1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 #include <linux/page_counter.h> 27 #include <linux/vmpressure.h> 28 #include <linux/eventfd.h> 29 #include <linux/mm.h> 30 #include <linux/vmstat.h> 31 #include <linux/writeback.h> 32 #include <linux/page-flags.h> 33 34 struct mem_cgroup; 35 struct page; 36 struct mm_struct; 37 struct kmem_cache; 38 39 /* Cgroup-specific page state, on top of universal node page state */ 40 enum memcg_stat_item { 41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 42 MEMCG_RSS, 43 MEMCG_RSS_HUGE, 44 MEMCG_SWAP, 45 MEMCG_SOCK, 46 /* XXX: why are these zone and not node counters? */ 47 MEMCG_KERNEL_STACK_KB, 48 MEMCG_NR_STAT, 49 }; 50 51 enum memcg_memory_event { 52 MEMCG_LOW, 53 MEMCG_HIGH, 54 MEMCG_MAX, 55 MEMCG_OOM, 56 MEMCG_OOM_KILL, 57 MEMCG_SWAP_MAX, 58 MEMCG_SWAP_FAIL, 59 MEMCG_NR_MEMORY_EVENTS, 60 }; 61 62 enum mem_cgroup_protection { 63 MEMCG_PROT_NONE, 64 MEMCG_PROT_LOW, 65 MEMCG_PROT_MIN, 66 }; 67 68 struct mem_cgroup_reclaim_cookie { 69 pg_data_t *pgdat; 70 int priority; 71 unsigned int generation; 72 }; 73 74 #ifdef CONFIG_MEMCG 75 76 #define MEM_CGROUP_ID_SHIFT 16 77 #define MEM_CGROUP_ID_MAX USHRT_MAX 78 79 struct mem_cgroup_id { 80 int id; 81 atomic_t ref; 82 }; 83 84 /* 85 * Per memcg event counter is incremented at every pagein/pageout. With THP, 86 * it will be incremated by the number of pages. This counter is used for 87 * for trigger some periodic events. This is straightforward and better 88 * than using jiffies etc. to handle periodic memcg event. 89 */ 90 enum mem_cgroup_events_target { 91 MEM_CGROUP_TARGET_THRESH, 92 MEM_CGROUP_TARGET_SOFTLIMIT, 93 MEM_CGROUP_TARGET_NUMAINFO, 94 MEM_CGROUP_NTARGETS, 95 }; 96 97 struct mem_cgroup_stat_cpu { 98 long count[MEMCG_NR_STAT]; 99 unsigned long events[NR_VM_EVENT_ITEMS]; 100 unsigned long nr_page_events; 101 unsigned long targets[MEM_CGROUP_NTARGETS]; 102 }; 103 104 struct mem_cgroup_reclaim_iter { 105 struct mem_cgroup *position; 106 /* scan generation, increased every round-trip */ 107 unsigned int generation; 108 }; 109 110 struct lruvec_stat { 111 long count[NR_VM_NODE_STAT_ITEMS]; 112 }; 113 114 /* 115 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 116 * which have elements charged to this memcg. 117 */ 118 struct memcg_shrinker_map { 119 struct rcu_head rcu; 120 unsigned long map[0]; 121 }; 122 123 /* 124 * per-zone information in memory controller. 125 */ 126 struct mem_cgroup_per_node { 127 struct lruvec lruvec; 128 129 struct lruvec_stat __percpu *lruvec_stat_cpu; 130 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 131 132 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 133 134 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 135 136 #ifdef CONFIG_MEMCG_KMEM 137 struct memcg_shrinker_map __rcu *shrinker_map; 138 #endif 139 struct rb_node tree_node; /* RB tree node */ 140 unsigned long usage_in_excess;/* Set to the value by which */ 141 /* the soft limit is exceeded*/ 142 bool on_tree; 143 bool congested; /* memcg has many dirty pages */ 144 /* backed by a congested BDI */ 145 146 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 147 /* use container_of */ 148 }; 149 150 struct mem_cgroup_threshold { 151 struct eventfd_ctx *eventfd; 152 unsigned long threshold; 153 }; 154 155 /* For threshold */ 156 struct mem_cgroup_threshold_ary { 157 /* An array index points to threshold just below or equal to usage. */ 158 int current_threshold; 159 /* Size of entries[] */ 160 unsigned int size; 161 /* Array of thresholds */ 162 struct mem_cgroup_threshold entries[0]; 163 }; 164 165 struct mem_cgroup_thresholds { 166 /* Primary thresholds array */ 167 struct mem_cgroup_threshold_ary *primary; 168 /* 169 * Spare threshold array. 170 * This is needed to make mem_cgroup_unregister_event() "never fail". 171 * It must be able to store at least primary->size - 1 entries. 172 */ 173 struct mem_cgroup_threshold_ary *spare; 174 }; 175 176 enum memcg_kmem_state { 177 KMEM_NONE, 178 KMEM_ALLOCATED, 179 KMEM_ONLINE, 180 }; 181 182 #if defined(CONFIG_SMP) 183 struct memcg_padding { 184 char x[0]; 185 } ____cacheline_internodealigned_in_smp; 186 #define MEMCG_PADDING(name) struct memcg_padding name; 187 #else 188 #define MEMCG_PADDING(name) 189 #endif 190 191 /* 192 * The memory controller data structure. The memory controller controls both 193 * page cache and RSS per cgroup. We would eventually like to provide 194 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 195 * to help the administrator determine what knobs to tune. 196 */ 197 struct mem_cgroup { 198 struct cgroup_subsys_state css; 199 200 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 201 struct mem_cgroup_id id; 202 203 /* Accounted resources */ 204 struct page_counter memory; 205 struct page_counter swap; 206 207 /* Legacy consumer-oriented counters */ 208 struct page_counter memsw; 209 struct page_counter kmem; 210 struct page_counter tcpmem; 211 212 /* Upper bound of normal memory consumption range */ 213 unsigned long high; 214 215 /* Range enforcement for interrupt charges */ 216 struct work_struct high_work; 217 218 unsigned long soft_limit; 219 220 /* vmpressure notifications */ 221 struct vmpressure vmpressure; 222 223 /* 224 * Should the accounting and control be hierarchical, per subtree? 225 */ 226 bool use_hierarchy; 227 228 /* 229 * Should the OOM killer kill all belonging tasks, had it kill one? 230 */ 231 bool oom_group; 232 233 /* protected by memcg_oom_lock */ 234 bool oom_lock; 235 int under_oom; 236 237 int swappiness; 238 /* OOM-Killer disable */ 239 int oom_kill_disable; 240 241 /* memory.events */ 242 struct cgroup_file events_file; 243 244 /* handle for "memory.swap.events" */ 245 struct cgroup_file swap_events_file; 246 247 /* protect arrays of thresholds */ 248 struct mutex thresholds_lock; 249 250 /* thresholds for memory usage. RCU-protected */ 251 struct mem_cgroup_thresholds thresholds; 252 253 /* thresholds for mem+swap usage. RCU-protected */ 254 struct mem_cgroup_thresholds memsw_thresholds; 255 256 /* For oom notifier event fd */ 257 struct list_head oom_notify; 258 259 /* 260 * Should we move charges of a task when a task is moved into this 261 * mem_cgroup ? And what type of charges should we move ? 262 */ 263 unsigned long move_charge_at_immigrate; 264 /* taken only while moving_account > 0 */ 265 spinlock_t move_lock; 266 unsigned long move_lock_flags; 267 268 MEMCG_PADDING(_pad1_); 269 270 /* 271 * set > 0 if pages under this cgroup are moving to other cgroup. 272 */ 273 atomic_t moving_account; 274 struct task_struct *move_lock_task; 275 276 /* memory.stat */ 277 struct mem_cgroup_stat_cpu __percpu *stat_cpu; 278 279 MEMCG_PADDING(_pad2_); 280 281 atomic_long_t stat[MEMCG_NR_STAT]; 282 atomic_long_t events[NR_VM_EVENT_ITEMS]; 283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 284 285 unsigned long socket_pressure; 286 287 /* Legacy tcp memory accounting */ 288 bool tcpmem_active; 289 int tcpmem_pressure; 290 291 #ifdef CONFIG_MEMCG_KMEM 292 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 293 int kmemcg_id; 294 enum memcg_kmem_state kmem_state; 295 struct list_head kmem_caches; 296 #endif 297 298 int last_scanned_node; 299 #if MAX_NUMNODES > 1 300 nodemask_t scan_nodes; 301 atomic_t numainfo_events; 302 atomic_t numainfo_updating; 303 #endif 304 305 #ifdef CONFIG_CGROUP_WRITEBACK 306 struct list_head cgwb_list; 307 struct wb_domain cgwb_domain; 308 #endif 309 310 /* List of events which userspace want to receive */ 311 struct list_head event_list; 312 spinlock_t event_list_lock; 313 314 struct mem_cgroup_per_node *nodeinfo[0]; 315 /* WARNING: nodeinfo must be the last member here */ 316 }; 317 318 /* 319 * size of first charge trial. "32" comes from vmscan.c's magic value. 320 * TODO: maybe necessary to use big numbers in big irons. 321 */ 322 #define MEMCG_CHARGE_BATCH 32U 323 324 extern struct mem_cgroup *root_mem_cgroup; 325 326 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 327 { 328 return (memcg == root_mem_cgroup); 329 } 330 331 static inline bool mem_cgroup_disabled(void) 332 { 333 return !cgroup_subsys_enabled(memory_cgrp_subsys); 334 } 335 336 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 337 struct mem_cgroup *memcg); 338 339 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 340 gfp_t gfp_mask, struct mem_cgroup **memcgp, 341 bool compound); 342 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 343 gfp_t gfp_mask, struct mem_cgroup **memcgp, 344 bool compound); 345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 346 bool lrucare, bool compound); 347 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 348 bool compound); 349 void mem_cgroup_uncharge(struct page *page); 350 void mem_cgroup_uncharge_list(struct list_head *page_list); 351 352 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 353 354 static struct mem_cgroup_per_node * 355 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 356 { 357 return memcg->nodeinfo[nid]; 358 } 359 360 /** 361 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 362 * @node: node of the wanted lruvec 363 * @memcg: memcg of the wanted lruvec 364 * 365 * Returns the lru list vector holding pages for a given @node or a given 366 * @memcg and @zone. This can be the node lruvec, if the memory controller 367 * is disabled. 368 */ 369 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 370 struct mem_cgroup *memcg) 371 { 372 struct mem_cgroup_per_node *mz; 373 struct lruvec *lruvec; 374 375 if (mem_cgroup_disabled()) { 376 lruvec = node_lruvec(pgdat); 377 goto out; 378 } 379 380 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 381 lruvec = &mz->lruvec; 382 out: 383 /* 384 * Since a node can be onlined after the mem_cgroup was created, 385 * we have to be prepared to initialize lruvec->pgdat here; 386 * and if offlined then reonlined, we need to reinitialize it. 387 */ 388 if (unlikely(lruvec->pgdat != pgdat)) 389 lruvec->pgdat = pgdat; 390 return lruvec; 391 } 392 393 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 394 395 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 396 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 397 398 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 399 400 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 401 402 static inline 403 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 404 return css ? container_of(css, struct mem_cgroup, css) : NULL; 405 } 406 407 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 408 { 409 if (memcg) 410 css_put(&memcg->css); 411 } 412 413 #define mem_cgroup_from_counter(counter, member) \ 414 container_of(counter, struct mem_cgroup, member) 415 416 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 417 struct mem_cgroup *, 418 struct mem_cgroup_reclaim_cookie *); 419 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 420 int mem_cgroup_scan_tasks(struct mem_cgroup *, 421 int (*)(struct task_struct *, void *), void *); 422 423 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 424 { 425 if (mem_cgroup_disabled()) 426 return 0; 427 428 return memcg->id.id; 429 } 430 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 431 432 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 433 { 434 struct mem_cgroup_per_node *mz; 435 436 if (mem_cgroup_disabled()) 437 return NULL; 438 439 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 440 return mz->memcg; 441 } 442 443 /** 444 * parent_mem_cgroup - find the accounting parent of a memcg 445 * @memcg: memcg whose parent to find 446 * 447 * Returns the parent memcg, or NULL if this is the root or the memory 448 * controller is in legacy no-hierarchy mode. 449 */ 450 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 451 { 452 if (!memcg->memory.parent) 453 return NULL; 454 return mem_cgroup_from_counter(memcg->memory.parent, memory); 455 } 456 457 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 458 struct mem_cgroup *root) 459 { 460 if (root == memcg) 461 return true; 462 if (!root->use_hierarchy) 463 return false; 464 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 465 } 466 467 static inline bool mm_match_cgroup(struct mm_struct *mm, 468 struct mem_cgroup *memcg) 469 { 470 struct mem_cgroup *task_memcg; 471 bool match = false; 472 473 rcu_read_lock(); 474 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 475 if (task_memcg) 476 match = mem_cgroup_is_descendant(task_memcg, memcg); 477 rcu_read_unlock(); 478 return match; 479 } 480 481 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 482 ino_t page_cgroup_ino(struct page *page); 483 484 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 485 { 486 if (mem_cgroup_disabled()) 487 return true; 488 return !!(memcg->css.flags & CSS_ONLINE); 489 } 490 491 /* 492 * For memory reclaim. 493 */ 494 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 495 496 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 497 int zid, int nr_pages); 498 499 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 500 int nid, unsigned int lru_mask); 501 502 static inline 503 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 504 { 505 struct mem_cgroup_per_node *mz; 506 unsigned long nr_pages = 0; 507 int zid; 508 509 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 510 for (zid = 0; zid < MAX_NR_ZONES; zid++) 511 nr_pages += mz->lru_zone_size[zid][lru]; 512 return nr_pages; 513 } 514 515 static inline 516 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 517 enum lru_list lru, int zone_idx) 518 { 519 struct mem_cgroup_per_node *mz; 520 521 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 522 return mz->lru_zone_size[zone_idx][lru]; 523 } 524 525 void mem_cgroup_handle_over_high(void); 526 527 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 528 529 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 530 struct task_struct *p); 531 532 static inline void mem_cgroup_enter_user_fault(void) 533 { 534 WARN_ON(current->in_user_fault); 535 current->in_user_fault = 1; 536 } 537 538 static inline void mem_cgroup_exit_user_fault(void) 539 { 540 WARN_ON(!current->in_user_fault); 541 current->in_user_fault = 0; 542 } 543 544 static inline bool task_in_memcg_oom(struct task_struct *p) 545 { 546 return p->memcg_in_oom; 547 } 548 549 bool mem_cgroup_oom_synchronize(bool wait); 550 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 551 struct mem_cgroup *oom_domain); 552 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 553 554 #ifdef CONFIG_MEMCG_SWAP 555 extern int do_swap_account; 556 #endif 557 558 struct mem_cgroup *lock_page_memcg(struct page *page); 559 void __unlock_page_memcg(struct mem_cgroup *memcg); 560 void unlock_page_memcg(struct page *page); 561 562 /* idx can be of type enum memcg_stat_item or node_stat_item */ 563 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 564 int idx) 565 { 566 long x = atomic_long_read(&memcg->stat[idx]); 567 #ifdef CONFIG_SMP 568 if (x < 0) 569 x = 0; 570 #endif 571 return x; 572 } 573 574 /* idx can be of type enum memcg_stat_item or node_stat_item */ 575 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 576 int idx, int val) 577 { 578 long x; 579 580 if (mem_cgroup_disabled()) 581 return; 582 583 x = val + __this_cpu_read(memcg->stat_cpu->count[idx]); 584 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 585 atomic_long_add(x, &memcg->stat[idx]); 586 x = 0; 587 } 588 __this_cpu_write(memcg->stat_cpu->count[idx], x); 589 } 590 591 /* idx can be of type enum memcg_stat_item or node_stat_item */ 592 static inline void mod_memcg_state(struct mem_cgroup *memcg, 593 int idx, int val) 594 { 595 unsigned long flags; 596 597 local_irq_save(flags); 598 __mod_memcg_state(memcg, idx, val); 599 local_irq_restore(flags); 600 } 601 602 /** 603 * mod_memcg_page_state - update page state statistics 604 * @page: the page 605 * @idx: page state item to account 606 * @val: number of pages (positive or negative) 607 * 608 * The @page must be locked or the caller must use lock_page_memcg() 609 * to prevent double accounting when the page is concurrently being 610 * moved to another memcg: 611 * 612 * lock_page(page) or lock_page_memcg(page) 613 * if (TestClearPageState(page)) 614 * mod_memcg_page_state(page, state, -1); 615 * unlock_page(page) or unlock_page_memcg(page) 616 * 617 * Kernel pages are an exception to this, since they'll never move. 618 */ 619 static inline void __mod_memcg_page_state(struct page *page, 620 int idx, int val) 621 { 622 if (page->mem_cgroup) 623 __mod_memcg_state(page->mem_cgroup, idx, val); 624 } 625 626 static inline void mod_memcg_page_state(struct page *page, 627 int idx, int val) 628 { 629 if (page->mem_cgroup) 630 mod_memcg_state(page->mem_cgroup, idx, val); 631 } 632 633 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 634 enum node_stat_item idx) 635 { 636 struct mem_cgroup_per_node *pn; 637 long x; 638 639 if (mem_cgroup_disabled()) 640 return node_page_state(lruvec_pgdat(lruvec), idx); 641 642 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 643 x = atomic_long_read(&pn->lruvec_stat[idx]); 644 #ifdef CONFIG_SMP 645 if (x < 0) 646 x = 0; 647 #endif 648 return x; 649 } 650 651 static inline void __mod_lruvec_state(struct lruvec *lruvec, 652 enum node_stat_item idx, int val) 653 { 654 struct mem_cgroup_per_node *pn; 655 long x; 656 657 /* Update node */ 658 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 659 660 if (mem_cgroup_disabled()) 661 return; 662 663 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 664 665 /* Update memcg */ 666 __mod_memcg_state(pn->memcg, idx, val); 667 668 /* Update lruvec */ 669 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 670 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 671 atomic_long_add(x, &pn->lruvec_stat[idx]); 672 x = 0; 673 } 674 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 675 } 676 677 static inline void mod_lruvec_state(struct lruvec *lruvec, 678 enum node_stat_item idx, int val) 679 { 680 unsigned long flags; 681 682 local_irq_save(flags); 683 __mod_lruvec_state(lruvec, idx, val); 684 local_irq_restore(flags); 685 } 686 687 static inline void __mod_lruvec_page_state(struct page *page, 688 enum node_stat_item idx, int val) 689 { 690 pg_data_t *pgdat = page_pgdat(page); 691 struct lruvec *lruvec; 692 693 /* Untracked pages have no memcg, no lruvec. Update only the node */ 694 if (!page->mem_cgroup) { 695 __mod_node_page_state(pgdat, idx, val); 696 return; 697 } 698 699 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 700 __mod_lruvec_state(lruvec, idx, val); 701 } 702 703 static inline void mod_lruvec_page_state(struct page *page, 704 enum node_stat_item idx, int val) 705 { 706 unsigned long flags; 707 708 local_irq_save(flags); 709 __mod_lruvec_page_state(page, idx, val); 710 local_irq_restore(flags); 711 } 712 713 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 714 gfp_t gfp_mask, 715 unsigned long *total_scanned); 716 717 static inline void __count_memcg_events(struct mem_cgroup *memcg, 718 enum vm_event_item idx, 719 unsigned long count) 720 { 721 unsigned long x; 722 723 if (mem_cgroup_disabled()) 724 return; 725 726 x = count + __this_cpu_read(memcg->stat_cpu->events[idx]); 727 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 728 atomic_long_add(x, &memcg->events[idx]); 729 x = 0; 730 } 731 __this_cpu_write(memcg->stat_cpu->events[idx], x); 732 } 733 734 static inline void count_memcg_events(struct mem_cgroup *memcg, 735 enum vm_event_item idx, 736 unsigned long count) 737 { 738 unsigned long flags; 739 740 local_irq_save(flags); 741 __count_memcg_events(memcg, idx, count); 742 local_irq_restore(flags); 743 } 744 745 static inline void count_memcg_page_event(struct page *page, 746 enum vm_event_item idx) 747 { 748 if (page->mem_cgroup) 749 count_memcg_events(page->mem_cgroup, idx, 1); 750 } 751 752 static inline void count_memcg_event_mm(struct mm_struct *mm, 753 enum vm_event_item idx) 754 { 755 struct mem_cgroup *memcg; 756 757 if (mem_cgroup_disabled()) 758 return; 759 760 rcu_read_lock(); 761 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 762 if (likely(memcg)) 763 count_memcg_events(memcg, idx, 1); 764 rcu_read_unlock(); 765 } 766 767 static inline void memcg_memory_event(struct mem_cgroup *memcg, 768 enum memcg_memory_event event) 769 { 770 atomic_long_inc(&memcg->memory_events[event]); 771 cgroup_file_notify(&memcg->events_file); 772 } 773 774 static inline void memcg_memory_event_mm(struct mm_struct *mm, 775 enum memcg_memory_event event) 776 { 777 struct mem_cgroup *memcg; 778 779 if (mem_cgroup_disabled()) 780 return; 781 782 rcu_read_lock(); 783 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 784 if (likely(memcg)) 785 memcg_memory_event(memcg, event); 786 rcu_read_unlock(); 787 } 788 789 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 790 void mem_cgroup_split_huge_fixup(struct page *head); 791 #endif 792 793 #else /* CONFIG_MEMCG */ 794 795 #define MEM_CGROUP_ID_SHIFT 0 796 #define MEM_CGROUP_ID_MAX 0 797 798 struct mem_cgroup; 799 800 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 801 { 802 return true; 803 } 804 805 static inline bool mem_cgroup_disabled(void) 806 { 807 return true; 808 } 809 810 static inline void memcg_memory_event(struct mem_cgroup *memcg, 811 enum memcg_memory_event event) 812 { 813 } 814 815 static inline void memcg_memory_event_mm(struct mm_struct *mm, 816 enum memcg_memory_event event) 817 { 818 } 819 820 static inline enum mem_cgroup_protection mem_cgroup_protected( 821 struct mem_cgroup *root, struct mem_cgroup *memcg) 822 { 823 return MEMCG_PROT_NONE; 824 } 825 826 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 827 gfp_t gfp_mask, 828 struct mem_cgroup **memcgp, 829 bool compound) 830 { 831 *memcgp = NULL; 832 return 0; 833 } 834 835 static inline int mem_cgroup_try_charge_delay(struct page *page, 836 struct mm_struct *mm, 837 gfp_t gfp_mask, 838 struct mem_cgroup **memcgp, 839 bool compound) 840 { 841 *memcgp = NULL; 842 return 0; 843 } 844 845 static inline void mem_cgroup_commit_charge(struct page *page, 846 struct mem_cgroup *memcg, 847 bool lrucare, bool compound) 848 { 849 } 850 851 static inline void mem_cgroup_cancel_charge(struct page *page, 852 struct mem_cgroup *memcg, 853 bool compound) 854 { 855 } 856 857 static inline void mem_cgroup_uncharge(struct page *page) 858 { 859 } 860 861 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 862 { 863 } 864 865 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 866 { 867 } 868 869 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 870 struct mem_cgroup *memcg) 871 { 872 return node_lruvec(pgdat); 873 } 874 875 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 876 struct pglist_data *pgdat) 877 { 878 return &pgdat->lruvec; 879 } 880 881 static inline bool mm_match_cgroup(struct mm_struct *mm, 882 struct mem_cgroup *memcg) 883 { 884 return true; 885 } 886 887 static inline bool task_in_mem_cgroup(struct task_struct *task, 888 const struct mem_cgroup *memcg) 889 { 890 return true; 891 } 892 893 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 894 { 895 return NULL; 896 } 897 898 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 899 { 900 return NULL; 901 } 902 903 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 904 { 905 } 906 907 static inline struct mem_cgroup * 908 mem_cgroup_iter(struct mem_cgroup *root, 909 struct mem_cgroup *prev, 910 struct mem_cgroup_reclaim_cookie *reclaim) 911 { 912 return NULL; 913 } 914 915 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 916 struct mem_cgroup *prev) 917 { 918 } 919 920 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 921 int (*fn)(struct task_struct *, void *), void *arg) 922 { 923 return 0; 924 } 925 926 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 927 { 928 return 0; 929 } 930 931 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 932 { 933 WARN_ON_ONCE(id); 934 /* XXX: This should always return root_mem_cgroup */ 935 return NULL; 936 } 937 938 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 939 { 940 return NULL; 941 } 942 943 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 944 { 945 return true; 946 } 947 948 static inline unsigned long 949 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 950 { 951 return 0; 952 } 953 static inline 954 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 955 enum lru_list lru, int zone_idx) 956 { 957 return 0; 958 } 959 960 static inline unsigned long 961 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 962 int nid, unsigned int lru_mask) 963 { 964 return 0; 965 } 966 967 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 968 { 969 return 0; 970 } 971 972 static inline void 973 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 974 { 975 } 976 977 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 978 { 979 return NULL; 980 } 981 982 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 983 { 984 } 985 986 static inline void unlock_page_memcg(struct page *page) 987 { 988 } 989 990 static inline void mem_cgroup_handle_over_high(void) 991 { 992 } 993 994 static inline void mem_cgroup_enter_user_fault(void) 995 { 996 } 997 998 static inline void mem_cgroup_exit_user_fault(void) 999 { 1000 } 1001 1002 static inline bool task_in_memcg_oom(struct task_struct *p) 1003 { 1004 return false; 1005 } 1006 1007 static inline bool mem_cgroup_oom_synchronize(bool wait) 1008 { 1009 return false; 1010 } 1011 1012 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1013 struct task_struct *victim, struct mem_cgroup *oom_domain) 1014 { 1015 return NULL; 1016 } 1017 1018 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1019 { 1020 } 1021 1022 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 1023 int idx) 1024 { 1025 return 0; 1026 } 1027 1028 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1029 int idx, 1030 int nr) 1031 { 1032 } 1033 1034 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1035 int idx, 1036 int nr) 1037 { 1038 } 1039 1040 static inline void __mod_memcg_page_state(struct page *page, 1041 int idx, 1042 int nr) 1043 { 1044 } 1045 1046 static inline void mod_memcg_page_state(struct page *page, 1047 int idx, 1048 int nr) 1049 { 1050 } 1051 1052 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1053 enum node_stat_item idx) 1054 { 1055 return node_page_state(lruvec_pgdat(lruvec), idx); 1056 } 1057 1058 static inline void __mod_lruvec_state(struct lruvec *lruvec, 1059 enum node_stat_item idx, int val) 1060 { 1061 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1062 } 1063 1064 static inline void mod_lruvec_state(struct lruvec *lruvec, 1065 enum node_stat_item idx, int val) 1066 { 1067 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1068 } 1069 1070 static inline void __mod_lruvec_page_state(struct page *page, 1071 enum node_stat_item idx, int val) 1072 { 1073 __mod_node_page_state(page_pgdat(page), idx, val); 1074 } 1075 1076 static inline void mod_lruvec_page_state(struct page *page, 1077 enum node_stat_item idx, int val) 1078 { 1079 mod_node_page_state(page_pgdat(page), idx, val); 1080 } 1081 1082 static inline 1083 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1084 gfp_t gfp_mask, 1085 unsigned long *total_scanned) 1086 { 1087 return 0; 1088 } 1089 1090 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1091 { 1092 } 1093 1094 static inline void count_memcg_events(struct mem_cgroup *memcg, 1095 enum vm_event_item idx, 1096 unsigned long count) 1097 { 1098 } 1099 1100 static inline void count_memcg_page_event(struct page *page, 1101 int idx) 1102 { 1103 } 1104 1105 static inline 1106 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1107 { 1108 } 1109 #endif /* CONFIG_MEMCG */ 1110 1111 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1112 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1113 int idx) 1114 { 1115 __mod_memcg_state(memcg, idx, 1); 1116 } 1117 1118 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1119 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1120 int idx) 1121 { 1122 __mod_memcg_state(memcg, idx, -1); 1123 } 1124 1125 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1126 static inline void __inc_memcg_page_state(struct page *page, 1127 int idx) 1128 { 1129 __mod_memcg_page_state(page, idx, 1); 1130 } 1131 1132 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1133 static inline void __dec_memcg_page_state(struct page *page, 1134 int idx) 1135 { 1136 __mod_memcg_page_state(page, idx, -1); 1137 } 1138 1139 static inline void __inc_lruvec_state(struct lruvec *lruvec, 1140 enum node_stat_item idx) 1141 { 1142 __mod_lruvec_state(lruvec, idx, 1); 1143 } 1144 1145 static inline void __dec_lruvec_state(struct lruvec *lruvec, 1146 enum node_stat_item idx) 1147 { 1148 __mod_lruvec_state(lruvec, idx, -1); 1149 } 1150 1151 static inline void __inc_lruvec_page_state(struct page *page, 1152 enum node_stat_item idx) 1153 { 1154 __mod_lruvec_page_state(page, idx, 1); 1155 } 1156 1157 static inline void __dec_lruvec_page_state(struct page *page, 1158 enum node_stat_item idx) 1159 { 1160 __mod_lruvec_page_state(page, idx, -1); 1161 } 1162 1163 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1164 static inline void inc_memcg_state(struct mem_cgroup *memcg, 1165 int idx) 1166 { 1167 mod_memcg_state(memcg, idx, 1); 1168 } 1169 1170 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1171 static inline void dec_memcg_state(struct mem_cgroup *memcg, 1172 int idx) 1173 { 1174 mod_memcg_state(memcg, idx, -1); 1175 } 1176 1177 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1178 static inline void inc_memcg_page_state(struct page *page, 1179 int idx) 1180 { 1181 mod_memcg_page_state(page, idx, 1); 1182 } 1183 1184 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1185 static inline void dec_memcg_page_state(struct page *page, 1186 int idx) 1187 { 1188 mod_memcg_page_state(page, idx, -1); 1189 } 1190 1191 static inline void inc_lruvec_state(struct lruvec *lruvec, 1192 enum node_stat_item idx) 1193 { 1194 mod_lruvec_state(lruvec, idx, 1); 1195 } 1196 1197 static inline void dec_lruvec_state(struct lruvec *lruvec, 1198 enum node_stat_item idx) 1199 { 1200 mod_lruvec_state(lruvec, idx, -1); 1201 } 1202 1203 static inline void inc_lruvec_page_state(struct page *page, 1204 enum node_stat_item idx) 1205 { 1206 mod_lruvec_page_state(page, idx, 1); 1207 } 1208 1209 static inline void dec_lruvec_page_state(struct page *page, 1210 enum node_stat_item idx) 1211 { 1212 mod_lruvec_page_state(page, idx, -1); 1213 } 1214 1215 #ifdef CONFIG_CGROUP_WRITEBACK 1216 1217 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1218 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1219 unsigned long *pheadroom, unsigned long *pdirty, 1220 unsigned long *pwriteback); 1221 1222 #else /* CONFIG_CGROUP_WRITEBACK */ 1223 1224 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1225 { 1226 return NULL; 1227 } 1228 1229 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1230 unsigned long *pfilepages, 1231 unsigned long *pheadroom, 1232 unsigned long *pdirty, 1233 unsigned long *pwriteback) 1234 { 1235 } 1236 1237 #endif /* CONFIG_CGROUP_WRITEBACK */ 1238 1239 struct sock; 1240 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1241 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1242 #ifdef CONFIG_MEMCG 1243 extern struct static_key_false memcg_sockets_enabled_key; 1244 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1245 void mem_cgroup_sk_alloc(struct sock *sk); 1246 void mem_cgroup_sk_free(struct sock *sk); 1247 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1248 { 1249 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1250 return true; 1251 do { 1252 if (time_before(jiffies, memcg->socket_pressure)) 1253 return true; 1254 } while ((memcg = parent_mem_cgroup(memcg))); 1255 return false; 1256 } 1257 #else 1258 #define mem_cgroup_sockets_enabled 0 1259 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1260 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1261 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1262 { 1263 return false; 1264 } 1265 #endif 1266 1267 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1268 void memcg_kmem_put_cache(struct kmem_cache *cachep); 1269 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1270 struct mem_cgroup *memcg); 1271 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1272 void memcg_kmem_uncharge(struct page *page, int order); 1273 1274 #ifdef CONFIG_MEMCG_KMEM 1275 extern struct static_key_false memcg_kmem_enabled_key; 1276 extern struct workqueue_struct *memcg_kmem_cache_wq; 1277 1278 extern int memcg_nr_cache_ids; 1279 void memcg_get_cache_ids(void); 1280 void memcg_put_cache_ids(void); 1281 1282 /* 1283 * Helper macro to loop through all memcg-specific caches. Callers must still 1284 * check if the cache is valid (it is either valid or NULL). 1285 * the slab_mutex must be held when looping through those caches 1286 */ 1287 #define for_each_memcg_cache_index(_idx) \ 1288 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1289 1290 static inline bool memcg_kmem_enabled(void) 1291 { 1292 return static_branch_unlikely(&memcg_kmem_enabled_key); 1293 } 1294 1295 /* 1296 * helper for accessing a memcg's index. It will be used as an index in the 1297 * child cache array in kmem_cache, and also to derive its name. This function 1298 * will return -1 when this is not a kmem-limited memcg. 1299 */ 1300 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1301 { 1302 return memcg ? memcg->kmemcg_id : -1; 1303 } 1304 1305 extern int memcg_expand_shrinker_maps(int new_id); 1306 1307 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1308 int nid, int shrinker_id); 1309 #else 1310 #define for_each_memcg_cache_index(_idx) \ 1311 for (; NULL; ) 1312 1313 static inline bool memcg_kmem_enabled(void) 1314 { 1315 return false; 1316 } 1317 1318 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1319 { 1320 return -1; 1321 } 1322 1323 static inline void memcg_get_cache_ids(void) 1324 { 1325 } 1326 1327 static inline void memcg_put_cache_ids(void) 1328 { 1329 } 1330 1331 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1332 int nid, int shrinker_id) { } 1333 #endif /* CONFIG_MEMCG_KMEM */ 1334 1335 #endif /* _LINUX_MEMCONTROL_H */ 1336