory controller controls both 206 * page cache and RSS per cgroup. We would eventually like to provide 207 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 208 * to help the administrator determine what knobs to tune. 209 */ 210 struct mem_cgroup { 211 struct cgroup_subsys_state css; 212 213 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 214 struct mem_cgroup_id id; 215 216 /* Accounted resources */ 217 struct page_counter memory; 218 struct page_counter swap; 219 220 /* Legacy consumer-oriented counters */ 221 struct page_counter memsw; 222 struct page_counter kmem; 223 struct page_counter tcpmem; 224 225 /* Range enforcement for interrupt charges */ 226 struct work_struct high_work; 227 228 unsigned long soft_limit; 229 230 /* vmpressure notifications */ 231 struct vmpressure vmpressure; 232 233 /* 234 * Should the accounting and control be hierarchical, per subtree? 235 */ 236 bool use_hierarchy; 237 238 /* 239 * Should the OOM killer kill all belonging tasks, had it kill one? 240 */ 241 bool oom_group; 242 243 /* protected by memcg_oom_lock */ 244 bool oom_lock; 245 int under_oom; 246 247 int swappiness; 248 /* OOM-Killer disable */ 249 int oom_kill_disable; 250 251 /* memory.events and memory.events.local */ 252 struct cgroup_file events_file; 253 struct cgroup_file events_local_file; 254 255 /* handle for "memory.swap.events" */ 256 struct cgroup_file swap_events_file; 257 258 /* protect arrays of thresholds */ 259 struct mutex thresholds_lock; 260 261 /* thresholds for memory usage. RCU-protected */ 262 struct mem_cgroup_thresholds thresholds; 263 264 /* thresholds for mem+swap usage. RCU-protected */ 265 struct mem_cgroup_thresholds memsw_thresholds; 266 267 /* For oom notifier event fd */ 268 struct list_head oom_notify; 269 270 /* 271 * Should we move charges of a task when a task is moved into this 272 * mem_cgroup ? And what type of charges should we move ? 273 */ 274 unsigned long move_charge_at_immigrate; 275 /* taken only while moving_account > 0 */ 276 spinlock_t move_lock; 277 unsigned long move_lock_flags; 278 279 MEMCG_PADDING(_pad1_); 280 281 /* 282 * set > 0 if pages under this cgroup are moving to other cgroup. 283 */ 284 atomic_t moving_account; 285 struct task_struct *move_lock_task; 286 287 /* Legacy local VM stats and events */ 288 struct memcg_vmstats_percpu __percpu *vmstats_local; 289 290 /* Subtree VM stats and events (batched updates) */ 291 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 292 293 MEMCG_PADDING(_pad2_); 294 295 atomic_long_t vmstats[MEMCG_NR_STAT]; 296 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 297 298 /* memory.events */ 299 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 300 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 301 302 unsigned long socket_pressure; 303 304 /* Legacy tcp memory accounting */ 305 bool tcpmem_active; 306 int tcpmem_pressure; 307 308 #ifdef CONFIG_MEMCG_KMEM 309 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 310 int kmemcg_id; 311 enum memcg_kmem_state kmem_state; 312 struct obj_cgroup __rcu *objcg; 313 struct list_head objcg_list; /* list of inherited objcgs */ 314 #endif 315 316 #ifdef CONFIG_CGROUP_WRITEBACK 317 struct list_head cgwb_list; 318 struct wb_domain cgwb_domain; 319 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 320 #endif 321 322 /* List of events which userspace want to receive */ 323 struct list_head event_list; 324 spinlock_t event_list_lock; 325 326 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 327 struct deferred_split deferred_split_queue; 328 #endif 329 330 struct mem_cgroup_per_node *nodeinfo[0]; 331 /* WARNING: nodeinfo must be the last member here */ 332 }; 333 334 /* 335 * size of first charge trial. "32" comes from vmscan.c's magic value. 336 * TODO: maybe necessary to use big numbers in big irons. 337 */ 338 #define MEMCG_CHARGE_BATCH 32U 339 340 extern struct mem_cgroup *root_mem_cgroup; 341 342 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 343 { 344 return (memcg == root_mem_cgroup); 345 } 346 347 static inline bool mem_cgroup_disabled(void) 348 { 349 return !cgroup_subsys_enabled(memory_cgrp_subsys); 350 } 351 352 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 353 struct mem_cgroup *memcg, 354 bool in_low_reclaim) 355 { 356 if (mem_cgroup_disabled()) 357 return 0; 358 359 /* 360 * There is no reclaim protection applied to a targeted reclaim. 361 * We are special casing this specific case here because 362 * mem_cgroup_protected calculation is not robust enough to keep 363 * the protection invariant for calculated effective values for 364 * parallel reclaimers with different reclaim target. This is 365 * especially a problem for tail memcgs (as they have pages on LRU) 366 * which would want to have effective values 0 for targeted reclaim 367 * but a different value for external reclaim. 368 * 369 * Example 370 * Let's have global and A's reclaim in parallel: 371 * | 372 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 373 * |\ 374 * | C (low = 1G, usage = 2.5G) 375 * B (low = 1G, usage = 0.5G) 376 * 377 * For the global reclaim 378 * A.elow = A.low 379 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 380 * C.elow = min(C.usage, C.low) 381 * 382 * With the effective values resetting we have A reclaim 383 * A.elow = 0 384 * B.elow = B.low 385 * C.elow = C.low 386 * 387 * If the global reclaim races with A's reclaim then 388 * B.elow = C.elow = 0 because children_low_usage > A.elow) 389 * is possible and reclaiming B would be violating the protection. 390 * 391 */ 392 if (root == memcg) 393 return 0; 394 395 if (in_low_reclaim) 396 return READ_ONCE(memcg->memory.emin); 397 398 return max(READ_ONCE(memcg->memory.emin), 399 READ_ONCE(memcg->memory.elow)); 400 } 401 402 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 403 struct mem_cgroup *memcg); 404 405 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 406 { 407 /* 408 * The root memcg doesn't account charges, and doesn't support 409 * protection. 410 */ 411 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 412 413 } 414 415 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 416 { 417 if (!mem_cgroup_supports_protection(memcg)) 418 return false; 419 420 return READ_ONCE(memcg->memory.elow) >= 421 page_counter_read(&memcg->memory); 422 } 423 424 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 425 { 426 if (!mem_cgroup_supports_protection(memcg)) 427 return false; 428 429 return READ_ONCE(memcg->memory.emin) >= 430 page_counter_read(&memcg->memory); 431 } 432 433 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); 434 435 void mem_cgroup_uncharge(struct page *page); 436 void mem_cgroup_uncharge_list(struct list_head *page_list); 437 438 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 439 440 static struct mem_cgroup_per_node * 441 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 442 { 443 return memcg->nodeinfo[nid]; 444 } 445 446 /** 447 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 448 * @memcg: memcg of the wanted lruvec 449 * 450 * Returns the lru list vector holding pages for a given @memcg & 451 * @node combination. This can be the node lruvec, if the memory 452 * controller is disabled. 453 */ 454 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 455 struct pglist_data *pgdat) 456 { 457 struct mem_cgroup_per_node *mz; 458 struct lruvec *lruvec; 459 460 if (mem_cgroup_disabled()) { 461 lruvec = &pgdat->__lruvec; 462 goto out; 463 } 464 465 if (!memcg) 466 memcg = root_mem_cgroup; 467 468 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 469 lruvec = &mz->lruvec; 470 out: 471 /* 472 * Since a node can be onlined after the mem_cgroup was created, 473 * we have to be prepared to initialize lruvec->pgdat here; 474 * and if offlined then reonlined, we need to reinitialize it. 475 */ 476 if (unlikely(lruvec->pgdat != pgdat)) 477 lruvec->pgdat = pgdat; 478 return lruvec; 479 } 480 481 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 482 483 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 484 485 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 486 487 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 488 489 static inline 490 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 491 return css ? container_of(css, struct mem_cgroup, css) : NULL; 492 } 493 494 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 495 { 496 return percpu_ref_tryget(&objcg->refcnt); 497 } 498 499 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 500 { 501 percpu_ref_get(&objcg->refcnt); 502 } 503 504 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 505 { 506 percpu_ref_put(&objcg->refcnt); 507 } 508 509 /* 510 * After the initialization objcg->memcg is always pointing at 511 * a valid memcg, but can be atomically swapped to the parent memcg. 512 * 513 * The caller must ensure that the returned memcg won't be released: 514 * e.g. acquire the rcu_read_lock or css_set_lock. 515 */ 516 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 517 { 518 return READ_ONCE(objcg->memcg); 519 } 520 521 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 522 { 523 if (memcg) 524 css_put(&memcg->css); 525 } 526 527 #define mem_cgroup_from_counter(counter, member) \ 528 container_of(counter, struct mem_cgroup, member) 529 530 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 531 struct mem_cgroup *, 532 struct mem_cgroup_reclaim_cookie *); 533 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 534 int mem_cgroup_scan_tasks(struct mem_cgroup *, 535 int (*)(struct task_struct *, void *), void *); 536 537 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 538 { 539 if (mem_cgroup_disabled()) 540 return 0; 541 542 return memcg->id.id; 543 } 544 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 545 546 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 547 { 548 return mem_cgroup_from_css(seq_css(m)); 549 } 550 551 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 552 { 553 struct mem_cgroup_per_node *mz; 554 555 if (mem_cgroup_disabled()) 556 return NULL; 557 558 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 559 return mz->memcg; 560 } 561 562 /** 563 * parent_mem_cgroup - find the accounting parent of a memcg 564 * @memcg: memcg whose parent to find 565 * 566 * Returns the parent memcg, or NULL if this is the root or the memory 567 * controller is in legacy no-hierarchy mode. 568 */ 569 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 570 { 571 if (!memcg->memory.parent) 572 return NULL; 573 return mem_cgroup_from_counter(memcg->memory.parent, memory); 574 } 575 576 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 577 struct mem_cgroup *root) 578 { 579 if (root == memcg) 580 return true; 581 if (!root->use_hierarchy) 582 return false; 583 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 584 } 585 586 static inline bool mm_match_cgroup(struct mm_struct *mm, 587 struct mem_cgroup *memcg) 588 { 589 struct mem_cgroup *task_memcg; 590 bool match = false; 591 592 rcu_read_lock(); 593 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 594 if (task_memcg) 595 match = mem_cgroup_is_descendant(task_memcg, memcg); 596 rcu_read_unlock(); 597 return match; 598 } 599 600 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 601 ino_t page_cgroup_ino(struct page *page); 602 603 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 604 { 605 if (mem_cgroup_disabled()) 606 return true; 607 return !!(memcg->css.flags & CSS_ONLINE); 608 } 609 610 /* 611 * For memory reclaim. 612 */ 613 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 614 615 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 616 int zid, int nr_pages); 617 618 static inline 619 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 620 enum lru_list lru, int zone_idx) 621 { 622 struct mem_cgroup_per_node *mz; 623 624 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 625 return mz->lru_zone_size[zone_idx][lru]; 626 } 627 628 void mem_cgroup_handle_over_high(void); 629 630 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 631 632 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 633 634 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 635 struct task_struct *p); 636 637 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 638 639 static inline void mem_cgroup_enter_user_fault(void) 640 { 641 WARN_ON(current->in_user_fault); 642 current->in_user_fault = 1; 643 } 644 645 static inline void mem_cgroup_exit_user_fault(void) 646 { 647 WARN_ON(!current->in_user_fault); 648 current->in_user_fault = 0; 649 } 650 651 static inline bool task_in_memcg_oom(struct task_struct *p) 652 { 653 return p->memcg_in_oom; 654 } 655 656 bool mem_cgroup_oom_synchronize(bool wait); 657 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 658 struct mem_cgroup *oom_domain); 659 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 660 661 #ifdef CONFIG_MEMCG_SWAP 662 extern bool cgroup_memory_noswap; 663 #endif 664 665 struct mem_cgroup *lock_page_memcg(struct page *page); 666 void __unlock_page_memcg(struct mem_cgroup *memcg); 667 void unlock_page_memcg(struct page *page); 668 669 /* 670 * idx can be of type enum memcg_stat_item or node_stat_item. 671 * Keep in sync with memcg_exact_page_state(). 672 */ 673 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 674 { 675 long x = atomic_long_read(&memcg->vmstats[idx]); 676 #ifdef CONFIG_SMP 677 if (x < 0) 678 x = 0; 679 #endif 680 return x; 681 } 682 683 /* 684 * idx can be of type enum memcg_stat_item or node_stat_item. 685 * Keep in sync with memcg_exact_page_state(). 686 */ 687 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 688 int idx) 689 { 690 long x = 0; 691 int cpu; 692 693 for_each_possible_cpu(cpu) 694 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 695 #ifdef CONFIG_SMP 696 if (x < 0) 697 x = 0; 698 #endif 699 return x; 700 } 701 702 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 703 704 /* idx can be of type enum memcg_stat_item or node_stat_item */ 705 static inline void mod_memcg_state(struct mem_cgroup *memcg, 706 int idx, int val) 707 { 708 unsigned long flags; 709 710 local_irq_save(flags); 711 __mod_memcg_state(memcg, idx, val); 712 local_irq_restore(flags); 713 } 714 715 /** 716 * mod_memcg_page_state - update page state statistics 717 * @page: the page 718 * @idx: page state item to account 719 * @val: number of pages (positive or negative) 720 * 721 * The @page must be locked or the caller must use lock_page_memcg() 722 * to prevent double accounting when the page is concurrently being 723 * moved to another memcg: 724 * 725 * lock_page(page) or lock_page_memcg(page) 726 * if (TestClearPageState(page)) 727 * mod_memcg_page_state(page, state, -1); 728 * unlock_page(page) or unlock_page_memcg(page) 729 * 730 * Kernel pages are an exception to this, since they'll never move. 731 */ 732 static inline void __mod_memcg_page_state(struct page *page, 733 int idx, int val) 734 { 735 if (page->mem_cgroup) 736 __mod_memcg_state(page->mem_cgroup, idx, val); 737 } 738 739 static inline void mod_memcg_page_state(struct page *page, 740 int idx, int val) 741 { 742 if (page->mem_cgroup) 743 mod_memcg_state(page->mem_cgroup, idx, val); 744 } 745 746 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 747 enum node_stat_item idx) 748 { 749 struct mem_cgroup_per_node *pn; 750 long x; 751 752 if (mem_cgroup_disabled()) 753 return node_page_state(lruvec_pgdat(lruvec), idx); 754 755 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 756 x = atomic_long_read(&pn->lruvec_stat[idx]); 757 #ifdef CONFIG_SMP 758 if (x < 0) 759 x = 0; 760 #endif 761 return x; 762 } 763 764 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 765 enum node_stat_item idx) 766 { 767 struct mem_cgroup_per_node *pn; 768 long x = 0; 769 int cpu; 770 771 if (mem_cgroup_disabled()) 772 return node_page_state(lruvec_pgdat(lruvec), idx); 773 774 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 775 for_each_possible_cpu(cpu) 776 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 777 #ifdef CONFIG_SMP 778 if (x < 0) 779 x = 0; 780 #endif 781 return x; 782 } 783 784 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 785 int val); 786 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 787 int val); 788 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); 789 790 void mod_memcg_obj_state(void *p, int idx, int val); 791 792 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, 793 int val) 794 { 795 unsigned long flags; 796 797 local_irq_save(flags); 798 __mod_lruvec_slab_state(p, idx, val); 799 local_irq_restore(flags); 800 } 801 802 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 803 enum node_stat_item idx, int val) 804 { 805 unsigned long flags; 806 807 local_irq_save(flags); 808 __mod_memcg_lruvec_state(lruvec, idx, val); 809 local_irq_restore(flags); 810 } 811 812 static inline void mod_lruvec_state(struct lruvec *lruvec, 813 enum node_stat_item idx, int val) 814 { 815 unsigned long flags; 816 817 local_irq_save(flags); 818 __mod_lruvec_state(lruvec, idx, val); 819 local_irq_restore(flags); 820 } 821 822 static inline void __mod_lruvec_page_state(struct page *page, 823 enum node_stat_item idx, int val) 824 { 825 struct page *head = compound_head(page); /* rmap on tail pages */ 826 pg_data_t *pgdat = page_pgdat(page); 827 struct lruvec *lruvec; 828 829 /* Untracked pages have no memcg, no lruvec. Update only the node */ 830 if (!head->mem_cgroup) { 831 __mod_node_page_state(pgdat, idx, val); 832 return; 833 } 834 835 lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat); 836 __mod_lruvec_state(lruvec, idx, val); 837 } 838 839 static inline void mod_lruvec_page_state(struct page *page, 840 enum node_stat_item idx, int val) 841 { 842 unsigned long flags; 843 844 local_irq_save(flags); 845 __mod_lruvec_page_state(page, idx, val); 846 local_irq_restore(flags); 847 } 848 849 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 850 gfp_t gfp_mask, 851 unsigned long *total_scanned); 852 853 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 854 unsigned long count); 855 856 static inline void count_memcg_events(struct mem_cgroup *memcg, 857 enum vm_event_item idx, 858 unsigned long count) 859 { 860 unsigned long flags; 861 862 local_irq_save(flags); 863 __count_memcg_events(memcg, idx, count); 864 local_irq_restore(flags); 865 } 866 867 static inline void count_memcg_page_event(struct page *page, 868 enum vm_event_item idx) 869 { 870 if (page->mem_cgroup) 871 count_memcg_events(page->mem_cgroup, idx, 1); 872 } 873 874 static inline void count_memcg_event_mm(struct mm_struct *mm, 875 enum vm_event_item idx) 876 { 877 struct mem_cgroup *memcg; 878 879 if (mem_cgroup_disabled()) 880 return; 881 882 rcu_read_lock(); 883 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 884 if (likely(memcg)) 885 count_memcg_events(memcg, idx, 1); 886 rcu_read_unlock(); 887 } 888 889 static inline void memcg_memory_event(struct mem_cgroup *memcg, 890 enum memcg_memory_event event) 891 { 892 atomic_long_inc(&memcg->memory_events_local[event]); 893 cgroup_file_notify(&memcg->events_local_file); 894 895 do { 896 atomic_long_inc(&memcg->memory_events[event]); 897 cgroup_file_notify(&memcg->events_file); 898 899 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 900 break; 901 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 902 break; 903 } while ((memcg = parent_mem_cgroup(memcg)) && 904 !mem_cgroup_is_root(memcg)); 905 } 906 907 static inline void memcg_memory_event_mm(struct mm_struct *mm, 908 enum memcg_memory_event event) 909 { 910 struct mem_cgroup *memcg; 911 912 if (mem_cgroup_disabled()) 913 return; 914 915 rcu_read_lock(); 916 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 917 if (likely(memcg)) 918 memcg_memory_event(memcg, event); 919 rcu_read_unlock(); 920 } 921 922 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 923 void mem_cgroup_split_huge_fixup(struct page *head); 924 #endif 925 926 #else /* CONFIG_MEMCG */ 927 928 #define MEM_CGROUP_ID_SHIFT 0 929 #define MEM_CGROUP_ID_MAX 0 930 931 struct mem_cgroup; 932 933 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 934 { 935 return true; 936 } 937 938 static inline bool mem_cgroup_disabled(void) 939 { 940 return true; 941 } 942 943 static inline void memcg_memory_event(struct mem_cgroup *memcg, 944 enum memcg_memory_event event) 945 { 946 } 947 948 static inline void memcg_memory_event_mm(struct mm_struct *mm, 949 enum memcg_memory_event event) 950 { 951 } 952 953 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 954 struct mem_cgroup *memcg, 955 bool in_low_reclaim) 956 { 957 return 0; 958 } 959 960 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 961 struct mem_cgroup *memcg) 962 { 963 } 964 965 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 966 { 967 return false; 968 } 969 970 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 971 { 972 return false; 973 } 974 975 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 976 gfp_t gfp_mask) 977 { 978 return 0; 979 } 980 981 static inline void mem_cgroup_uncharge(struct page *page) 982 { 983 } 984 985 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 986 { 987 } 988 989 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 990 { 991 } 992 993 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 994 struct pglist_data *pgdat) 995 { 996 return &pgdat->__lruvec; 997 } 998 999 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 1000 struct pglist_data *pgdat) 1001 { 1002 return &pgdat->__lruvec; 1003 } 1004 1005 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1006 { 1007 return NULL; 1008 } 1009 1010 static inline bool mm_match_cgroup(struct mm_struct *mm, 1011 struct mem_cgroup *memcg) 1012 { 1013 return true; 1014 } 1015 1016 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1017 { 1018 return NULL; 1019 } 1020 1021 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 1022 { 1023 return NULL; 1024 } 1025 1026 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1027 { 1028 } 1029 1030 static inline struct mem_cgroup * 1031 mem_cgroup_iter(struct mem_cgroup *root, 1032 struct mem_cgroup *prev, 1033 struct mem_cgroup_reclaim_cookie *reclaim) 1034 { 1035 return NULL; 1036 } 1037 1038 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1039 struct mem_cgroup *prev) 1040 { 1041 } 1042 1043 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1044 int (*fn)(struct task_struct *, void *), void *arg) 1045 { 1046 return 0; 1047 } 1048 1049 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1050 { 1051 return 0; 1052 } 1053 1054 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1055 { 1056 WARN_ON_ONCE(id); 1057 /* XXX: This should always return root_mem_cgroup */ 1058 return NULL; 1059 } 1060 1061 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1062 { 1063 return NULL; 1064 } 1065 1066 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1067 { 1068 return NULL; 1069 } 1070 1071 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1072 { 1073 return true; 1074 } 1075 1076 static inline 1077 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1078 enum lru_list lru, int zone_idx) 1079 { 1080 return 0; 1081 } 1082 1083 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1084 { 1085 return 0; 1086 } 1087 1088 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1089 { 1090 return 0; 1091 } 1092 1093 static inline void 1094 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1095 { 1096 } 1097 1098 static inline void 1099 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1100 { 1101 } 1102 1103 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 1104 { 1105 return NULL; 1106 } 1107 1108 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 1109 { 1110 } 1111 1112 static inline void unlock_page_memcg(struct page *page) 1113 { 1114 } 1115 1116 static inline void mem_cgroup_handle_over_high(void) 1117 { 1118 } 1119 1120 static inline void mem_cgroup_enter_user_fault(void) 1121 { 1122 } 1123 1124 static inline void mem_cgroup_exit_user_fault(void) 1125 { 1126 } 1127 1128 static inline bool task_in_memcg_oom(struct task_struct *p) 1129 { 1130 return false; 1131 } 1132 1133 static inline bool mem_cgroup_oom_synchronize(bool wait) 1134 { 1135 return false; 1136 } 1137 1138 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1139 struct task_struct *victim, struct mem_cgroup *oom_domain) 1140 { 1141 return NULL; 1142 } 1143 1144 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1145 { 1146 } 1147 1148 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1149 { 1150 return 0; 1151 } 1152 1153 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1154 int idx) 1155 { 1156 return 0; 1157 } 1158 1159 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1160 int idx, 1161 int nr) 1162 { 1163 } 1164 1165 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1166 int idx, 1167 int nr) 1168 { 1169 } 1170 1171 static inline void __mod_memcg_page_state(struct page *page, 1172 int idx, 1173 int nr) 1174 { 1175 } 1176 1177 static inline void mod_memcg_page_state(struct page *page, 1178 int idx, 1179 int nr) 1180 { 1181 } 1182 1183 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1184 enum node_stat_item idx) 1185 { 1186 return node_page_state(lruvec_pgdat(lruvec), idx); 1187 } 1188 1189 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1190 enum node_stat_item idx) 1191 { 1192 return node_page_state(lruvec_pgdat(lruvec), idx); 1193 } 1194 1195 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1196 enum node_stat_item idx, int val) 1197 { 1198 } 1199 1200 static inline void __mod_lruvec_state(struct lruvec *lruvec, 1201 enum node_stat_item idx, int val) 1202 { 1203 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1204 } 1205 1206 static inline void mod_lruvec_state(struct lruvec *lruvec, 1207 enum node_stat_item idx, int val) 1208 { 1209 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1210 } 1211 1212 static inline void __mod_lruvec_page_state(struct page *page, 1213 enum node_stat_item idx, int val) 1214 { 1215 __mod_node_page_state(page_pgdat(page), idx, val); 1216 } 1217 1218 static inline void mod_lruvec_page_state(struct page *page, 1219 enum node_stat_item idx, int val) 1220 { 1221 mod_node_page_state(page_pgdat(page), idx, val); 1222 } 1223 1224 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1225 int val) 1226 { 1227 struct page *page = virt_to_head_page(p); 1228 1229 __mod_node_page_state(page_pgdat(page), idx, val); 1230 } 1231 1232 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1233 int val) 1234 { 1235 struct page *page = virt_to_head_page(p); 1236 1237 mod_node_page_state(page_pgdat(page), idx, val); 1238 } 1239 1240 static inline void mod_memcg_obj_state(void *p, int idx, int val) 1241 { 1242 } 1243 1244 static inline 1245 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1246 gfp_t gfp_mask, 1247 unsigned long *total_scanned) 1248 { 1249 return 0; 1250 } 1251 1252 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1253 { 1254 } 1255 1256 static inline void count_memcg_events(struct mem_cgroup *memcg, 1257 enum vm_event_item idx, 1258 unsigned long count) 1259 { 1260 } 1261 1262 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1263 enum vm_event_item idx, 1264 unsigned long count) 1265 { 1266 } 1267 1268 static inline void count_memcg_page_event(struct page *page, 1269 int idx) 1270 { 1271 } 1272 1273 static inline 1274 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1275 { 1276 } 1277 #endif /* CONFIG_MEMCG */ 1278 1279 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1280 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1281 int idx) 1282 { 1283 __mod_memcg_state(memcg, idx, 1); 1284 } 1285 1286 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1287 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1288 int idx) 1289 { 1290 __mod_memcg_state(memcg, idx, -1); 1291 } 1292 1293 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1294 static inline void __inc_memcg_page_state(struct page *page, 1295 int idx) 1296 { 1297 __mod_memcg_page_state(page, idx, 1); 1298 } 1299 1300 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1301 static inline void __dec_memcg_page_state(struct page *page, 1302 int idx) 1303 { 1304 __mod_memcg_page_state(page, idx, -1); 1305 } 1306 1307 static inline void __inc_lruvec_state(struct lruvec *lruvec, 1308 enum node_stat_item idx) 1309 { 1310 __mod_lruvec_state(lruvec, idx, 1); 1311 } 1312 1313 static inline void __dec_lruvec_state(struct lruvec *lruvec, 1314 enum node_stat_item idx) 1315 { 1316 __mod_lruvec_state(lruvec, idx, -1); 1317 } 1318 1319 static inline void __inc_lruvec_page_state(struct page *page, 1320 enum node_stat_item idx) 1321 { 1322 __mod_lruvec_page_state(page, idx, 1); 1323 } 1324 1325 static inline void __dec_lruvec_page_state(struct page *page, 1326 enum node_stat_item idx) 1327 { 1328 __mod_lruvec_page_state(page, idx, -1); 1329 } 1330 1331 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) 1332 { 1333 __mod_lruvec_slab_state(p, idx, 1); 1334 } 1335 1336 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) 1337 { 1338 __mod_lruvec_slab_state(p, idx, -1); 1339 } 1340 1341 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1342 static inline void inc_memcg_state(struct mem_cgroup *memcg, 1343 int idx) 1344 { 1345 mod_memcg_state(memcg, idx, 1); 1346 } 1347 1348 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1349 static inline void dec_memcg_state(struct mem_cgroup *memcg, 1350 int idx) 1351 { 1352 mod_memcg_state(memcg, idx, -1); 1353 } 1354 1355 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1356 static inline void inc_memcg_page_state(struct page *page, 1357 int idx) 1358 { 1359 mod_memcg_page_state(page, idx, 1); 1360 } 1361 1362 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1363 static inline void dec_memcg_page_state(struct page *page, 1364 int idx) 1365 { 1366 mod_memcg_page_state(page, idx, -1); 1367 } 1368 1369 static inline void inc_lruvec_state(struct lruvec *lruvec, 1370 enum node_stat_item idx) 1371 { 1372 mod_lruvec_state(lruvec, idx, 1); 1373 } 1374 1375 static inline void dec_lruvec_state(struct lruvec *lruvec, 1376 enum node_stat_item idx) 1377 { 1378 mod_lruvec_state(lruvec, idx, -1); 1379 } 1380 1381 static inline void inc_lruvec_page_state(struct page *page, 1382 enum node_stat_item idx) 1383 { 1384 mod_lruvec_page_state(page, idx, 1); 1385 } 1386 1387 static inline void dec_lruvec_page_state(struct page *page, 1388 enum node_stat_item idx) 1389 { 1390 mod_lruvec_page_state(page, idx, -1); 1391 } 1392 1393 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1394 { 1395 struct mem_cgroup *memcg; 1396 1397 memcg = lruvec_memcg(lruvec); 1398 if (!memcg) 1399 return NULL; 1400 memcg = parent_mem_cgroup(memcg); 1401 if (!memcg) 1402 return NULL; 1403 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1404 } 1405 1406 #ifdef CONFIG_CGROUP_WRITEBACK 1407 1408 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1409 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1410 unsigned long *pheadroom, unsigned long *pdirty, 1411 unsigned long *pwriteback); 1412 1413 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1414 struct bdi_writeback *wb); 1415 1416 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1417 struct bdi_writeback *wb) 1418 { 1419 if (mem_cgroup_disabled()) 1420 return; 1421 1422 if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) 1423 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1424 } 1425 1426 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1427 1428 #else /* CONFIG_CGROUP_WRITEBACK */ 1429 1430 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1431 { 1432 return NULL; 1433 } 1434 1435 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1436 unsigned long *pfilepages, 1437 unsigned long *pheadroom, 1438 unsigned long *pdirty, 1439 unsigned long *pwriteback) 1440 { 1441 } 1442 1443 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1444 struct bdi_writeback *wb) 1445 { 1446 } 1447 1448 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1449 { 1450 } 1451 1452 #endif /* CONFIG_CGROUP_WRITEBACK */ 1453 1454 struct sock; 1455 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1456 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1457 #ifdef CONFIG_MEMCG 1458 extern struct static_key_false memcg_sockets_enabled_key; 1459 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1460 void mem_cgroup_sk_alloc(struct sock *sk); 1461 void mem_cgroup_sk_free(struct sock *sk); 1462 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1463 { 1464 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1465 return true; 1466 do { 1467 if (time_before(jiffies, memcg->socket_pressure)) 1468 return true; 1469 } while ((memcg = parent_mem_cgroup(memcg))); 1470 return false; 1471 } 1472 1473 extern int memcg_expand_shrinker_maps(int new_id); 1474 1475 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1476 int nid, int shrinker_id); 1477 #else 1478 #define mem_cgroup_sockets_enabled 0 1479 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1480 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1481 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1482 { 1483 return false; 1484 } 1485 1486 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1487 int nid, int shrinker_id) 1488 { 1489 } 1490 #endif 1491 1492 #ifdef CONFIG_MEMCG_KMEM 1493 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1494 unsigned int nr_pages); 1495 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 1496 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1497 void __memcg_kmem_uncharge_page(struct page *page, int order); 1498 1499 struct obj_cgroup *get_obj_cgroup_from_current(void); 1500 1501 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1502 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1503 1504 extern struct static_key_false memcg_kmem_enabled_key; 1505 1506 extern int memcg_nr_cache_ids; 1507 void memcg_get_cache_ids(void); 1508 void memcg_put_cache_ids(void); 1509 1510 /* 1511 * Helper macro to loop through all memcg-specific caches. Callers must still 1512 * check if the cache is valid (it is either valid or NULL). 1513 * the slab_mutex must be held when looping through those caches 1514 */ 1515 #define for_each_memcg_cache_index(_idx) \ 1516 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1517 1518 static inline bool memcg_kmem_enabled(void) 1519 { 1520 return static_branch_likely(&memcg_kmem_enabled_key); 1521 } 1522 1523 static inline bool memcg_kmem_bypass(void) 1524 { 1525 if (in_interrupt()) 1526 return true; 1527 1528 /* Allow remote memcg charging in kthread contexts. */ 1529 if ((!current->mm || (current->flags & PF_KTHREAD)) && 1530 !current->active_memcg) 1531 return true; 1532 return false; 1533 } 1534 1535 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1536 int order) 1537 { 1538 if (memcg_kmem_enabled()) 1539 return __memcg_kmem_charge_page(page, gfp, order); 1540 return 0; 1541 } 1542 1543 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1544 { 1545 if (memcg_kmem_enabled()) 1546 __memcg_kmem_uncharge_page(page, order); 1547 } 1548 1549 static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1550 unsigned int nr_pages) 1551 { 1552 if (memcg_kmem_enabled()) 1553 return __memcg_kmem_charge(memcg, gfp, nr_pages); 1554 return 0; 1555 } 1556 1557 static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg, 1558 unsigned int nr_pages) 1559 { 1560 if (memcg_kmem_enabled()) 1561 __memcg_kmem_uncharge(memcg, nr_pages); 1562 } 1563 1564 /* 1565 * helper for accessing a memcg's index. It will be used as an index in the 1566 * child cache array in kmem_cache, and also to derive its name. This function 1567 * will return -1 when this is not a kmem-limited memcg. 1568 */ 1569 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1570 { 1571 return memcg ? memcg->kmemcg_id : -1; 1572 } 1573 1574 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1575 1576 #else 1577 1578 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1579 int order) 1580 { 1581 return 0; 1582 } 1583 1584 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1585 { 1586 } 1587 1588 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1589 int order) 1590 { 1591 return 0; 1592 } 1593 1594 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1595 { 1596 } 1597 1598 #define for_each_memcg_cache_index(_idx) \ 1599 for (; NULL; ) 1600 1601 static inline bool memcg_kmem_enabled(void) 1602 { 1603 return false; 1604 } 1605 1606 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1607 { 1608 return -1; 1609 } 1610 1611 static inline void memcg_get_cache_ids(void) 1612 { 1613 } 1614 1615 static inline void memcg_put_cache_ids(void) 1616 { 1617 } 1618 1619 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1620 { 1621 return NULL; 1622 } 1623 1624 #endif /* CONFIG_MEMCG_KMEM */ 1625 1626 #endif /* _LINUX_MEMCONTROL_H */ 1627