1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 25 struct mem_cgroup; 26 struct obj_cgroup; 27 struct page; 28 struct mm_struct; 29 struct kmem_cache; 30 31 /* Cgroup-specific page state, on top of universal node page state */ 32 enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_NR_STAT, 37 }; 38 39 enum memcg_memory_event { 40 MEMCG_LOW, 41 MEMCG_HIGH, 42 MEMCG_MAX, 43 MEMCG_OOM, 44 MEMCG_OOM_KILL, 45 MEMCG_SWAP_HIGH, 46 MEMCG_SWAP_MAX, 47 MEMCG_SWAP_FAIL, 48 MEMCG_NR_MEMORY_EVENTS, 49 }; 50 51 struct mem_cgroup_reclaim_cookie { 52 pg_data_t *pgdat; 53 unsigned int generation; 54 }; 55 56 #ifdef CONFIG_MEMCG 57 58 #define MEM_CGROUP_ID_SHIFT 16 59 #define MEM_CGROUP_ID_MAX USHRT_MAX 60 61 struct mem_cgroup_id { 62 int id; 63 refcount_t ref; 64 }; 65 66 /* 67 * Per memcg event counter is incremented at every pagein/pageout. With THP, 68 * it will be incremented by the number of pages. This counter is used 69 * to trigger some periodic events. This is straightforward and better 70 * than using jiffies etc. to handle periodic memcg event. 71 */ 72 enum mem_cgroup_events_target { 73 MEM_CGROUP_TARGET_THRESH, 74 MEM_CGROUP_TARGET_SOFTLIMIT, 75 MEM_CGROUP_NTARGETS, 76 }; 77 78 struct memcg_vmstats_percpu { 79 long stat[MEMCG_NR_STAT]; 80 unsigned long events[NR_VM_EVENT_ITEMS]; 81 unsigned long nr_page_events; 82 unsigned long targets[MEM_CGROUP_NTARGETS]; 83 }; 84 85 struct mem_cgroup_reclaim_iter { 86 struct mem_cgroup *position; 87 /* scan generation, increased every round-trip */ 88 unsigned int generation; 89 }; 90 91 struct lruvec_stat { 92 long count[NR_VM_NODE_STAT_ITEMS]; 93 }; 94 95 /* 96 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 97 * which have elements charged to this memcg. 98 */ 99 struct memcg_shrinker_map { 100 struct rcu_head rcu; 101 unsigned long map[]; 102 }; 103 104 /* 105 * per-node information in memory controller. 106 */ 107 struct mem_cgroup_per_node { 108 struct lruvec lruvec; 109 110 /* Legacy local VM stats */ 111 struct lruvec_stat __percpu *lruvec_stat_local; 112 113 /* Subtree VM stats (batched updates) */ 114 struct lruvec_stat __percpu *lruvec_stat_cpu; 115 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 116 117 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 118 119 struct mem_cgroup_reclaim_iter iter; 120 121 struct memcg_shrinker_map __rcu *shrinker_map; 122 123 struct rb_node tree_node; /* RB tree node */ 124 unsigned long usage_in_excess;/* Set to the value by which */ 125 /* the soft limit is exceeded*/ 126 bool on_tree; 127 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 128 /* use container_of */ 129 }; 130 131 struct mem_cgroup_threshold { 132 struct eventfd_ctx *eventfd; 133 unsigned long threshold; 134 }; 135 136 /* For threshold */ 137 struct mem_cgroup_threshold_ary { 138 /* An array index points to threshold just below or equal to usage. */ 139 int current_threshold; 140 /* Size of entries[] */ 141 unsigned int size; 142 /* Array of thresholds */ 143 struct mem_cgroup_threshold entries[]; 144 }; 145 146 struct mem_cgroup_thresholds { 147 /* Primary thresholds array */ 148 struct mem_cgroup_threshold_ary *primary; 149 /* 150 * Spare threshold array. 151 * This is needed to make mem_cgroup_unregister_event() "never fail". 152 * It must be able to store at least primary->size - 1 entries. 153 */ 154 struct mem_cgroup_threshold_ary *spare; 155 }; 156 157 enum memcg_kmem_state { 158 KMEM_NONE, 159 KMEM_ALLOCATED, 160 KMEM_ONLINE, 161 }; 162 163 #if defined(CONFIG_SMP) 164 struct memcg_padding { 165 char x[0]; 166 } ____cacheline_internodealigned_in_smp; 167 #define MEMCG_PADDING(name) struct memcg_padding name; 168 #else 169 #define MEMCG_PADDING(name) 170 #endif 171 172 /* 173 * Remember four most recent foreign writebacks with dirty pages in this 174 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 175 * one in a given round, we're likely to catch it later if it keeps 176 * foreign-dirtying, so a fairly low count should be enough. 177 * 178 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 179 */ 180 #define MEMCG_CGWB_FRN_CNT 4 181 182 struct memcg_cgwb_frn { 183 u64 bdi_id; /* bdi->id of the foreign inode */ 184 int memcg_id; /* memcg->css.id of foreign inode */ 185 u64 at; /* jiffies_64 at the time of dirtying */ 186 struct wb_completion done; /* tracks in-flight foreign writebacks */ 187 }; 188 189 /* 190 * Bucket for arbitrarily byte-sized objects charged to a memory 191 * cgroup. The bucket can be reparented in one piece when the cgroup 192 * is destroyed, without having to round up the individual references 193 * of all live memory objects in the wild. 194 */ 195 struct obj_cgroup { 196 struct percpu_ref refcnt; 197 struct mem_cgroup *memcg; 198 atomic_t nr_charged_bytes; 199 union { 200 struct list_head list; 201 struct rcu_head rcu; 202 }; 203 }; 204 205 /* 206 * The memory controller data structure. The memory controller controls both 207 * page cache and RSS per cgroup. We would eventually like to provide 208 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 209 * to help the administrator determine what knobs to tune. 210 */ 211 struct mem_cgroup { 212 struct cgroup_subsys_state css; 213 214 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 215 struct mem_cgroup_id id; 216 217 /* Accounted resources */ 218 struct page_counter memory; /* Both v1 & v2 */ 219 220 union { 221 struct page_counter swap; /* v2 only */ 222 struct page_counter memsw; /* v1 only */ 223 }; 224 225 /* Legacy consumer-oriented counters */ 226 struct page_counter kmem; /* v1 only */ 227 struct page_counter tcpmem; /* v1 only */ 228 229 /* Range enforcement for interrupt charges */ 230 struct work_struct high_work; 231 232 unsigned long soft_limit; 233 234 /* vmpressure notifications */ 235 struct vmpressure vmpressure; 236 237 /* 238 * Should the accounting and control be hierarchical, per subtree? 239 */ 240 bool use_hierarchy; 241 242 /* 243 * Should the OOM killer kill all belonging tasks, had it kill one? 244 */ 245 bool oom_group; 246 247 /* protected by memcg_oom_lock */ 248 bool oom_lock; 249 int under_oom; 250 251 int swappiness; 252 /* OOM-Killer disable */ 253 int oom_kill_disable; 254 255 /* memory.events and memory.events.local */ 256 struct cgroup_file events_file; 257 struct cgroup_file events_local_file; 258 259 /* handle for "memory.swap.events" */ 260 struct cgroup_file swap_events_file; 261 262 /* protect arrays of thresholds */ 263 struct mutex thresholds_lock; 264 265 /* thresholds for memory usage. RCU-protected */ 266 struct mem_cgroup_thresholds thresholds; 267 268 /* thresholds for mem+swap usage. RCU-protected */ 269 struct mem_cgroup_thresholds memsw_thresholds; 270 271 /* For oom notifier event fd */ 272 struct list_head oom_notify; 273 274 /* 275 * Should we move charges of a task when a task is moved into this 276 * mem_cgroup ? And what type of charges should we move ? 277 */ 278 unsigned long move_charge_at_immigrate; 279 /* taken only while moving_account > 0 */ 280 spinlock_t move_lock; 281 unsigned long move_lock_flags; 282 283 MEMCG_PADDING(_pad1_); 284 285 atomic_long_t vmstats[MEMCG_NR_STAT]; 286 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 287 288 /* memory.events */ 289 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 290 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 291 292 unsigned long socket_pressure; 293 294 /* Legacy tcp memory accounting */ 295 bool tcpmem_active; 296 int tcpmem_pressure; 297 298 #ifdef CONFIG_MEMCG_KMEM 299 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 300 int kmemcg_id; 301 enum memcg_kmem_state kmem_state; 302 struct obj_cgroup __rcu *objcg; 303 struct list_head objcg_list; /* list of inherited objcgs */ 304 #endif 305 306 MEMCG_PADDING(_pad2_); 307 308 /* 309 * set > 0 if pages under this cgroup are moving to other cgroup. 310 */ 311 atomic_t moving_account; 312 struct task_struct *move_lock_task; 313 314 /* Legacy local VM stats and events */ 315 struct memcg_vmstats_percpu __percpu *vmstats_local; 316 317 /* Subtree VM stats and events (batched updates) */ 318 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 319 320 #ifdef CONFIG_CGROUP_WRITEBACK 321 struct list_head cgwb_list; 322 struct wb_domain cgwb_domain; 323 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 324 #endif 325 326 /* List of events which userspace want to receive */ 327 struct list_head event_list; 328 spinlock_t event_list_lock; 329 330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 331 struct deferred_split deferred_split_queue; 332 #endif 333 334 struct mem_cgroup_per_node *nodeinfo[0]; 335 /* WARNING: nodeinfo must be the last member here */ 336 }; 337 338 /* 339 * size of first charge trial. "32" comes from vmscan.c's magic value. 340 * TODO: maybe necessary to use big numbers in big irons. 341 */ 342 #define MEMCG_CHARGE_BATCH 32U 343 344 extern struct mem_cgroup *root_mem_cgroup; 345 346 static __always_inline bool memcg_stat_item_in_bytes(int idx) 347 { 348 if (idx == MEMCG_PERCPU_B) 349 return true; 350 return vmstat_item_in_bytes(idx); 351 } 352 353 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 354 { 355 return (memcg == root_mem_cgroup); 356 } 357 358 static inline bool mem_cgroup_disabled(void) 359 { 360 return !cgroup_subsys_enabled(memory_cgrp_subsys); 361 } 362 363 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 364 struct mem_cgroup *memcg, 365 bool in_low_reclaim) 366 { 367 if (mem_cgroup_disabled()) 368 return 0; 369 370 /* 371 * There is no reclaim protection applied to a targeted reclaim. 372 * We are special casing this specific case here because 373 * mem_cgroup_protected calculation is not robust enough to keep 374 * the protection invariant for calculated effective values for 375 * parallel reclaimers with different reclaim target. This is 376 * especially a problem for tail memcgs (as they have pages on LRU) 377 * which would want to have effective values 0 for targeted reclaim 378 * but a different value for external reclaim. 379 * 380 * Example 381 * Let's have global and A's reclaim in parallel: 382 * | 383 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 384 * |\ 385 * | C (low = 1G, usage = 2.5G) 386 * B (low = 1G, usage = 0.5G) 387 * 388 * For the global reclaim 389 * A.elow = A.low 390 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 391 * C.elow = min(C.usage, C.low) 392 * 393 * With the effective values resetting we have A reclaim 394 * A.elow = 0 395 * B.elow = B.low 396 * C.elow = C.low 397 * 398 * If the global reclaim races with A's reclaim then 399 * B.elow = C.elow = 0 because children_low_usage > A.elow) 400 * is possible and reclaiming B would be violating the protection. 401 * 402 */ 403 if (root == memcg) 404 return 0; 405 406 if (in_low_reclaim) 407 return READ_ONCE(memcg->memory.emin); 408 409 return max(READ_ONCE(memcg->memory.emin), 410 READ_ONCE(memcg->memory.elow)); 411 } 412 413 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 414 struct mem_cgroup *memcg); 415 416 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 417 { 418 /* 419 * The root memcg doesn't account charges, and doesn't support 420 * protection. 421 */ 422 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 423 424 } 425 426 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 427 { 428 if (!mem_cgroup_supports_protection(memcg)) 429 return false; 430 431 return READ_ONCE(memcg->memory.elow) >= 432 page_counter_read(&memcg->memory); 433 } 434 435 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 436 { 437 if (!mem_cgroup_supports_protection(memcg)) 438 return false; 439 440 return READ_ONCE(memcg->memory.emin) >= 441 page_counter_read(&memcg->memory); 442 } 443 444 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); 445 446 void mem_cgroup_uncharge(struct page *page); 447 void mem_cgroup_uncharge_list(struct list_head *page_list); 448 449 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 450 451 static struct mem_cgroup_per_node * 452 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 453 { 454 return memcg->nodeinfo[nid]; 455 } 456 457 /** 458 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 459 * @memcg: memcg of the wanted lruvec 460 * 461 * Returns the lru list vector holding pages for a given @memcg & 462 * @node combination. This can be the node lruvec, if the memory 463 * controller is disabled. 464 */ 465 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 466 struct pglist_data *pgdat) 467 { 468 struct mem_cgroup_per_node *mz; 469 struct lruvec *lruvec; 470 471 if (mem_cgroup_disabled()) { 472 lruvec = &pgdat->__lruvec; 473 goto out; 474 } 475 476 if (!memcg) 477 memcg = root_mem_cgroup; 478 479 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 480 lruvec = &mz->lruvec; 481 out: 482 /* 483 * Since a node can be onlined after the mem_cgroup was created, 484 * we have to be prepared to initialize lruvec->pgdat here; 485 * and if offlined then reonlined, we need to reinitialize it. 486 */ 487 if (unlikely(lruvec->pgdat != pgdat)) 488 lruvec->pgdat = pgdat; 489 return lruvec; 490 } 491 492 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 493 494 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 495 496 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 497 498 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 499 500 static inline 501 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 502 return css ? container_of(css, struct mem_cgroup, css) : NULL; 503 } 504 505 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 506 { 507 return percpu_ref_tryget(&objcg->refcnt); 508 } 509 510 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 511 { 512 percpu_ref_get(&objcg->refcnt); 513 } 514 515 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 516 { 517 percpu_ref_put(&objcg->refcnt); 518 } 519 520 /* 521 * After the initialization objcg->memcg is always pointing at 522 * a valid memcg, but can be atomically swapped to the parent memcg. 523 * 524 * The caller must ensure that the returned memcg won't be released: 525 * e.g. acquire the rcu_read_lock or css_set_lock. 526 */ 527 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 528 { 529 return READ_ONCE(objcg->memcg); 530 } 531 532 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 533 { 534 if (memcg) 535 css_put(&memcg->css); 536 } 537 538 #define mem_cgroup_from_counter(counter, member) \ 539 container_of(counter, struct mem_cgroup, member) 540 541 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 542 struct mem_cgroup *, 543 struct mem_cgroup_reclaim_cookie *); 544 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 545 int mem_cgroup_scan_tasks(struct mem_cgroup *, 546 int (*)(struct task_struct *, void *), void *); 547 548 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 549 { 550 if (mem_cgroup_disabled()) 551 return 0; 552 553 return memcg->id.id; 554 } 555 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 556 557 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 558 { 559 return mem_cgroup_from_css(seq_css(m)); 560 } 561 562 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 563 { 564 struct mem_cgroup_per_node *mz; 565 566 if (mem_cgroup_disabled()) 567 return NULL; 568 569 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 570 return mz->memcg; 571 } 572 573 /** 574 * parent_mem_cgroup - find the accounting parent of a memcg 575 * @memcg: memcg whose parent to find 576 * 577 * Returns the parent memcg, or NULL if this is the root or the memory 578 * controller is in legacy no-hierarchy mode. 579 */ 580 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 581 { 582 if (!memcg->memory.parent) 583 return NULL; 584 return mem_cgroup_from_counter(memcg->memory.parent, memory); 585 } 586 587 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 588 struct mem_cgroup *root) 589 { 590 if (root == memcg) 591 return true; 592 if (!root->use_hierarchy) 593 return false; 594 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 595 } 596 597 static inline bool mm_match_cgroup(struct mm_struct *mm, 598 struct mem_cgroup *memcg) 599 { 600 struct mem_cgroup *task_memcg; 601 bool match = false; 602 603 rcu_read_lock(); 604 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 605 if (task_memcg) 606 match = mem_cgroup_is_descendant(task_memcg, memcg); 607 rcu_read_unlock(); 608 return match; 609 } 610 611 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 612 ino_t page_cgroup_ino(struct page *page); 613 614 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 615 { 616 if (mem_cgroup_disabled()) 617 return true; 618 return !!(memcg->css.flags & CSS_ONLINE); 619 } 620 621 /* 622 * For memory reclaim. 623 */ 624 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 625 626 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 627 int zid, int nr_pages); 628 629 static inline 630 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 631 enum lru_list lru, int zone_idx) 632 { 633 struct mem_cgroup_per_node *mz; 634 635 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 636 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 637 } 638 639 void mem_cgroup_handle_over_high(void); 640 641 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 642 643 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 644 645 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 646 struct task_struct *p); 647 648 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 649 650 static inline void mem_cgroup_enter_user_fault(void) 651 { 652 WARN_ON(current->in_user_fault); 653 current->in_user_fault = 1; 654 } 655 656 static inline void mem_cgroup_exit_user_fault(void) 657 { 658 WARN_ON(!current->in_user_fault); 659 current->in_user_fault = 0; 660 } 661 662 static inline bool task_in_memcg_oom(struct task_struct *p) 663 { 664 return p->memcg_in_oom; 665 } 666 667 bool mem_cgroup_oom_synchronize(bool wait); 668 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 669 struct mem_cgroup *oom_domain); 670 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 671 672 #ifdef CONFIG_MEMCG_SWAP 673 extern bool cgroup_memory_noswap; 674 #endif 675 676 struct mem_cgroup *lock_page_memcg(struct page *page); 677 void __unlock_page_memcg(struct mem_cgroup *memcg); 678 void unlock_page_memcg(struct page *page); 679 680 /* 681 * idx can be of type enum memcg_stat_item or node_stat_item. 682 * Keep in sync with memcg_exact_page_state(). 683 */ 684 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 685 { 686 long x = atomic_long_read(&memcg->vmstats[idx]); 687 #ifdef CONFIG_SMP 688 if (x < 0) 689 x = 0; 690 #endif 691 return x; 692 } 693 694 /* 695 * idx can be of type enum memcg_stat_item or node_stat_item. 696 * Keep in sync with memcg_exact_page_state(). 697 */ 698 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 699 int idx) 700 { 701 long x = 0; 702 int cpu; 703 704 for_each_possible_cpu(cpu) 705 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 706 #ifdef CONFIG_SMP 707 if (x < 0) 708 x = 0; 709 #endif 710 return x; 711 } 712 713 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 714 715 /* idx can be of type enum memcg_stat_item or node_stat_item */ 716 static inline void mod_memcg_state(struct mem_cgroup *memcg, 717 int idx, int val) 718 { 719 unsigned long flags; 720 721 local_irq_save(flags); 722 __mod_memcg_state(memcg, idx, val); 723 local_irq_restore(flags); 724 } 725 726 /** 727 * mod_memcg_page_state - update page state statistics 728 * @page: the page 729 * @idx: page state item to account 730 * @val: number of pages (positive or negative) 731 * 732 * The @page must be locked or the caller must use lock_page_memcg() 733 * to prevent double accounting when the page is concurrently being 734 * moved to another memcg: 735 * 736 * lock_page(page) or lock_page_memcg(page) 737 * if (TestClearPageState(page)) 738 * mod_memcg_page_state(page, state, -1); 739 * unlock_page(page) or unlock_page_memcg(page) 740 * 741 * Kernel pages are an exception to this, since they'll never move. 742 */ 743 static inline void __mod_memcg_page_state(struct page *page, 744 int idx, int val) 745 { 746 if (page->mem_cgroup) 747 __mod_memcg_state(page->mem_cgroup, idx, val); 748 } 749 750 static inline void mod_memcg_page_state(struct page *page, 751 int idx, int val) 752 { 753 if (page->mem_cgroup) 754 mod_memcg_state(page->mem_cgroup, idx, val); 755 } 756 757 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 758 enum node_stat_item idx) 759 { 760 struct mem_cgroup_per_node *pn; 761 long x; 762 763 if (mem_cgroup_disabled()) 764 return node_page_state(lruvec_pgdat(lruvec), idx); 765 766 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 767 x = atomic_long_read(&pn->lruvec_stat[idx]); 768 #ifdef CONFIG_SMP 769 if (x < 0) 770 x = 0; 771 #endif 772 return x; 773 } 774 775 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 776 enum node_stat_item idx) 777 { 778 struct mem_cgroup_per_node *pn; 779 long x = 0; 780 int cpu; 781 782 if (mem_cgroup_disabled()) 783 return node_page_state(lruvec_pgdat(lruvec), idx); 784 785 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 786 for_each_possible_cpu(cpu) 787 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 788 #ifdef CONFIG_SMP 789 if (x < 0) 790 x = 0; 791 #endif 792 return x; 793 } 794 795 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 796 int val); 797 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 798 int val); 799 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); 800 801 void mod_memcg_obj_state(void *p, int idx, int val); 802 803 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, 804 int val) 805 { 806 unsigned long flags; 807 808 local_irq_save(flags); 809 __mod_lruvec_slab_state(p, idx, val); 810 local_irq_restore(flags); 811 } 812 813 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 814 enum node_stat_item idx, int val) 815 { 816 unsigned long flags; 817 818 local_irq_save(flags); 819 __mod_memcg_lruvec_state(lruvec, idx, val); 820 local_irq_restore(flags); 821 } 822 823 static inline void mod_lruvec_state(struct lruvec *lruvec, 824 enum node_stat_item idx, int val) 825 { 826 unsigned long flags; 827 828 local_irq_save(flags); 829 __mod_lruvec_state(lruvec, idx, val); 830 local_irq_restore(flags); 831 } 832 833 static inline void __mod_lruvec_page_state(struct page *page, 834 enum node_stat_item idx, int val) 835 { 836 struct page *head = compound_head(page); /* rmap on tail pages */ 837 pg_data_t *pgdat = page_pgdat(page); 838 struct lruvec *lruvec; 839 840 /* Untracked pages have no memcg, no lruvec. Update only the node */ 841 if (!head->mem_cgroup) { 842 __mod_node_page_state(pgdat, idx, val); 843 return; 844 } 845 846 lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat); 847 __mod_lruvec_state(lruvec, idx, val); 848 } 849 850 static inline void mod_lruvec_page_state(struct page *page, 851 enum node_stat_item idx, int val) 852 { 853 unsigned long flags; 854 855 local_irq_save(flags); 856 __mod_lruvec_page_state(page, idx, val); 857 local_irq_restore(flags); 858 } 859 860 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 861 gfp_t gfp_mask, 862 unsigned long *total_scanned); 863 864 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 865 unsigned long count); 866 867 static inline void count_memcg_events(struct mem_cgroup *memcg, 868 enum vm_event_item idx, 869 unsigned long count) 870 { 871 unsigned long flags; 872 873 local_irq_save(flags); 874 __count_memcg_events(memcg, idx, count); 875 local_irq_restore(flags); 876 } 877 878 static inline void count_memcg_page_event(struct page *page, 879 enum vm_event_item idx) 880 { 881 if (page->mem_cgroup) 882 count_memcg_events(page->mem_cgroup, idx, 1); 883 } 884 885 static inline void count_memcg_event_mm(struct mm_struct *mm, 886 enum vm_event_item idx) 887 { 888 struct mem_cgroup *memcg; 889 890 if (mem_cgroup_disabled()) 891 return; 892 893 rcu_read_lock(); 894 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 895 if (likely(memcg)) 896 count_memcg_events(memcg, idx, 1); 897 rcu_read_unlock(); 898 } 899 900 static inline void memcg_memory_event(struct mem_cgroup *memcg, 901 enum memcg_memory_event event) 902 { 903 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 904 event == MEMCG_SWAP_FAIL; 905 906 atomic_long_inc(&memcg->memory_events_local[event]); 907 if (!swap_event) 908 cgroup_file_notify(&memcg->events_local_file); 909 910 do { 911 atomic_long_inc(&memcg->memory_events[event]); 912 if (swap_event) 913 cgroup_file_notify(&memcg->swap_events_file); 914 else 915 cgroup_file_notify(&memcg->events_file); 916 917 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 918 break; 919 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 920 break; 921 } while ((memcg = parent_mem_cgroup(memcg)) && 922 !mem_cgroup_is_root(memcg)); 923 } 924 925 static inline void memcg_memory_event_mm(struct mm_struct *mm, 926 enum memcg_memory_event event) 927 { 928 struct mem_cgroup *memcg; 929 930 if (mem_cgroup_disabled()) 931 return; 932 933 rcu_read_lock(); 934 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 935 if (likely(memcg)) 936 memcg_memory_event(memcg, event); 937 rcu_read_unlock(); 938 } 939 940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 941 void mem_cgroup_split_huge_fixup(struct page *head); 942 #endif 943 944 #else /* CONFIG_MEMCG */ 945 946 #define MEM_CGROUP_ID_SHIFT 0 947 #define MEM_CGROUP_ID_MAX 0 948 949 struct mem_cgroup; 950 951 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 952 { 953 return true; 954 } 955 956 static inline bool mem_cgroup_disabled(void) 957 { 958 return true; 959 } 960 961 static inline void memcg_memory_event(struct mem_cgroup *memcg, 962 enum memcg_memory_event event) 963 { 964 } 965 966 static inline void memcg_memory_event_mm(struct mm_struct *mm, 967 enum memcg_memory_event event) 968 { 969 } 970 971 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 972 struct mem_cgroup *memcg, 973 bool in_low_reclaim) 974 { 975 return 0; 976 } 977 978 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 979 struct mem_cgroup *memcg) 980 { 981 } 982 983 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 984 { 985 return false; 986 } 987 988 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 989 { 990 return false; 991 } 992 993 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 994 gfp_t gfp_mask) 995 { 996 return 0; 997 } 998 999 static inline void mem_cgroup_uncharge(struct page *page) 1000 { 1001 } 1002 1003 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1004 { 1005 } 1006 1007 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 1008 { 1009 } 1010 1011 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1012 struct pglist_data *pgdat) 1013 { 1014 return &pgdat->__lruvec; 1015 } 1016 1017 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 1018 struct pglist_data *pgdat) 1019 { 1020 return &pgdat->__lruvec; 1021 } 1022 1023 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1024 { 1025 return NULL; 1026 } 1027 1028 static inline bool mm_match_cgroup(struct mm_struct *mm, 1029 struct mem_cgroup *memcg) 1030 { 1031 return true; 1032 } 1033 1034 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1035 { 1036 return NULL; 1037 } 1038 1039 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 1040 { 1041 return NULL; 1042 } 1043 1044 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1045 { 1046 } 1047 1048 static inline struct mem_cgroup * 1049 mem_cgroup_iter(struct mem_cgroup *root, 1050 struct mem_cgroup *prev, 1051 struct mem_cgroup_reclaim_cookie *reclaim) 1052 { 1053 return NULL; 1054 } 1055 1056 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1057 struct mem_cgroup *prev) 1058 { 1059 } 1060 1061 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1062 int (*fn)(struct task_struct *, void *), void *arg) 1063 { 1064 return 0; 1065 } 1066 1067 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1068 { 1069 return 0; 1070 } 1071 1072 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1073 { 1074 WARN_ON_ONCE(id); 1075 /* XXX: This should always return root_mem_cgroup */ 1076 return NULL; 1077 } 1078 1079 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1080 { 1081 return NULL; 1082 } 1083 1084 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1085 { 1086 return NULL; 1087 } 1088 1089 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1090 { 1091 return true; 1092 } 1093 1094 static inline 1095 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1096 enum lru_list lru, int zone_idx) 1097 { 1098 return 0; 1099 } 1100 1101 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1102 { 1103 return 0; 1104 } 1105 1106 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1107 { 1108 return 0; 1109 } 1110 1111 static inline void 1112 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1113 { 1114 } 1115 1116 static inline void 1117 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1118 { 1119 } 1120 1121 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 1122 { 1123 return NULL; 1124 } 1125 1126 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 1127 { 1128 } 1129 1130 static inline void unlock_page_memcg(struct page *page) 1131 { 1132 } 1133 1134 static inline void mem_cgroup_handle_over_high(void) 1135 { 1136 } 1137 1138 static inline void mem_cgroup_enter_user_fault(void) 1139 { 1140 } 1141 1142 static inline void mem_cgroup_exit_user_fault(void) 1143 { 1144 } 1145 1146 static inline bool task_in_memcg_oom(struct task_struct *p) 1147 { 1148 return false; 1149 } 1150 1151 static inline bool mem_cgroup_oom_synchronize(bool wait) 1152 { 1153 return false; 1154 } 1155 1156 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1157 struct task_struct *victim, struct mem_cgroup *oom_domain) 1158 { 1159 return NULL; 1160 } 1161 1162 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1163 { 1164 } 1165 1166 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1167 { 1168 return 0; 1169 } 1170 1171 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1172 int idx) 1173 { 1174 return 0; 1175 } 1176 1177 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1178 int idx, 1179 int nr) 1180 { 1181 } 1182 1183 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1184 int idx, 1185 int nr) 1186 { 1187 } 1188 1189 static inline void __mod_memcg_page_state(struct page *page, 1190 int idx, 1191 int nr) 1192 { 1193 } 1194 1195 static inline void mod_memcg_page_state(struct page *page, 1196 int idx, 1197 int nr) 1198 { 1199 } 1200 1201 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1202 enum node_stat_item idx) 1203 { 1204 return node_page_state(lruvec_pgdat(lruvec), idx); 1205 } 1206 1207 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1208 enum node_stat_item idx) 1209 { 1210 return node_page_state(lruvec_pgdat(lruvec), idx); 1211 } 1212 1213 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1214 enum node_stat_item idx, int val) 1215 { 1216 } 1217 1218 static inline void __mod_lruvec_state(struct lruvec *lruvec, 1219 enum node_stat_item idx, int val) 1220 { 1221 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1222 } 1223 1224 static inline void mod_lruvec_state(struct lruvec *lruvec, 1225 enum node_stat_item idx, int val) 1226 { 1227 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1228 } 1229 1230 static inline void __mod_lruvec_page_state(struct page *page, 1231 enum node_stat_item idx, int val) 1232 { 1233 __mod_node_page_state(page_pgdat(page), idx, val); 1234 } 1235 1236 static inline void mod_lruvec_page_state(struct page *page, 1237 enum node_stat_item idx, int val) 1238 { 1239 mod_node_page_state(page_pgdat(page), idx, val); 1240 } 1241 1242 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1243 int val) 1244 { 1245 struct page *page = virt_to_head_page(p); 1246 1247 __mod_node_page_state(page_pgdat(page), idx, val); 1248 } 1249 1250 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1251 int val) 1252 { 1253 struct page *page = virt_to_head_page(p); 1254 1255 mod_node_page_state(page_pgdat(page), idx, val); 1256 } 1257 1258 static inline void mod_memcg_obj_state(void *p, int idx, int val) 1259 { 1260 } 1261 1262 static inline 1263 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1264 gfp_t gfp_mask, 1265 unsigned long *total_scanned) 1266 { 1267 return 0; 1268 } 1269 1270 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1271 { 1272 } 1273 1274 static inline void count_memcg_events(struct mem_cgroup *memcg, 1275 enum vm_event_item idx, 1276 unsigned long count) 1277 { 1278 } 1279 1280 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1281 enum vm_event_item idx, 1282 unsigned long count) 1283 { 1284 } 1285 1286 static inline void count_memcg_page_event(struct page *page, 1287 int idx) 1288 { 1289 } 1290 1291 static inline 1292 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1293 { 1294 } 1295 #endif /* CONFIG_MEMCG */ 1296 1297 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1298 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1299 int idx) 1300 { 1301 __mod_memcg_state(memcg, idx, 1); 1302 } 1303 1304 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1305 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1306 int idx) 1307 { 1308 __mod_memcg_state(memcg, idx, -1); 1309 } 1310 1311 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1312 static inline void __inc_memcg_page_state(struct page *page, 1313 int idx) 1314 { 1315 __mod_memcg_page_state(page, idx, 1); 1316 } 1317 1318 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1319 static inline void __dec_memcg_page_state(struct page *page, 1320 int idx) 1321 { 1322 __mod_memcg_page_state(page, idx, -1); 1323 } 1324 1325 static inline void __inc_lruvec_state(struct lruvec *lruvec, 1326 enum node_stat_item idx) 1327 { 1328 __mod_lruvec_state(lruvec, idx, 1); 1329 } 1330 1331 static inline void __dec_lruvec_state(struct lruvec *lruvec, 1332 enum node_stat_item idx) 1333 { 1334 __mod_lruvec_state(lruvec, idx, -1); 1335 } 1336 1337 static inline void __inc_lruvec_page_state(struct page *page, 1338 enum node_stat_item idx) 1339 { 1340 __mod_lruvec_page_state(page, idx, 1); 1341 } 1342 1343 static inline void __dec_lruvec_page_state(struct page *page, 1344 enum node_stat_item idx) 1345 { 1346 __mod_lruvec_page_state(page, idx, -1); 1347 } 1348 1349 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) 1350 { 1351 __mod_lruvec_slab_state(p, idx, 1); 1352 } 1353 1354 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) 1355 { 1356 __mod_lruvec_slab_state(p, idx, -1); 1357 } 1358 1359 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1360 static inline void inc_memcg_state(struct mem_cgroup *memcg, 1361 int idx) 1362 { 1363 mod_memcg_state(memcg, idx, 1); 1364 } 1365 1366 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1367 static inline void dec_memcg_state(struct mem_cgroup *memcg, 1368 int idx) 1369 { 1370 mod_memcg_state(memcg, idx, -1); 1371 } 1372 1373 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1374 static inline void inc_memcg_page_state(struct page *page, 1375 int idx) 1376 { 1377 mod_memcg_page_state(page, idx, 1); 1378 } 1379 1380 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1381 static inline void dec_memcg_page_state(struct page *page, 1382 int idx) 1383 { 1384 mod_memcg_page_state(page, idx, -1); 1385 } 1386 1387 static inline void inc_lruvec_state(struct lruvec *lruvec, 1388 enum node_stat_item idx) 1389 { 1390 mod_lruvec_state(lruvec, idx, 1); 1391 } 1392 1393 static inline void dec_lruvec_state(struct lruvec *lruvec, 1394 enum node_stat_item idx) 1395 { 1396 mod_lruvec_state(lruvec, idx, -1); 1397 } 1398 1399 static inline void inc_lruvec_page_state(struct page *page, 1400 enum node_stat_item idx) 1401 { 1402 mod_lruvec_page_state(page, idx, 1); 1403 } 1404 1405 static inline void dec_lruvec_page_state(struct page *page, 1406 enum node_stat_item idx) 1407 { 1408 mod_lruvec_page_state(page, idx, -1); 1409 } 1410 1411 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1412 { 1413 struct mem_cgroup *memcg; 1414 1415 memcg = lruvec_memcg(lruvec); 1416 if (!memcg) 1417 return NULL; 1418 memcg = parent_mem_cgroup(memcg); 1419 if (!memcg) 1420 return NULL; 1421 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1422 } 1423 1424 #ifdef CONFIG_CGROUP_WRITEBACK 1425 1426 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1427 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1428 unsigned long *pheadroom, unsigned long *pdirty, 1429 unsigned long *pwriteback); 1430 1431 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1432 struct bdi_writeback *wb); 1433 1434 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1435 struct bdi_writeback *wb) 1436 { 1437 if (mem_cgroup_disabled()) 1438 return; 1439 1440 if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) 1441 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1442 } 1443 1444 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1445 1446 #else /* CONFIG_CGROUP_WRITEBACK */ 1447 1448 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1449 { 1450 return NULL; 1451 } 1452 1453 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1454 unsigned long *pfilepages, 1455 unsigned long *pheadroom, 1456 unsigned long *pdirty, 1457 unsigned long *pwriteback) 1458 { 1459 } 1460 1461 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1462 struct bdi_writeback *wb) 1463 { 1464 } 1465 1466 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1467 { 1468 } 1469 1470 #endif /* CONFIG_CGROUP_WRITEBACK */ 1471 1472 struct sock; 1473 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1474 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1475 #ifdef CONFIG_MEMCG 1476 extern struct static_key_false memcg_sockets_enabled_key; 1477 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1478 void mem_cgroup_sk_alloc(struct sock *sk); 1479 void mem_cgroup_sk_free(struct sock *sk); 1480 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1481 { 1482 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1483 return true; 1484 do { 1485 if (time_before(jiffies, memcg->socket_pressure)) 1486 return true; 1487 } while ((memcg = parent_mem_cgroup(memcg))); 1488 return false; 1489 } 1490 1491 extern int memcg_expand_shrinker_maps(int new_id); 1492 1493 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1494 int nid, int shrinker_id); 1495 #else 1496 #define mem_cgroup_sockets_enabled 0 1497 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1498 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1499 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1500 { 1501 return false; 1502 } 1503 1504 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1505 int nid, int shrinker_id) 1506 { 1507 } 1508 #endif 1509 1510 #ifdef CONFIG_MEMCG_KMEM 1511 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1512 unsigned int nr_pages); 1513 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 1514 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1515 void __memcg_kmem_uncharge_page(struct page *page, int order); 1516 1517 struct obj_cgroup *get_obj_cgroup_from_current(void); 1518 1519 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1520 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1521 1522 extern struct static_key_false memcg_kmem_enabled_key; 1523 1524 extern int memcg_nr_cache_ids; 1525 void memcg_get_cache_ids(void); 1526 void memcg_put_cache_ids(void); 1527 1528 /* 1529 * Helper macro to loop through all memcg-specific caches. Callers must still 1530 * check if the cache is valid (it is either valid or NULL). 1531 * the slab_mutex must be held when looping through those caches 1532 */ 1533 #define for_each_memcg_cache_index(_idx) \ 1534 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1535 1536 static inline bool memcg_kmem_enabled(void) 1537 { 1538 return static_branch_likely(&memcg_kmem_enabled_key); 1539 } 1540 1541 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1542 int order) 1543 { 1544 if (memcg_kmem_enabled()) 1545 return __memcg_kmem_charge_page(page, gfp, order); 1546 return 0; 1547 } 1548 1549 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1550 { 1551 if (memcg_kmem_enabled()) 1552 __memcg_kmem_uncharge_page(page, order); 1553 } 1554 1555 static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1556 unsigned int nr_pages) 1557 { 1558 if (memcg_kmem_enabled()) 1559 return __memcg_kmem_charge(memcg, gfp, nr_pages); 1560 return 0; 1561 } 1562 1563 static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg, 1564 unsigned int nr_pages) 1565 { 1566 if (memcg_kmem_enabled()) 1567 __memcg_kmem_uncharge(memcg, nr_pages); 1568 } 1569 1570 /* 1571 * helper for accessing a memcg's index. It will be used as an index in the 1572 * child cache array in kmem_cache, and also to derive its name. This function 1573 * will return -1 when this is not a kmem-limited memcg. 1574 */ 1575 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1576 { 1577 return memcg ? memcg->kmemcg_id : -1; 1578 } 1579 1580 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1581 1582 #else 1583 1584 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1585 int order) 1586 { 1587 return 0; 1588 } 1589 1590 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1591 { 1592 } 1593 1594 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1595 int order) 1596 { 1597 return 0; 1598 } 1599 1600 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1601 { 1602 } 1603 1604 #define for_each_memcg_cache_index(_idx) \ 1605 for (; NULL; ) 1606 1607 static inline bool memcg_kmem_enabled(void) 1608 { 1609 return false; 1610 } 1611 1612 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1613 { 1614 return -1; 1615 } 1616 1617 static inline void memcg_get_cache_ids(void) 1618 { 1619 } 1620 1621 static inline void memcg_put_cache_ids(void) 1622 { 1623 } 1624 1625 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1626 { 1627 return NULL; 1628 } 1629 1630 #endif /* CONFIG_MEMCG_KMEM */ 1631 1632 #endif /* _LINUX_MEMCONTROL_H */ 1633