1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 #include <linux/page_counter.h> 27 #include <linux/vmpressure.h> 28 #include <linux/eventfd.h> 29 #include <linux/mm.h> 30 #include <linux/vmstat.h> 31 #include <linux/writeback.h> 32 #include <linux/page-flags.h> 33 34 struct mem_cgroup; 35 struct page; 36 struct mm_struct; 37 struct kmem_cache; 38 39 /* Cgroup-specific page state, on top of universal node page state */ 40 enum memcg_stat_item { 41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 42 MEMCG_RSS, 43 MEMCG_RSS_HUGE, 44 MEMCG_SWAP, 45 MEMCG_SOCK, 46 /* XXX: why are these zone and not node counters? */ 47 MEMCG_KERNEL_STACK_KB, 48 MEMCG_NR_STAT, 49 }; 50 51 enum memcg_memory_event { 52 MEMCG_LOW, 53 MEMCG_HIGH, 54 MEMCG_MAX, 55 MEMCG_OOM, 56 MEMCG_OOM_KILL, 57 MEMCG_SWAP_MAX, 58 MEMCG_SWAP_FAIL, 59 MEMCG_NR_MEMORY_EVENTS, 60 }; 61 62 enum mem_cgroup_protection { 63 MEMCG_PROT_NONE, 64 MEMCG_PROT_LOW, 65 MEMCG_PROT_MIN, 66 }; 67 68 struct mem_cgroup_reclaim_cookie { 69 pg_data_t *pgdat; 70 int priority; 71 unsigned int generation; 72 }; 73 74 #ifdef CONFIG_MEMCG 75 76 #define MEM_CGROUP_ID_SHIFT 16 77 #define MEM_CGROUP_ID_MAX USHRT_MAX 78 79 struct mem_cgroup_id { 80 int id; 81 refcount_t ref; 82 }; 83 84 /* 85 * Per memcg event counter is incremented at every pagein/pageout. With THP, 86 * it will be incremated by the number of pages. This counter is used for 87 * for trigger some periodic events. This is straightforward and better 88 * than using jiffies etc. to handle periodic memcg event. 89 */ 90 enum mem_cgroup_events_target { 91 MEM_CGROUP_TARGET_THRESH, 92 MEM_CGROUP_TARGET_SOFTLIMIT, 93 MEM_CGROUP_TARGET_NUMAINFO, 94 MEM_CGROUP_NTARGETS, 95 }; 96 97 struct memcg_vmstats_percpu { 98 long stat[MEMCG_NR_STAT]; 99 unsigned long events[NR_VM_EVENT_ITEMS]; 100 unsigned long nr_page_events; 101 unsigned long targets[MEM_CGROUP_NTARGETS]; 102 }; 103 104 struct mem_cgroup_reclaim_iter { 105 struct mem_cgroup *position; 106 /* scan generation, increased every round-trip */ 107 unsigned int generation; 108 }; 109 110 struct lruvec_stat { 111 long count[NR_VM_NODE_STAT_ITEMS]; 112 }; 113 114 /* 115 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 116 * which have elements charged to this memcg. 117 */ 118 struct memcg_shrinker_map { 119 struct rcu_head rcu; 120 unsigned long map[0]; 121 }; 122 123 /* 124 * per-zone information in memory controller. 125 */ 126 struct mem_cgroup_per_node { 127 struct lruvec lruvec; 128 129 struct lruvec_stat __percpu *lruvec_stat_cpu; 130 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 131 atomic_long_t lruvec_stat_local[NR_VM_NODE_STAT_ITEMS]; 132 133 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 134 135 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 136 137 #ifdef CONFIG_MEMCG_KMEM 138 struct memcg_shrinker_map __rcu *shrinker_map; 139 #endif 140 struct rb_node tree_node; /* RB tree node */ 141 unsigned long usage_in_excess;/* Set to the value by which */ 142 /* the soft limit is exceeded*/ 143 bool on_tree; 144 bool congested; /* memcg has many dirty pages */ 145 /* backed by a congested BDI */ 146 147 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 148 /* use container_of */ 149 }; 150 151 struct mem_cgroup_threshold { 152 struct eventfd_ctx *eventfd; 153 unsigned long threshold; 154 }; 155 156 /* For threshold */ 157 struct mem_cgroup_threshold_ary { 158 /* An array index points to threshold just below or equal to usage. */ 159 int current_threshold; 160 /* Size of entries[] */ 161 unsigned int size; 162 /* Array of thresholds */ 163 struct mem_cgroup_threshold entries[0]; 164 }; 165 166 struct mem_cgroup_thresholds { 167 /* Primary thresholds array */ 168 struct mem_cgroup_threshold_ary *primary; 169 /* 170 * Spare threshold array. 171 * This is needed to make mem_cgroup_unregister_event() "never fail". 172 * It must be able to store at least primary->size - 1 entries. 173 */ 174 struct mem_cgroup_threshold_ary *spare; 175 }; 176 177 enum memcg_kmem_state { 178 KMEM_NONE, 179 KMEM_ALLOCATED, 180 KMEM_ONLINE, 181 }; 182 183 #if defined(CONFIG_SMP) 184 struct memcg_padding { 185 char x[0]; 186 } ____cacheline_internodealigned_in_smp; 187 #define MEMCG_PADDING(name) struct memcg_padding name; 188 #else 189 #define MEMCG_PADDING(name) 190 #endif 191 192 /* 193 * The memory controller data structure. The memory controller controls both 194 * page cache and RSS per cgroup. We would eventually like to provide 195 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 196 * to help the administrator determine what knobs to tune. 197 */ 198 struct mem_cgroup { 199 struct cgroup_subsys_state css; 200 201 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 202 struct mem_cgroup_id id; 203 204 /* Accounted resources */ 205 struct page_counter memory; 206 struct page_counter swap; 207 208 /* Legacy consumer-oriented counters */ 209 struct page_counter memsw; 210 struct page_counter kmem; 211 struct page_counter tcpmem; 212 213 /* Upper bound of normal memory consumption range */ 214 unsigned long high; 215 216 /* Range enforcement for interrupt charges */ 217 struct work_struct high_work; 218 219 unsigned long soft_limit; 220 221 /* vmpressure notifications */ 222 struct vmpressure vmpressure; 223 224 /* 225 * Should the accounting and control be hierarchical, per subtree? 226 */ 227 bool use_hierarchy; 228 229 /* 230 * Should the OOM killer kill all belonging tasks, had it kill one? 231 */ 232 bool oom_group; 233 234 /* protected by memcg_oom_lock */ 235 bool oom_lock; 236 int under_oom; 237 238 int swappiness; 239 /* OOM-Killer disable */ 240 int oom_kill_disable; 241 242 /* memory.events */ 243 struct cgroup_file events_file; 244 245 /* handle for "memory.swap.events" */ 246 struct cgroup_file swap_events_file; 247 248 /* protect arrays of thresholds */ 249 struct mutex thresholds_lock; 250 251 /* thresholds for memory usage. RCU-protected */ 252 struct mem_cgroup_thresholds thresholds; 253 254 /* thresholds for mem+swap usage. RCU-protected */ 255 struct mem_cgroup_thresholds memsw_thresholds; 256 257 /* For oom notifier event fd */ 258 struct list_head oom_notify; 259 260 /* 261 * Should we move charges of a task when a task is moved into this 262 * mem_cgroup ? And what type of charges should we move ? 263 */ 264 unsigned long move_charge_at_immigrate; 265 /* taken only while moving_account > 0 */ 266 spinlock_t move_lock; 267 unsigned long move_lock_flags; 268 269 MEMCG_PADDING(_pad1_); 270 271 /* 272 * set > 0 if pages under this cgroup are moving to other cgroup. 273 */ 274 atomic_t moving_account; 275 struct task_struct *move_lock_task; 276 277 /* memory.stat */ 278 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 279 280 MEMCG_PADDING(_pad2_); 281 282 atomic_long_t vmstats[MEMCG_NR_STAT]; 283 atomic_long_t vmstats_local[MEMCG_NR_STAT]; 284 285 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 286 atomic_long_t vmevents_local[NR_VM_EVENT_ITEMS]; 287 288 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 289 290 unsigned long socket_pressure; 291 292 /* Legacy tcp memory accounting */ 293 bool tcpmem_active; 294 int tcpmem_pressure; 295 296 #ifdef CONFIG_MEMCG_KMEM 297 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 298 int kmemcg_id; 299 enum memcg_kmem_state kmem_state; 300 struct list_head kmem_caches; 301 #endif 302 303 int last_scanned_node; 304 #if MAX_NUMNODES > 1 305 nodemask_t scan_nodes; 306 atomic_t numainfo_events; 307 atomic_t numainfo_updating; 308 #endif 309 310 #ifdef CONFIG_CGROUP_WRITEBACK 311 struct list_head cgwb_list; 312 struct wb_domain cgwb_domain; 313 #endif 314 315 /* List of events which userspace want to receive */ 316 struct list_head event_list; 317 spinlock_t event_list_lock; 318 319 struct mem_cgroup_per_node *nodeinfo[0]; 320 /* WARNING: nodeinfo must be the last member here */ 321 }; 322 323 /* 324 * size of first charge trial. "32" comes from vmscan.c's magic value. 325 * TODO: maybe necessary to use big numbers in big irons. 326 */ 327 #define MEMCG_CHARGE_BATCH 32U 328 329 extern struct mem_cgroup *root_mem_cgroup; 330 331 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 332 { 333 return (memcg == root_mem_cgroup); 334 } 335 336 static inline bool mem_cgroup_disabled(void) 337 { 338 return !cgroup_subsys_enabled(memory_cgrp_subsys); 339 } 340 341 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 342 struct mem_cgroup *memcg); 343 344 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 345 gfp_t gfp_mask, struct mem_cgroup **memcgp, 346 bool compound); 347 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 348 gfp_t gfp_mask, struct mem_cgroup **memcgp, 349 bool compound); 350 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 351 bool lrucare, bool compound); 352 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 353 bool compound); 354 void mem_cgroup_uncharge(struct page *page); 355 void mem_cgroup_uncharge_list(struct list_head *page_list); 356 357 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 358 359 static struct mem_cgroup_per_node * 360 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 361 { 362 return memcg->nodeinfo[nid]; 363 } 364 365 /** 366 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 367 * @node: node of the wanted lruvec 368 * @memcg: memcg of the wanted lruvec 369 * 370 * Returns the lru list vector holding pages for a given @node or a given 371 * @memcg and @zone. This can be the node lruvec, if the memory controller 372 * is disabled. 373 */ 374 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 375 struct mem_cgroup *memcg) 376 { 377 struct mem_cgroup_per_node *mz; 378 struct lruvec *lruvec; 379 380 if (mem_cgroup_disabled()) { 381 lruvec = node_lruvec(pgdat); 382 goto out; 383 } 384 385 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 386 lruvec = &mz->lruvec; 387 out: 388 /* 389 * Since a node can be onlined after the mem_cgroup was created, 390 * we have to be prepared to initialize lruvec->pgdat here; 391 * and if offlined then reonlined, we need to reinitialize it. 392 */ 393 if (unlikely(lruvec->pgdat != pgdat)) 394 lruvec->pgdat = pgdat; 395 return lruvec; 396 } 397 398 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 399 400 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 401 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 402 403 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 404 405 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 406 407 static inline 408 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 409 return css ? container_of(css, struct mem_cgroup, css) : NULL; 410 } 411 412 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 413 { 414 if (memcg) 415 css_put(&memcg->css); 416 } 417 418 #define mem_cgroup_from_counter(counter, member) \ 419 container_of(counter, struct mem_cgroup, member) 420 421 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 422 struct mem_cgroup *, 423 struct mem_cgroup_reclaim_cookie *); 424 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 425 int mem_cgroup_scan_tasks(struct mem_cgroup *, 426 int (*)(struct task_struct *, void *), void *); 427 428 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 429 { 430 if (mem_cgroup_disabled()) 431 return 0; 432 433 return memcg->id.id; 434 } 435 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 436 437 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 438 { 439 return mem_cgroup_from_css(seq_css(m)); 440 } 441 442 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 443 { 444 struct mem_cgroup_per_node *mz; 445 446 if (mem_cgroup_disabled()) 447 return NULL; 448 449 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 450 return mz->memcg; 451 } 452 453 /** 454 * parent_mem_cgroup - find the accounting parent of a memcg 455 * @memcg: memcg whose parent to find 456 * 457 * Returns the parent memcg, or NULL if this is the root or the memory 458 * controller is in legacy no-hierarchy mode. 459 */ 460 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 461 { 462 if (!memcg->memory.parent) 463 return NULL; 464 return mem_cgroup_from_counter(memcg->memory.parent, memory); 465 } 466 467 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 468 struct mem_cgroup *root) 469 { 470 if (root == memcg) 471 return true; 472 if (!root->use_hierarchy) 473 return false; 474 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 475 } 476 477 static inline bool mm_match_cgroup(struct mm_struct *mm, 478 struct mem_cgroup *memcg) 479 { 480 struct mem_cgroup *task_memcg; 481 bool match = false; 482 483 rcu_read_lock(); 484 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 485 if (task_memcg) 486 match = mem_cgroup_is_descendant(task_memcg, memcg); 487 rcu_read_unlock(); 488 return match; 489 } 490 491 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 492 ino_t page_cgroup_ino(struct page *page); 493 494 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 495 { 496 if (mem_cgroup_disabled()) 497 return true; 498 return !!(memcg->css.flags & CSS_ONLINE); 499 } 500 501 /* 502 * For memory reclaim. 503 */ 504 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 505 506 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 507 int zid, int nr_pages); 508 509 static inline 510 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 511 enum lru_list lru, int zone_idx) 512 { 513 struct mem_cgroup_per_node *mz; 514 515 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 516 return mz->lru_zone_size[zone_idx][lru]; 517 } 518 519 void mem_cgroup_handle_over_high(void); 520 521 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 522 523 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 524 struct task_struct *p); 525 526 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 527 528 static inline void mem_cgroup_enter_user_fault(void) 529 { 530 WARN_ON(current->in_user_fault); 531 current->in_user_fault = 1; 532 } 533 534 static inline void mem_cgroup_exit_user_fault(void) 535 { 536 WARN_ON(!current->in_user_fault); 537 current->in_user_fault = 0; 538 } 539 540 static inline bool task_in_memcg_oom(struct task_struct *p) 541 { 542 return p->memcg_in_oom; 543 } 544 545 bool mem_cgroup_oom_synchronize(bool wait); 546 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 547 struct mem_cgroup *oom_domain); 548 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 549 550 #ifdef CONFIG_MEMCG_SWAP 551 extern int do_swap_account; 552 #endif 553 554 struct mem_cgroup *lock_page_memcg(struct page *page); 555 void __unlock_page_memcg(struct mem_cgroup *memcg); 556 void unlock_page_memcg(struct page *page); 557 558 /* 559 * idx can be of type enum memcg_stat_item or node_stat_item. 560 * Keep in sync with memcg_exact_page_state(). 561 */ 562 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 563 { 564 long x = atomic_long_read(&memcg->vmstats[idx]); 565 #ifdef CONFIG_SMP 566 if (x < 0) 567 x = 0; 568 #endif 569 return x; 570 } 571 572 /* 573 * idx can be of type enum memcg_stat_item or node_stat_item. 574 * Keep in sync with memcg_exact_page_state(). 575 */ 576 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 577 int idx) 578 { 579 long x = atomic_long_read(&memcg->vmstats_local[idx]); 580 #ifdef CONFIG_SMP 581 if (x < 0) 582 x = 0; 583 #endif 584 return x; 585 } 586 587 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 588 589 /* idx can be of type enum memcg_stat_item or node_stat_item */ 590 static inline void mod_memcg_state(struct mem_cgroup *memcg, 591 int idx, int val) 592 { 593 unsigned long flags; 594 595 local_irq_save(flags); 596 __mod_memcg_state(memcg, idx, val); 597 local_irq_restore(flags); 598 } 599 600 /** 601 * mod_memcg_page_state - update page state statistics 602 * @page: the page 603 * @idx: page state item to account 604 * @val: number of pages (positive or negative) 605 * 606 * The @page must be locked or the caller must use lock_page_memcg() 607 * to prevent double accounting when the page is concurrently being 608 * moved to another memcg: 609 * 610 * lock_page(page) or lock_page_memcg(page) 611 * if (TestClearPageState(page)) 612 * mod_memcg_page_state(page, state, -1); 613 * unlock_page(page) or unlock_page_memcg(page) 614 * 615 * Kernel pages are an exception to this, since they'll never move. 616 */ 617 static inline void __mod_memcg_page_state(struct page *page, 618 int idx, int val) 619 { 620 if (page->mem_cgroup) 621 __mod_memcg_state(page->mem_cgroup, idx, val); 622 } 623 624 static inline void mod_memcg_page_state(struct page *page, 625 int idx, int val) 626 { 627 if (page->mem_cgroup) 628 mod_memcg_state(page->mem_cgroup, idx, val); 629 } 630 631 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 632 enum node_stat_item idx) 633 { 634 struct mem_cgroup_per_node *pn; 635 long x; 636 637 if (mem_cgroup_disabled()) 638 return node_page_state(lruvec_pgdat(lruvec), idx); 639 640 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 641 x = atomic_long_read(&pn->lruvec_stat[idx]); 642 #ifdef CONFIG_SMP 643 if (x < 0) 644 x = 0; 645 #endif 646 return x; 647 } 648 649 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 650 enum node_stat_item idx) 651 { 652 struct mem_cgroup_per_node *pn; 653 long x; 654 655 if (mem_cgroup_disabled()) 656 return node_page_state(lruvec_pgdat(lruvec), idx); 657 658 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 659 x = atomic_long_read(&pn->lruvec_stat_local[idx]); 660 #ifdef CONFIG_SMP 661 if (x < 0) 662 x = 0; 663 #endif 664 return x; 665 } 666 667 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 668 int val); 669 670 static inline void mod_lruvec_state(struct lruvec *lruvec, 671 enum node_stat_item idx, int val) 672 { 673 unsigned long flags; 674 675 local_irq_save(flags); 676 __mod_lruvec_state(lruvec, idx, val); 677 local_irq_restore(flags); 678 } 679 680 static inline void __mod_lruvec_page_state(struct page *page, 681 enum node_stat_item idx, int val) 682 { 683 pg_data_t *pgdat = page_pgdat(page); 684 struct lruvec *lruvec; 685 686 /* Untracked pages have no memcg, no lruvec. Update only the node */ 687 if (!page->mem_cgroup) { 688 __mod_node_page_state(pgdat, idx, val); 689 return; 690 } 691 692 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 693 __mod_lruvec_state(lruvec, idx, val); 694 } 695 696 static inline void mod_lruvec_page_state(struct page *page, 697 enum node_stat_item idx, int val) 698 { 699 unsigned long flags; 700 701 local_irq_save(flags); 702 __mod_lruvec_page_state(page, idx, val); 703 local_irq_restore(flags); 704 } 705 706 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 707 gfp_t gfp_mask, 708 unsigned long *total_scanned); 709 710 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 711 unsigned long count); 712 713 static inline void count_memcg_events(struct mem_cgroup *memcg, 714 enum vm_event_item idx, 715 unsigned long count) 716 { 717 unsigned long flags; 718 719 local_irq_save(flags); 720 __count_memcg_events(memcg, idx, count); 721 local_irq_restore(flags); 722 } 723 724 static inline void count_memcg_page_event(struct page *page, 725 enum vm_event_item idx) 726 { 727 if (page->mem_cgroup) 728 count_memcg_events(page->mem_cgroup, idx, 1); 729 } 730 731 static inline void count_memcg_event_mm(struct mm_struct *mm, 732 enum vm_event_item idx) 733 { 734 struct mem_cgroup *memcg; 735 736 if (mem_cgroup_disabled()) 737 return; 738 739 rcu_read_lock(); 740 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 741 if (likely(memcg)) 742 count_memcg_events(memcg, idx, 1); 743 rcu_read_unlock(); 744 } 745 746 static inline void memcg_memory_event(struct mem_cgroup *memcg, 747 enum memcg_memory_event event) 748 { 749 atomic_long_inc(&memcg->memory_events[event]); 750 cgroup_file_notify(&memcg->events_file); 751 } 752 753 static inline void memcg_memory_event_mm(struct mm_struct *mm, 754 enum memcg_memory_event event) 755 { 756 struct mem_cgroup *memcg; 757 758 if (mem_cgroup_disabled()) 759 return; 760 761 rcu_read_lock(); 762 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 763 if (likely(memcg)) 764 memcg_memory_event(memcg, event); 765 rcu_read_unlock(); 766 } 767 768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 769 void mem_cgroup_split_huge_fixup(struct page *head); 770 #endif 771 772 #else /* CONFIG_MEMCG */ 773 774 #define MEM_CGROUP_ID_SHIFT 0 775 #define MEM_CGROUP_ID_MAX 0 776 777 struct mem_cgroup; 778 779 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 780 { 781 return true; 782 } 783 784 static inline bool mem_cgroup_disabled(void) 785 { 786 return true; 787 } 788 789 static inline void memcg_memory_event(struct mem_cgroup *memcg, 790 enum memcg_memory_event event) 791 { 792 } 793 794 static inline void memcg_memory_event_mm(struct mm_struct *mm, 795 enum memcg_memory_event event) 796 { 797 } 798 799 static inline enum mem_cgroup_protection mem_cgroup_protected( 800 struct mem_cgroup *root, struct mem_cgroup *memcg) 801 { 802 return MEMCG_PROT_NONE; 803 } 804 805 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 806 gfp_t gfp_mask, 807 struct mem_cgroup **memcgp, 808 bool compound) 809 { 810 *memcgp = NULL; 811 return 0; 812 } 813 814 static inline int mem_cgroup_try_charge_delay(struct page *page, 815 struct mm_struct *mm, 816 gfp_t gfp_mask, 817 struct mem_cgroup **memcgp, 818 bool compound) 819 { 820 *memcgp = NULL; 821 return 0; 822 } 823 824 static inline void mem_cgroup_commit_charge(struct page *page, 825 struct mem_cgroup *memcg, 826 bool lrucare, bool compound) 827 { 828 } 829 830 static inline void mem_cgroup_cancel_charge(struct page *page, 831 struct mem_cgroup *memcg, 832 bool compound) 833 { 834 } 835 836 static inline void mem_cgroup_uncharge(struct page *page) 837 { 838 } 839 840 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 841 { 842 } 843 844 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 845 { 846 } 847 848 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 849 struct mem_cgroup *memcg) 850 { 851 return node_lruvec(pgdat); 852 } 853 854 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 855 struct pglist_data *pgdat) 856 { 857 return &pgdat->lruvec; 858 } 859 860 static inline bool mm_match_cgroup(struct mm_struct *mm, 861 struct mem_cgroup *memcg) 862 { 863 return true; 864 } 865 866 static inline bool task_in_mem_cgroup(struct task_struct *task, 867 const struct mem_cgroup *memcg) 868 { 869 return true; 870 } 871 872 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 873 { 874 return NULL; 875 } 876 877 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 878 { 879 return NULL; 880 } 881 882 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 883 { 884 } 885 886 static inline struct mem_cgroup * 887 mem_cgroup_iter(struct mem_cgroup *root, 888 struct mem_cgroup *prev, 889 struct mem_cgroup_reclaim_cookie *reclaim) 890 { 891 return NULL; 892 } 893 894 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 895 struct mem_cgroup *prev) 896 { 897 } 898 899 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 900 int (*fn)(struct task_struct *, void *), void *arg) 901 { 902 return 0; 903 } 904 905 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 906 { 907 return 0; 908 } 909 910 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 911 { 912 WARN_ON_ONCE(id); 913 /* XXX: This should always return root_mem_cgroup */ 914 return NULL; 915 } 916 917 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 918 { 919 return NULL; 920 } 921 922 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 923 { 924 return NULL; 925 } 926 927 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 928 { 929 return true; 930 } 931 932 static inline 933 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 934 enum lru_list lru, int zone_idx) 935 { 936 return 0; 937 } 938 939 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 940 { 941 return 0; 942 } 943 944 static inline void 945 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 946 { 947 } 948 949 static inline void 950 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 951 { 952 } 953 954 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 955 { 956 return NULL; 957 } 958 959 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 960 { 961 } 962 963 static inline void unlock_page_memcg(struct page *page) 964 { 965 } 966 967 static inline void mem_cgroup_handle_over_high(void) 968 { 969 } 970 971 static inline void mem_cgroup_enter_user_fault(void) 972 { 973 } 974 975 static inline void mem_cgroup_exit_user_fault(void) 976 { 977 } 978 979 static inline bool task_in_memcg_oom(struct task_struct *p) 980 { 981 return false; 982 } 983 984 static inline bool mem_cgroup_oom_synchronize(bool wait) 985 { 986 return false; 987 } 988 989 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 990 struct task_struct *victim, struct mem_cgroup *oom_domain) 991 { 992 return NULL; 993 } 994 995 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 996 { 997 } 998 999 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1000 { 1001 return 0; 1002 } 1003 1004 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1005 int idx) 1006 { 1007 return 0; 1008 } 1009 1010 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1011 int idx, 1012 int nr) 1013 { 1014 } 1015 1016 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1017 int idx, 1018 int nr) 1019 { 1020 } 1021 1022 static inline void __mod_memcg_page_state(struct page *page, 1023 int idx, 1024 int nr) 1025 { 1026 } 1027 1028 static inline void mod_memcg_page_state(struct page *page, 1029 int idx, 1030 int nr) 1031 { 1032 } 1033 1034 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1035 enum node_stat_item idx) 1036 { 1037 return node_page_state(lruvec_pgdat(lruvec), idx); 1038 } 1039 1040 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1041 enum node_stat_item idx) 1042 { 1043 return node_page_state(lruvec_pgdat(lruvec), idx); 1044 } 1045 1046 static inline void __mod_lruvec_state(struct lruvec *lruvec, 1047 enum node_stat_item idx, int val) 1048 { 1049 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1050 } 1051 1052 static inline void mod_lruvec_state(struct lruvec *lruvec, 1053 enum node_stat_item idx, int val) 1054 { 1055 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1056 } 1057 1058 static inline void __mod_lruvec_page_state(struct page *page, 1059 enum node_stat_item idx, int val) 1060 { 1061 __mod_node_page_state(page_pgdat(page), idx, val); 1062 } 1063 1064 static inline void mod_lruvec_page_state(struct page *page, 1065 enum node_stat_item idx, int val) 1066 { 1067 mod_node_page_state(page_pgdat(page), idx, val); 1068 } 1069 1070 static inline 1071 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1072 gfp_t gfp_mask, 1073 unsigned long *total_scanned) 1074 { 1075 return 0; 1076 } 1077 1078 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1079 { 1080 } 1081 1082 static inline void count_memcg_events(struct mem_cgroup *memcg, 1083 enum vm_event_item idx, 1084 unsigned long count) 1085 { 1086 } 1087 1088 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1089 enum vm_event_item idx, 1090 unsigned long count) 1091 { 1092 } 1093 1094 static inline void count_memcg_page_event(struct page *page, 1095 int idx) 1096 { 1097 } 1098 1099 static inline 1100 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1101 { 1102 } 1103 #endif /* CONFIG_MEMCG */ 1104 1105 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1106 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1107 int idx) 1108 { 1109 __mod_memcg_state(memcg, idx, 1); 1110 } 1111 1112 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1113 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1114 int idx) 1115 { 1116 __mod_memcg_state(memcg, idx, -1); 1117 } 1118 1119 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1120 static inline void __inc_memcg_page_state(struct page *page, 1121 int idx) 1122 { 1123 __mod_memcg_page_state(page, idx, 1); 1124 } 1125 1126 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1127 static inline void __dec_memcg_page_state(struct page *page, 1128 int idx) 1129 { 1130 __mod_memcg_page_state(page, idx, -1); 1131 } 1132 1133 static inline void __inc_lruvec_state(struct lruvec *lruvec, 1134 enum node_stat_item idx) 1135 { 1136 __mod_lruvec_state(lruvec, idx, 1); 1137 } 1138 1139 static inline void __dec_lruvec_state(struct lruvec *lruvec, 1140 enum node_stat_item idx) 1141 { 1142 __mod_lruvec_state(lruvec, idx, -1); 1143 } 1144 1145 static inline void __inc_lruvec_page_state(struct page *page, 1146 enum node_stat_item idx) 1147 { 1148 __mod_lruvec_page_state(page, idx, 1); 1149 } 1150 1151 static inline void __dec_lruvec_page_state(struct page *page, 1152 enum node_stat_item idx) 1153 { 1154 __mod_lruvec_page_state(page, idx, -1); 1155 } 1156 1157 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1158 static inline void inc_memcg_state(struct mem_cgroup *memcg, 1159 int idx) 1160 { 1161 mod_memcg_state(memcg, idx, 1); 1162 } 1163 1164 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1165 static inline void dec_memcg_state(struct mem_cgroup *memcg, 1166 int idx) 1167 { 1168 mod_memcg_state(memcg, idx, -1); 1169 } 1170 1171 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1172 static inline void inc_memcg_page_state(struct page *page, 1173 int idx) 1174 { 1175 mod_memcg_page_state(page, idx, 1); 1176 } 1177 1178 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1179 static inline void dec_memcg_page_state(struct page *page, 1180 int idx) 1181 { 1182 mod_memcg_page_state(page, idx, -1); 1183 } 1184 1185 static inline void inc_lruvec_state(struct lruvec *lruvec, 1186 enum node_stat_item idx) 1187 { 1188 mod_lruvec_state(lruvec, idx, 1); 1189 } 1190 1191 static inline void dec_lruvec_state(struct lruvec *lruvec, 1192 enum node_stat_item idx) 1193 { 1194 mod_lruvec_state(lruvec, idx, -1); 1195 } 1196 1197 static inline void inc_lruvec_page_state(struct page *page, 1198 enum node_stat_item idx) 1199 { 1200 mod_lruvec_page_state(page, idx, 1); 1201 } 1202 1203 static inline void dec_lruvec_page_state(struct page *page, 1204 enum node_stat_item idx) 1205 { 1206 mod_lruvec_page_state(page, idx, -1); 1207 } 1208 1209 #ifdef CONFIG_CGROUP_WRITEBACK 1210 1211 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1212 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1213 unsigned long *pheadroom, unsigned long *pdirty, 1214 unsigned long *pwriteback); 1215 1216 #else /* CONFIG_CGROUP_WRITEBACK */ 1217 1218 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1219 { 1220 return NULL; 1221 } 1222 1223 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1224 unsigned long *pfilepages, 1225 unsigned long *pheadroom, 1226 unsigned long *pdirty, 1227 unsigned long *pwriteback) 1228 { 1229 } 1230 1231 #endif /* CONFIG_CGROUP_WRITEBACK */ 1232 1233 struct sock; 1234 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1235 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1236 #ifdef CONFIG_MEMCG 1237 extern struct static_key_false memcg_sockets_enabled_key; 1238 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1239 void mem_cgroup_sk_alloc(struct sock *sk); 1240 void mem_cgroup_sk_free(struct sock *sk); 1241 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1242 { 1243 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1244 return true; 1245 do { 1246 if (time_before(jiffies, memcg->socket_pressure)) 1247 return true; 1248 } while ((memcg = parent_mem_cgroup(memcg))); 1249 return false; 1250 } 1251 #else 1252 #define mem_cgroup_sockets_enabled 0 1253 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1254 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1255 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1256 { 1257 return false; 1258 } 1259 #endif 1260 1261 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1262 void memcg_kmem_put_cache(struct kmem_cache *cachep); 1263 1264 #ifdef CONFIG_MEMCG_KMEM 1265 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1266 void __memcg_kmem_uncharge(struct page *page, int order); 1267 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1268 struct mem_cgroup *memcg); 1269 1270 extern struct static_key_false memcg_kmem_enabled_key; 1271 extern struct workqueue_struct *memcg_kmem_cache_wq; 1272 1273 extern int memcg_nr_cache_ids; 1274 void memcg_get_cache_ids(void); 1275 void memcg_put_cache_ids(void); 1276 1277 /* 1278 * Helper macro to loop through all memcg-specific caches. Callers must still 1279 * check if the cache is valid (it is either valid or NULL). 1280 * the slab_mutex must be held when looping through those caches 1281 */ 1282 #define for_each_memcg_cache_index(_idx) \ 1283 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1284 1285 static inline bool memcg_kmem_enabled(void) 1286 { 1287 return static_branch_unlikely(&memcg_kmem_enabled_key); 1288 } 1289 1290 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1291 { 1292 if (memcg_kmem_enabled()) 1293 return __memcg_kmem_charge(page, gfp, order); 1294 return 0; 1295 } 1296 1297 static inline void memcg_kmem_uncharge(struct page *page, int order) 1298 { 1299 if (memcg_kmem_enabled()) 1300 __memcg_kmem_uncharge(page, order); 1301 } 1302 1303 static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, 1304 int order, struct mem_cgroup *memcg) 1305 { 1306 if (memcg_kmem_enabled()) 1307 return __memcg_kmem_charge_memcg(page, gfp, order, memcg); 1308 return 0; 1309 } 1310 /* 1311 * helper for accessing a memcg's index. It will be used as an index in the 1312 * child cache array in kmem_cache, and also to derive its name. This function 1313 * will return -1 when this is not a kmem-limited memcg. 1314 */ 1315 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1316 { 1317 return memcg ? memcg->kmemcg_id : -1; 1318 } 1319 1320 extern int memcg_expand_shrinker_maps(int new_id); 1321 1322 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1323 int nid, int shrinker_id); 1324 #else 1325 1326 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1327 { 1328 return 0; 1329 } 1330 1331 static inline void memcg_kmem_uncharge(struct page *page, int order) 1332 { 1333 } 1334 1335 static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1336 { 1337 return 0; 1338 } 1339 1340 static inline void __memcg_kmem_uncharge(struct page *page, int order) 1341 { 1342 } 1343 1344 #define for_each_memcg_cache_index(_idx) \ 1345 for (; NULL; ) 1346 1347 static inline bool memcg_kmem_enabled(void) 1348 { 1349 return false; 1350 } 1351 1352 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1353 { 1354 return -1; 1355 } 1356 1357 static inline void memcg_get_cache_ids(void) 1358 { 1359 } 1360 1361 static inline void memcg_put_cache_ids(void) 1362 { 1363 } 1364 1365 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1366 int nid, int shrinker_id) { } 1367 #endif /* CONFIG_MEMCG_KMEM */ 1368 1369 #endif /* _LINUX_MEMCONTROL_H */ 1370