xref: /linux-6.15/include/linux/memcontrol.h (revision 0ccaf421)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	unsigned int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 struct memcg_vmstats_percpu;
73 struct memcg1_events_percpu;
74 struct memcg_vmstats;
75 struct lruvec_stats_percpu;
76 struct lruvec_stats;
77 
78 struct mem_cgroup_reclaim_iter {
79 	struct mem_cgroup *position;
80 	/* scan generation, increased every round-trip */
81 	unsigned int generation;
82 };
83 
84 /*
85  * per-node information in memory controller.
86  */
87 struct mem_cgroup_per_node {
88 	/* Keep the read-only fields at the start */
89 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
90 						/* use container_of	   */
91 
92 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
93 	struct lruvec_stats			*lruvec_stats;
94 	struct shrinker_info __rcu	*shrinker_info;
95 
96 #ifdef CONFIG_MEMCG_V1
97 	/*
98 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 	 * and update often fields to avoid false sharing. If v1 stuff is
100 	 * not present, an explicit padding is needed.
101 	 */
102 
103 	struct rb_node		tree_node;	/* RB tree node */
104 	unsigned long		usage_in_excess;/* Set to the value by which */
105 						/* the soft limit is exceeded*/
106 	bool			on_tree;
107 #else
108 	CACHELINE_PADDING(_pad1_);
109 #endif
110 
111 	/* Fields which get updated often at the end. */
112 	struct lruvec		lruvec;
113 	CACHELINE_PADDING(_pad2_);
114 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 	struct mem_cgroup_reclaim_iter	iter;
116 };
117 
118 struct mem_cgroup_threshold {
119 	struct eventfd_ctx *eventfd;
120 	unsigned long threshold;
121 };
122 
123 /* For threshold */
124 struct mem_cgroup_threshold_ary {
125 	/* An array index points to threshold just below or equal to usage. */
126 	int current_threshold;
127 	/* Size of entries[] */
128 	unsigned int size;
129 	/* Array of thresholds */
130 	struct mem_cgroup_threshold entries[] __counted_by(size);
131 };
132 
133 struct mem_cgroup_thresholds {
134 	/* Primary thresholds array */
135 	struct mem_cgroup_threshold_ary *primary;
136 	/*
137 	 * Spare threshold array.
138 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 	 * It must be able to store at least primary->size - 1 entries.
140 	 */
141 	struct mem_cgroup_threshold_ary *spare;
142 };
143 
144 /*
145  * Remember four most recent foreign writebacks with dirty pages in this
146  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
147  * one in a given round, we're likely to catch it later if it keeps
148  * foreign-dirtying, so a fairly low count should be enough.
149  *
150  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
151  */
152 #define MEMCG_CGWB_FRN_CNT	4
153 
154 struct memcg_cgwb_frn {
155 	u64 bdi_id;			/* bdi->id of the foreign inode */
156 	int memcg_id;			/* memcg->css.id of foreign inode */
157 	u64 at;				/* jiffies_64 at the time of dirtying */
158 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
159 };
160 
161 /*
162  * Bucket for arbitrarily byte-sized objects charged to a memory
163  * cgroup. The bucket can be reparented in one piece when the cgroup
164  * is destroyed, without having to round up the individual references
165  * of all live memory objects in the wild.
166  */
167 struct obj_cgroup {
168 	struct percpu_ref refcnt;
169 	struct mem_cgroup *memcg;
170 	atomic_t nr_charged_bytes;
171 	union {
172 		struct list_head list; /* protected by objcg_lock */
173 		struct rcu_head rcu;
174 	};
175 };
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  */
183 struct mem_cgroup {
184 	struct cgroup_subsys_state css;
185 
186 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
187 	struct mem_cgroup_id id;
188 
189 	/* Accounted resources */
190 	struct page_counter memory;		/* Both v1 & v2 */
191 
192 	union {
193 		struct page_counter swap;	/* v2 only */
194 		struct page_counter memsw;	/* v1 only */
195 	};
196 
197 	/* registered local peak watchers */
198 	struct list_head memory_peaks;
199 	struct list_head swap_peaks;
200 	spinlock_t	 peaks_lock;
201 
202 	/* Range enforcement for interrupt charges */
203 	struct work_struct high_work;
204 
205 #ifdef CONFIG_ZSWAP
206 	unsigned long zswap_max;
207 
208 	/*
209 	 * Prevent pages from this memcg from being written back from zswap to
210 	 * swap, and from being swapped out on zswap store failures.
211 	 */
212 	bool zswap_writeback;
213 #endif
214 
215 	/* vmpressure notifications */
216 	struct vmpressure vmpressure;
217 
218 	/*
219 	 * Should the OOM killer kill all belonging tasks, had it kill one?
220 	 */
221 	bool oom_group;
222 
223 	int swappiness;
224 
225 	/* memory.events and memory.events.local */
226 	struct cgroup_file events_file;
227 	struct cgroup_file events_local_file;
228 
229 	/* handle for "memory.swap.events" */
230 	struct cgroup_file swap_events_file;
231 
232 	/* memory.stat */
233 	struct memcg_vmstats	*vmstats;
234 
235 	/* memory.events */
236 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
237 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
238 
239 	/*
240 	 * Hint of reclaim pressure for socket memroy management. Note
241 	 * that this indicator should NOT be used in legacy cgroup mode
242 	 * where socket memory is accounted/charged separately.
243 	 */
244 	unsigned long		socket_pressure;
245 
246 	int kmemcg_id;
247 	/*
248 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
249 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
250 	 * to the original objcg until the end of live of memcg.
251 	 */
252 	struct obj_cgroup __rcu	*objcg;
253 	struct obj_cgroup	*orig_objcg;
254 	/* list of inherited objcgs, protected by objcg_lock */
255 	struct list_head objcg_list;
256 
257 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
258 
259 #ifdef CONFIG_CGROUP_WRITEBACK
260 	struct list_head cgwb_list;
261 	struct wb_domain cgwb_domain;
262 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
263 #endif
264 
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 	struct deferred_split deferred_split_queue;
267 #endif
268 
269 #ifdef CONFIG_LRU_GEN_WALKS_MMU
270 	/* per-memcg mm_struct list */
271 	struct lru_gen_mm_list mm_list;
272 #endif
273 
274 #ifdef CONFIG_MEMCG_V1
275 	/* Legacy consumer-oriented counters */
276 	struct page_counter kmem;		/* v1 only */
277 	struct page_counter tcpmem;		/* v1 only */
278 
279 	struct memcg1_events_percpu __percpu *events_percpu;
280 
281 	unsigned long soft_limit;
282 
283 	/* protected by memcg_oom_lock */
284 	bool oom_lock;
285 	int under_oom;
286 
287 	/* OOM-Killer disable */
288 	int oom_kill_disable;
289 
290 	/* protect arrays of thresholds */
291 	struct mutex thresholds_lock;
292 
293 	/* thresholds for memory usage. RCU-protected */
294 	struct mem_cgroup_thresholds thresholds;
295 
296 	/* thresholds for mem+swap usage. RCU-protected */
297 	struct mem_cgroup_thresholds memsw_thresholds;
298 
299 	/* For oom notifier event fd */
300 	struct list_head oom_notify;
301 
302 	/*
303 	 * Should we move charges of a task when a task is moved into this
304 	 * mem_cgroup ? And what type of charges should we move ?
305 	 */
306 	unsigned long move_charge_at_immigrate;
307 	/* taken only while moving_account > 0 */
308 	spinlock_t move_lock;
309 	unsigned long move_lock_flags;
310 
311 	/* Legacy tcp memory accounting */
312 	bool tcpmem_active;
313 	int tcpmem_pressure;
314 
315 	/*
316 	 * set > 0 if pages under this cgroup are moving to other cgroup.
317 	 */
318 	atomic_t moving_account;
319 	struct task_struct *move_lock_task;
320 
321 	/* List of events which userspace want to receive */
322 	struct list_head event_list;
323 	spinlock_t event_list_lock;
324 #endif /* CONFIG_MEMCG_V1 */
325 
326 	struct mem_cgroup_per_node *nodeinfo[];
327 };
328 
329 /*
330  * size of first charge trial.
331  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
332  * workload.
333  */
334 #define MEMCG_CHARGE_BATCH 64U
335 
336 extern struct mem_cgroup *root_mem_cgroup;
337 
338 enum page_memcg_data_flags {
339 	/* page->memcg_data is a pointer to an slabobj_ext vector */
340 	MEMCG_DATA_OBJEXTS = (1UL << 0),
341 	/* page has been accounted as a non-slab kernel page */
342 	MEMCG_DATA_KMEM = (1UL << 1),
343 	/* the next bit after the last actual flag */
344 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
345 };
346 
347 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
348 
349 #else /* CONFIG_MEMCG */
350 
351 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
352 
353 #endif /* CONFIG_MEMCG */
354 
355 enum objext_flags {
356 	/* slabobj_ext vector failed to allocate */
357 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
358 	/* the next bit after the last actual flag */
359 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
360 };
361 
362 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
363 
364 #ifdef CONFIG_MEMCG
365 
366 static inline bool folio_memcg_kmem(struct folio *folio);
367 
368 /*
369  * After the initialization objcg->memcg is always pointing at
370  * a valid memcg, but can be atomically swapped to the parent memcg.
371  *
372  * The caller must ensure that the returned memcg won't be released.
373  */
374 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
375 {
376 	lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
377 	return READ_ONCE(objcg->memcg);
378 }
379 
380 /*
381  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
382  * @folio: Pointer to the folio.
383  *
384  * Returns a pointer to the memory cgroup associated with the folio,
385  * or NULL. This function assumes that the folio is known to have a
386  * proper memory cgroup pointer. It's not safe to call this function
387  * against some type of folios, e.g. slab folios or ex-slab folios or
388  * kmem folios.
389  */
390 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
391 {
392 	unsigned long memcg_data = folio->memcg_data;
393 
394 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
395 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
396 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
397 
398 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
399 }
400 
401 /*
402  * __folio_objcg - get the object cgroup associated with a kmem folio.
403  * @folio: Pointer to the folio.
404  *
405  * Returns a pointer to the object cgroup associated with the folio,
406  * or NULL. This function assumes that the folio is known to have a
407  * proper object cgroup pointer. It's not safe to call this function
408  * against some type of folios, e.g. slab folios or ex-slab folios or
409  * LRU folios.
410  */
411 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
412 {
413 	unsigned long memcg_data = folio->memcg_data;
414 
415 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
416 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
417 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
418 
419 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
420 }
421 
422 /*
423  * folio_memcg - Get the memory cgroup associated with a folio.
424  * @folio: Pointer to the folio.
425  *
426  * Returns a pointer to the memory cgroup associated with the folio,
427  * or NULL. This function assumes that the folio is known to have a
428  * proper memory cgroup pointer. It's not safe to call this function
429  * against some type of folios, e.g. slab folios or ex-slab folios.
430  *
431  * For a non-kmem folio any of the following ensures folio and memcg binding
432  * stability:
433  *
434  * - the folio lock
435  * - LRU isolation
436  * - folio_memcg_lock()
437  * - exclusive reference
438  * - mem_cgroup_trylock_pages()
439  *
440  * For a kmem folio a caller should hold an rcu read lock to protect memcg
441  * associated with a kmem folio from being released.
442  */
443 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
444 {
445 	if (folio_memcg_kmem(folio))
446 		return obj_cgroup_memcg(__folio_objcg(folio));
447 	return __folio_memcg(folio);
448 }
449 
450 /*
451  * folio_memcg_charged - If a folio is charged to a memory cgroup.
452  * @folio: Pointer to the folio.
453  *
454  * Returns true if folio is charged to a memory cgroup, otherwise returns false.
455  */
456 static inline bool folio_memcg_charged(struct folio *folio)
457 {
458 	if (folio_memcg_kmem(folio))
459 		return __folio_objcg(folio) != NULL;
460 	return __folio_memcg(folio) != NULL;
461 }
462 
463 /**
464  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
465  * @folio: Pointer to the folio.
466  *
467  * This function assumes that the folio is known to have a
468  * proper memory cgroup pointer. It's not safe to call this function
469  * against some type of folios, e.g. slab folios or ex-slab folios.
470  *
471  * Return: A pointer to the memory cgroup associated with the folio,
472  * or NULL.
473  */
474 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
475 {
476 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
477 
478 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
479 
480 	if (memcg_data & MEMCG_DATA_KMEM) {
481 		struct obj_cgroup *objcg;
482 
483 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
484 		return obj_cgroup_memcg(objcg);
485 	}
486 
487 	WARN_ON_ONCE(!rcu_read_lock_held());
488 
489 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
490 }
491 
492 /*
493  * folio_memcg_check - Get the memory cgroup associated with a folio.
494  * @folio: Pointer to the folio.
495  *
496  * Returns a pointer to the memory cgroup associated with the folio,
497  * or NULL. This function unlike folio_memcg() can take any folio
498  * as an argument. It has to be used in cases when it's not known if a folio
499  * has an associated memory cgroup pointer or an object cgroups vector or
500  * an object cgroup.
501  *
502  * For a non-kmem folio any of the following ensures folio and memcg binding
503  * stability:
504  *
505  * - the folio lock
506  * - LRU isolation
507  * - lock_folio_memcg()
508  * - exclusive reference
509  * - mem_cgroup_trylock_pages()
510  *
511  * For a kmem folio a caller should hold an rcu read lock to protect memcg
512  * associated with a kmem folio from being released.
513  */
514 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
515 {
516 	/*
517 	 * Because folio->memcg_data might be changed asynchronously
518 	 * for slabs, READ_ONCE() should be used here.
519 	 */
520 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
521 
522 	if (memcg_data & MEMCG_DATA_OBJEXTS)
523 		return NULL;
524 
525 	if (memcg_data & MEMCG_DATA_KMEM) {
526 		struct obj_cgroup *objcg;
527 
528 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
529 		return obj_cgroup_memcg(objcg);
530 	}
531 
532 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
533 }
534 
535 static inline struct mem_cgroup *page_memcg_check(struct page *page)
536 {
537 	if (PageTail(page))
538 		return NULL;
539 	return folio_memcg_check((struct folio *)page);
540 }
541 
542 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
543 {
544 	struct mem_cgroup *memcg;
545 
546 	rcu_read_lock();
547 retry:
548 	memcg = obj_cgroup_memcg(objcg);
549 	if (unlikely(!css_tryget(&memcg->css)))
550 		goto retry;
551 	rcu_read_unlock();
552 
553 	return memcg;
554 }
555 
556 /*
557  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
558  * @folio: Pointer to the folio.
559  *
560  * Checks if the folio has MemcgKmem flag set. The caller must ensure
561  * that the folio has an associated memory cgroup. It's not safe to call
562  * this function against some types of folios, e.g. slab folios.
563  */
564 static inline bool folio_memcg_kmem(struct folio *folio)
565 {
566 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
567 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
568 	return folio->memcg_data & MEMCG_DATA_KMEM;
569 }
570 
571 static inline bool PageMemcgKmem(struct page *page)
572 {
573 	return folio_memcg_kmem(page_folio(page));
574 }
575 
576 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
577 {
578 	return (memcg == root_mem_cgroup);
579 }
580 
581 static inline bool mem_cgroup_disabled(void)
582 {
583 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
584 }
585 
586 static inline void mem_cgroup_protection(struct mem_cgroup *root,
587 					 struct mem_cgroup *memcg,
588 					 unsigned long *min,
589 					 unsigned long *low)
590 {
591 	*min = *low = 0;
592 
593 	if (mem_cgroup_disabled())
594 		return;
595 
596 	/*
597 	 * There is no reclaim protection applied to a targeted reclaim.
598 	 * We are special casing this specific case here because
599 	 * mem_cgroup_calculate_protection is not robust enough to keep
600 	 * the protection invariant for calculated effective values for
601 	 * parallel reclaimers with different reclaim target. This is
602 	 * especially a problem for tail memcgs (as they have pages on LRU)
603 	 * which would want to have effective values 0 for targeted reclaim
604 	 * but a different value for external reclaim.
605 	 *
606 	 * Example
607 	 * Let's have global and A's reclaim in parallel:
608 	 *  |
609 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
610 	 *  |\
611 	 *  | C (low = 1G, usage = 2.5G)
612 	 *  B (low = 1G, usage = 0.5G)
613 	 *
614 	 * For the global reclaim
615 	 * A.elow = A.low
616 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
617 	 * C.elow = min(C.usage, C.low)
618 	 *
619 	 * With the effective values resetting we have A reclaim
620 	 * A.elow = 0
621 	 * B.elow = B.low
622 	 * C.elow = C.low
623 	 *
624 	 * If the global reclaim races with A's reclaim then
625 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
626 	 * is possible and reclaiming B would be violating the protection.
627 	 *
628 	 */
629 	if (root == memcg)
630 		return;
631 
632 	*min = READ_ONCE(memcg->memory.emin);
633 	*low = READ_ONCE(memcg->memory.elow);
634 }
635 
636 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
637 				     struct mem_cgroup *memcg);
638 
639 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
640 					  struct mem_cgroup *memcg)
641 {
642 	/*
643 	 * The root memcg doesn't account charges, and doesn't support
644 	 * protection. The target memcg's protection is ignored, see
645 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
646 	 */
647 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
648 		memcg == target;
649 }
650 
651 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
652 					struct mem_cgroup *memcg)
653 {
654 	if (mem_cgroup_unprotected(target, memcg))
655 		return false;
656 
657 	return READ_ONCE(memcg->memory.elow) >=
658 		page_counter_read(&memcg->memory);
659 }
660 
661 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
662 					struct mem_cgroup *memcg)
663 {
664 	if (mem_cgroup_unprotected(target, memcg))
665 		return false;
666 
667 	return READ_ONCE(memcg->memory.emin) >=
668 		page_counter_read(&memcg->memory);
669 }
670 
671 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
672 
673 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
674 
675 /**
676  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
677  * @folio: Folio to charge.
678  * @mm: mm context of the allocating task.
679  * @gfp: Reclaim mode.
680  *
681  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
682  * pages according to @gfp if necessary.  If @mm is NULL, try to
683  * charge to the active memcg.
684  *
685  * Do not use this for folios allocated for swapin.
686  *
687  * Return: 0 on success. Otherwise, an error code is returned.
688  */
689 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
690 				    gfp_t gfp)
691 {
692 	if (mem_cgroup_disabled())
693 		return 0;
694 	return __mem_cgroup_charge(folio, mm, gfp);
695 }
696 
697 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
698 		long nr_pages);
699 
700 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
701 				  gfp_t gfp, swp_entry_t entry);
702 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
703 
704 void __mem_cgroup_uncharge(struct folio *folio);
705 
706 /**
707  * mem_cgroup_uncharge - Uncharge a folio.
708  * @folio: Folio to uncharge.
709  *
710  * Uncharge a folio previously charged with mem_cgroup_charge().
711  */
712 static inline void mem_cgroup_uncharge(struct folio *folio)
713 {
714 	if (mem_cgroup_disabled())
715 		return;
716 	__mem_cgroup_uncharge(folio);
717 }
718 
719 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
720 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
721 {
722 	if (mem_cgroup_disabled())
723 		return;
724 	__mem_cgroup_uncharge_folios(folios);
725 }
726 
727 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
728 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
729 void mem_cgroup_migrate(struct folio *old, struct folio *new);
730 
731 /**
732  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
733  * @memcg: memcg of the wanted lruvec
734  * @pgdat: pglist_data
735  *
736  * Returns the lru list vector holding pages for a given @memcg &
737  * @pgdat combination. This can be the node lruvec, if the memory
738  * controller is disabled.
739  */
740 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
741 					       struct pglist_data *pgdat)
742 {
743 	struct mem_cgroup_per_node *mz;
744 	struct lruvec *lruvec;
745 
746 	if (mem_cgroup_disabled()) {
747 		lruvec = &pgdat->__lruvec;
748 		goto out;
749 	}
750 
751 	if (!memcg)
752 		memcg = root_mem_cgroup;
753 
754 	mz = memcg->nodeinfo[pgdat->node_id];
755 	lruvec = &mz->lruvec;
756 out:
757 	/*
758 	 * Since a node can be onlined after the mem_cgroup was created,
759 	 * we have to be prepared to initialize lruvec->pgdat here;
760 	 * and if offlined then reonlined, we need to reinitialize it.
761 	 */
762 	if (unlikely(lruvec->pgdat != pgdat))
763 		lruvec->pgdat = pgdat;
764 	return lruvec;
765 }
766 
767 /**
768  * folio_lruvec - return lruvec for isolating/putting an LRU folio
769  * @folio: Pointer to the folio.
770  *
771  * This function relies on folio->mem_cgroup being stable.
772  */
773 static inline struct lruvec *folio_lruvec(struct folio *folio)
774 {
775 	struct mem_cgroup *memcg = folio_memcg(folio);
776 
777 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
778 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
779 }
780 
781 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
782 
783 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
784 
785 struct mem_cgroup *get_mem_cgroup_from_current(void);
786 
787 struct lruvec *folio_lruvec_lock(struct folio *folio);
788 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
789 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
790 						unsigned long *flags);
791 
792 #ifdef CONFIG_DEBUG_VM
793 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
794 #else
795 static inline
796 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
797 {
798 }
799 #endif
800 
801 static inline
802 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
803 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
804 }
805 
806 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
807 {
808 	return percpu_ref_tryget(&objcg->refcnt);
809 }
810 
811 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
812 {
813 	percpu_ref_get(&objcg->refcnt);
814 }
815 
816 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
817 				       unsigned long nr)
818 {
819 	percpu_ref_get_many(&objcg->refcnt, nr);
820 }
821 
822 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
823 {
824 	if (objcg)
825 		percpu_ref_put(&objcg->refcnt);
826 }
827 
828 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
829 {
830 	return !memcg || css_tryget(&memcg->css);
831 }
832 
833 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
834 {
835 	return !memcg || css_tryget_online(&memcg->css);
836 }
837 
838 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
839 {
840 	if (memcg)
841 		css_put(&memcg->css);
842 }
843 
844 #define mem_cgroup_from_counter(counter, member)	\
845 	container_of(counter, struct mem_cgroup, member)
846 
847 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
848 				   struct mem_cgroup *,
849 				   struct mem_cgroup_reclaim_cookie *);
850 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
851 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
852 			   int (*)(struct task_struct *, void *), void *arg);
853 
854 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
855 {
856 	if (mem_cgroup_disabled())
857 		return 0;
858 
859 	return memcg->id.id;
860 }
861 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
862 
863 #ifdef CONFIG_SHRINKER_DEBUG
864 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
865 {
866 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
867 }
868 
869 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
870 #endif
871 
872 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
873 {
874 	return mem_cgroup_from_css(seq_css(m));
875 }
876 
877 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
878 {
879 	struct mem_cgroup_per_node *mz;
880 
881 	if (mem_cgroup_disabled())
882 		return NULL;
883 
884 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
885 	return mz->memcg;
886 }
887 
888 /**
889  * parent_mem_cgroup - find the accounting parent of a memcg
890  * @memcg: memcg whose parent to find
891  *
892  * Returns the parent memcg, or NULL if this is the root.
893  */
894 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
895 {
896 	return mem_cgroup_from_css(memcg->css.parent);
897 }
898 
899 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
900 			      struct mem_cgroup *root)
901 {
902 	if (root == memcg)
903 		return true;
904 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
905 }
906 
907 static inline bool mm_match_cgroup(struct mm_struct *mm,
908 				   struct mem_cgroup *memcg)
909 {
910 	struct mem_cgroup *task_memcg;
911 	bool match = false;
912 
913 	rcu_read_lock();
914 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
915 	if (task_memcg)
916 		match = mem_cgroup_is_descendant(task_memcg, memcg);
917 	rcu_read_unlock();
918 	return match;
919 }
920 
921 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
922 ino_t page_cgroup_ino(struct page *page);
923 
924 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
925 {
926 	if (mem_cgroup_disabled())
927 		return true;
928 	return !!(memcg->css.flags & CSS_ONLINE);
929 }
930 
931 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
932 		int zid, int nr_pages);
933 
934 static inline
935 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
936 		enum lru_list lru, int zone_idx)
937 {
938 	struct mem_cgroup_per_node *mz;
939 
940 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
941 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
942 }
943 
944 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
945 
946 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
947 
948 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
949 
950 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
951 				struct task_struct *p);
952 
953 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
954 
955 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
956 					    struct mem_cgroup *oom_domain);
957 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
958 
959 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
960 		       int val);
961 
962 /* idx can be of type enum memcg_stat_item or node_stat_item */
963 static inline void mod_memcg_state(struct mem_cgroup *memcg,
964 				   enum memcg_stat_item idx, int val)
965 {
966 	unsigned long flags;
967 
968 	local_irq_save(flags);
969 	__mod_memcg_state(memcg, idx, val);
970 	local_irq_restore(flags);
971 }
972 
973 static inline void mod_memcg_page_state(struct page *page,
974 					enum memcg_stat_item idx, int val)
975 {
976 	struct mem_cgroup *memcg;
977 
978 	if (mem_cgroup_disabled())
979 		return;
980 
981 	rcu_read_lock();
982 	memcg = folio_memcg(page_folio(page));
983 	if (memcg)
984 		mod_memcg_state(memcg, idx, val);
985 	rcu_read_unlock();
986 }
987 
988 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
989 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
990 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
991 				      enum node_stat_item idx);
992 
993 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
994 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
995 
996 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
997 
998 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
999 					 int val)
1000 {
1001 	unsigned long flags;
1002 
1003 	local_irq_save(flags);
1004 	__mod_lruvec_kmem_state(p, idx, val);
1005 	local_irq_restore(flags);
1006 }
1007 
1008 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1009 			  unsigned long count);
1010 
1011 static inline void count_memcg_events(struct mem_cgroup *memcg,
1012 				      enum vm_event_item idx,
1013 				      unsigned long count)
1014 {
1015 	unsigned long flags;
1016 
1017 	local_irq_save(flags);
1018 	__count_memcg_events(memcg, idx, count);
1019 	local_irq_restore(flags);
1020 }
1021 
1022 static inline void count_memcg_folio_events(struct folio *folio,
1023 		enum vm_event_item idx, unsigned long nr)
1024 {
1025 	struct mem_cgroup *memcg = folio_memcg(folio);
1026 
1027 	if (memcg)
1028 		count_memcg_events(memcg, idx, nr);
1029 }
1030 
1031 static inline void count_memcg_event_mm(struct mm_struct *mm,
1032 					enum vm_event_item idx)
1033 {
1034 	struct mem_cgroup *memcg;
1035 
1036 	if (mem_cgroup_disabled())
1037 		return;
1038 
1039 	rcu_read_lock();
1040 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 	if (likely(memcg))
1042 		count_memcg_events(memcg, idx, 1);
1043 	rcu_read_unlock();
1044 }
1045 
1046 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1047 				      enum memcg_memory_event event)
1048 {
1049 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1050 			  event == MEMCG_SWAP_FAIL;
1051 
1052 	atomic_long_inc(&memcg->memory_events_local[event]);
1053 	if (!swap_event)
1054 		cgroup_file_notify(&memcg->events_local_file);
1055 
1056 	do {
1057 		atomic_long_inc(&memcg->memory_events[event]);
1058 		if (swap_event)
1059 			cgroup_file_notify(&memcg->swap_events_file);
1060 		else
1061 			cgroup_file_notify(&memcg->events_file);
1062 
1063 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1064 			break;
1065 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1066 			break;
1067 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1068 		 !mem_cgroup_is_root(memcg));
1069 }
1070 
1071 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1072 					 enum memcg_memory_event event)
1073 {
1074 	struct mem_cgroup *memcg;
1075 
1076 	if (mem_cgroup_disabled())
1077 		return;
1078 
1079 	rcu_read_lock();
1080 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1081 	if (likely(memcg))
1082 		memcg_memory_event(memcg, event);
1083 	rcu_read_unlock();
1084 }
1085 
1086 void split_page_memcg(struct page *head, int old_order, int new_order);
1087 
1088 #else /* CONFIG_MEMCG */
1089 
1090 #define MEM_CGROUP_ID_SHIFT	0
1091 
1092 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1093 {
1094 	return NULL;
1095 }
1096 
1097 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1098 {
1099 	WARN_ON_ONCE(!rcu_read_lock_held());
1100 	return NULL;
1101 }
1102 
1103 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1104 {
1105 	return NULL;
1106 }
1107 
1108 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1109 {
1110 	return NULL;
1111 }
1112 
1113 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1114 {
1115 	return NULL;
1116 }
1117 
1118 static inline bool folio_memcg_kmem(struct folio *folio)
1119 {
1120 	return false;
1121 }
1122 
1123 static inline bool PageMemcgKmem(struct page *page)
1124 {
1125 	return false;
1126 }
1127 
1128 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1129 {
1130 	return true;
1131 }
1132 
1133 static inline bool mem_cgroup_disabled(void)
1134 {
1135 	return true;
1136 }
1137 
1138 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1139 				      enum memcg_memory_event event)
1140 {
1141 }
1142 
1143 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1144 					 enum memcg_memory_event event)
1145 {
1146 }
1147 
1148 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1149 					 struct mem_cgroup *memcg,
1150 					 unsigned long *min,
1151 					 unsigned long *low)
1152 {
1153 	*min = *low = 0;
1154 }
1155 
1156 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1157 						   struct mem_cgroup *memcg)
1158 {
1159 }
1160 
1161 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1162 					  struct mem_cgroup *memcg)
1163 {
1164 	return true;
1165 }
1166 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1167 					struct mem_cgroup *memcg)
1168 {
1169 	return false;
1170 }
1171 
1172 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1173 					struct mem_cgroup *memcg)
1174 {
1175 	return false;
1176 }
1177 
1178 static inline void mem_cgroup_commit_charge(struct folio *folio,
1179 		struct mem_cgroup *memcg)
1180 {
1181 }
1182 
1183 static inline int mem_cgroup_charge(struct folio *folio,
1184 		struct mm_struct *mm, gfp_t gfp)
1185 {
1186 	return 0;
1187 }
1188 
1189 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1190 		gfp_t gfp, long nr_pages)
1191 {
1192 	return 0;
1193 }
1194 
1195 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1196 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1197 {
1198 	return 0;
1199 }
1200 
1201 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1202 {
1203 }
1204 
1205 static inline void mem_cgroup_uncharge(struct folio *folio)
1206 {
1207 }
1208 
1209 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1210 {
1211 }
1212 
1213 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1214 		unsigned int nr_pages)
1215 {
1216 }
1217 
1218 static inline void mem_cgroup_replace_folio(struct folio *old,
1219 		struct folio *new)
1220 {
1221 }
1222 
1223 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1224 {
1225 }
1226 
1227 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1228 					       struct pglist_data *pgdat)
1229 {
1230 	return &pgdat->__lruvec;
1231 }
1232 
1233 static inline struct lruvec *folio_lruvec(struct folio *folio)
1234 {
1235 	struct pglist_data *pgdat = folio_pgdat(folio);
1236 	return &pgdat->__lruvec;
1237 }
1238 
1239 static inline
1240 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1241 {
1242 }
1243 
1244 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1245 {
1246 	return NULL;
1247 }
1248 
1249 static inline bool mm_match_cgroup(struct mm_struct *mm,
1250 		struct mem_cgroup *memcg)
1251 {
1252 	return true;
1253 }
1254 
1255 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1256 {
1257 	return NULL;
1258 }
1259 
1260 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1261 {
1262 	return NULL;
1263 }
1264 
1265 static inline
1266 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1267 {
1268 	return NULL;
1269 }
1270 
1271 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1272 {
1273 }
1274 
1275 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1276 {
1277 	return true;
1278 }
1279 
1280 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1281 {
1282 	return true;
1283 }
1284 
1285 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1286 {
1287 }
1288 
1289 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1290 {
1291 	struct pglist_data *pgdat = folio_pgdat(folio);
1292 
1293 	spin_lock(&pgdat->__lruvec.lru_lock);
1294 	return &pgdat->__lruvec;
1295 }
1296 
1297 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1298 {
1299 	struct pglist_data *pgdat = folio_pgdat(folio);
1300 
1301 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1302 	return &pgdat->__lruvec;
1303 }
1304 
1305 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1306 		unsigned long *flagsp)
1307 {
1308 	struct pglist_data *pgdat = folio_pgdat(folio);
1309 
1310 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1311 	return &pgdat->__lruvec;
1312 }
1313 
1314 static inline struct mem_cgroup *
1315 mem_cgroup_iter(struct mem_cgroup *root,
1316 		struct mem_cgroup *prev,
1317 		struct mem_cgroup_reclaim_cookie *reclaim)
1318 {
1319 	return NULL;
1320 }
1321 
1322 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1323 					 struct mem_cgroup *prev)
1324 {
1325 }
1326 
1327 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1328 		int (*fn)(struct task_struct *, void *), void *arg)
1329 {
1330 }
1331 
1332 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1333 {
1334 	return 0;
1335 }
1336 
1337 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1338 {
1339 	WARN_ON_ONCE(id);
1340 	/* XXX: This should always return root_mem_cgroup */
1341 	return NULL;
1342 }
1343 
1344 #ifdef CONFIG_SHRINKER_DEBUG
1345 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1346 {
1347 	return 0;
1348 }
1349 
1350 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1351 {
1352 	return NULL;
1353 }
1354 #endif
1355 
1356 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1357 {
1358 	return NULL;
1359 }
1360 
1361 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1362 {
1363 	return NULL;
1364 }
1365 
1366 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1367 {
1368 	return true;
1369 }
1370 
1371 static inline
1372 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1373 		enum lru_list lru, int zone_idx)
1374 {
1375 	return 0;
1376 }
1377 
1378 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1379 {
1380 	return 0;
1381 }
1382 
1383 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1384 {
1385 	return 0;
1386 }
1387 
1388 static inline void
1389 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1390 {
1391 }
1392 
1393 static inline void
1394 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1395 {
1396 }
1397 
1398 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1399 {
1400 }
1401 
1402 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1403 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1404 {
1405 	return NULL;
1406 }
1407 
1408 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1409 {
1410 }
1411 
1412 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1413 				     enum memcg_stat_item idx,
1414 				     int nr)
1415 {
1416 }
1417 
1418 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1419 				   enum memcg_stat_item idx,
1420 				   int nr)
1421 {
1422 }
1423 
1424 static inline void mod_memcg_page_state(struct page *page,
1425 					enum memcg_stat_item idx, int val)
1426 {
1427 }
1428 
1429 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1430 {
1431 	return 0;
1432 }
1433 
1434 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1435 					      enum node_stat_item idx)
1436 {
1437 	return node_page_state(lruvec_pgdat(lruvec), idx);
1438 }
1439 
1440 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1441 						    enum node_stat_item idx)
1442 {
1443 	return node_page_state(lruvec_pgdat(lruvec), idx);
1444 }
1445 
1446 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1447 {
1448 }
1449 
1450 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1451 {
1452 }
1453 
1454 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1455 					   int val)
1456 {
1457 	struct page *page = virt_to_head_page(p);
1458 
1459 	__mod_node_page_state(page_pgdat(page), idx, val);
1460 }
1461 
1462 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1463 					 int val)
1464 {
1465 	struct page *page = virt_to_head_page(p);
1466 
1467 	mod_node_page_state(page_pgdat(page), idx, val);
1468 }
1469 
1470 static inline void count_memcg_events(struct mem_cgroup *memcg,
1471 				      enum vm_event_item idx,
1472 				      unsigned long count)
1473 {
1474 }
1475 
1476 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1477 					enum vm_event_item idx,
1478 					unsigned long count)
1479 {
1480 }
1481 
1482 static inline void count_memcg_folio_events(struct folio *folio,
1483 		enum vm_event_item idx, unsigned long nr)
1484 {
1485 }
1486 
1487 static inline
1488 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1489 {
1490 }
1491 
1492 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1493 {
1494 }
1495 #endif /* CONFIG_MEMCG */
1496 
1497 /*
1498  * Extended information for slab objects stored as an array in page->memcg_data
1499  * if MEMCG_DATA_OBJEXTS is set.
1500  */
1501 struct slabobj_ext {
1502 #ifdef CONFIG_MEMCG
1503 	struct obj_cgroup *objcg;
1504 #endif
1505 #ifdef CONFIG_MEM_ALLOC_PROFILING
1506 	union codetag_ref ref;
1507 #endif
1508 } __aligned(8);
1509 
1510 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1511 {
1512 	__mod_lruvec_kmem_state(p, idx, 1);
1513 }
1514 
1515 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1516 {
1517 	__mod_lruvec_kmem_state(p, idx, -1);
1518 }
1519 
1520 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1521 {
1522 	struct mem_cgroup *memcg;
1523 
1524 	memcg = lruvec_memcg(lruvec);
1525 	if (!memcg)
1526 		return NULL;
1527 	memcg = parent_mem_cgroup(memcg);
1528 	if (!memcg)
1529 		return NULL;
1530 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1531 }
1532 
1533 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1534 {
1535 	spin_unlock(&lruvec->lru_lock);
1536 }
1537 
1538 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1539 {
1540 	spin_unlock_irq(&lruvec->lru_lock);
1541 }
1542 
1543 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1544 		unsigned long flags)
1545 {
1546 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1547 }
1548 
1549 /* Test requires a stable folio->memcg binding, see folio_memcg() */
1550 static inline bool folio_matches_lruvec(struct folio *folio,
1551 		struct lruvec *lruvec)
1552 {
1553 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1554 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1555 }
1556 
1557 /* Don't lock again iff page's lruvec locked */
1558 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1559 		struct lruvec *locked_lruvec)
1560 {
1561 	if (locked_lruvec) {
1562 		if (folio_matches_lruvec(folio, locked_lruvec))
1563 			return locked_lruvec;
1564 
1565 		unlock_page_lruvec_irq(locked_lruvec);
1566 	}
1567 
1568 	return folio_lruvec_lock_irq(folio);
1569 }
1570 
1571 /* Don't lock again iff folio's lruvec locked */
1572 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1573 		struct lruvec **lruvecp, unsigned long *flags)
1574 {
1575 	if (*lruvecp) {
1576 		if (folio_matches_lruvec(folio, *lruvecp))
1577 			return;
1578 
1579 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1580 	}
1581 
1582 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1583 }
1584 
1585 #ifdef CONFIG_CGROUP_WRITEBACK
1586 
1587 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1588 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1589 			 unsigned long *pheadroom, unsigned long *pdirty,
1590 			 unsigned long *pwriteback);
1591 
1592 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1593 					     struct bdi_writeback *wb);
1594 
1595 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1596 						  struct bdi_writeback *wb)
1597 {
1598 	struct mem_cgroup *memcg;
1599 
1600 	if (mem_cgroup_disabled())
1601 		return;
1602 
1603 	memcg = folio_memcg(folio);
1604 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1605 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1606 }
1607 
1608 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1609 
1610 #else	/* CONFIG_CGROUP_WRITEBACK */
1611 
1612 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1613 {
1614 	return NULL;
1615 }
1616 
1617 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1618 				       unsigned long *pfilepages,
1619 				       unsigned long *pheadroom,
1620 				       unsigned long *pdirty,
1621 				       unsigned long *pwriteback)
1622 {
1623 }
1624 
1625 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1626 						  struct bdi_writeback *wb)
1627 {
1628 }
1629 
1630 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1631 {
1632 }
1633 
1634 #endif	/* CONFIG_CGROUP_WRITEBACK */
1635 
1636 struct sock;
1637 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1638 			     gfp_t gfp_mask);
1639 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1640 #ifdef CONFIG_MEMCG
1641 extern struct static_key_false memcg_sockets_enabled_key;
1642 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1643 void mem_cgroup_sk_alloc(struct sock *sk);
1644 void mem_cgroup_sk_free(struct sock *sk);
1645 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1646 {
1647 #ifdef CONFIG_MEMCG_V1
1648 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1649 		return !!memcg->tcpmem_pressure;
1650 #endif /* CONFIG_MEMCG_V1 */
1651 	do {
1652 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1653 			return true;
1654 	} while ((memcg = parent_mem_cgroup(memcg)));
1655 	return false;
1656 }
1657 
1658 int alloc_shrinker_info(struct mem_cgroup *memcg);
1659 void free_shrinker_info(struct mem_cgroup *memcg);
1660 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1661 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1662 #else
1663 #define mem_cgroup_sockets_enabled 0
1664 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1665 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1666 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1667 {
1668 	return false;
1669 }
1670 
1671 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1672 				    int nid, int shrinker_id)
1673 {
1674 }
1675 #endif
1676 
1677 #ifdef CONFIG_MEMCG
1678 bool mem_cgroup_kmem_disabled(void);
1679 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1680 void __memcg_kmem_uncharge_page(struct page *page, int order);
1681 
1682 /*
1683  * The returned objcg pointer is safe to use without additional
1684  * protection within a scope. The scope is defined either by
1685  * the current task (similar to the "current" global variable)
1686  * or by set_active_memcg() pair.
1687  * Please, use obj_cgroup_get() to get a reference if the pointer
1688  * needs to be used outside of the local scope.
1689  */
1690 struct obj_cgroup *current_obj_cgroup(void);
1691 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1692 
1693 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1694 {
1695 	struct obj_cgroup *objcg = current_obj_cgroup();
1696 
1697 	if (objcg)
1698 		obj_cgroup_get(objcg);
1699 
1700 	return objcg;
1701 }
1702 
1703 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1704 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1705 
1706 extern struct static_key_false memcg_bpf_enabled_key;
1707 static inline bool memcg_bpf_enabled(void)
1708 {
1709 	return static_branch_likely(&memcg_bpf_enabled_key);
1710 }
1711 
1712 extern struct static_key_false memcg_kmem_online_key;
1713 
1714 static inline bool memcg_kmem_online(void)
1715 {
1716 	return static_branch_likely(&memcg_kmem_online_key);
1717 }
1718 
1719 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1720 					 int order)
1721 {
1722 	if (memcg_kmem_online())
1723 		return __memcg_kmem_charge_page(page, gfp, order);
1724 	return 0;
1725 }
1726 
1727 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1728 {
1729 	if (memcg_kmem_online())
1730 		__memcg_kmem_uncharge_page(page, order);
1731 }
1732 
1733 /*
1734  * A helper for accessing memcg's kmem_id, used for getting
1735  * corresponding LRU lists.
1736  */
1737 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1738 {
1739 	return memcg ? memcg->kmemcg_id : -1;
1740 }
1741 
1742 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1743 
1744 static inline void count_objcg_event(struct obj_cgroup *objcg,
1745 				     enum vm_event_item idx)
1746 {
1747 	struct mem_cgroup *memcg;
1748 
1749 	if (!memcg_kmem_online())
1750 		return;
1751 
1752 	rcu_read_lock();
1753 	memcg = obj_cgroup_memcg(objcg);
1754 	count_memcg_events(memcg, idx, 1);
1755 	rcu_read_unlock();
1756 }
1757 
1758 #else
1759 static inline bool mem_cgroup_kmem_disabled(void)
1760 {
1761 	return true;
1762 }
1763 
1764 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1765 					 int order)
1766 {
1767 	return 0;
1768 }
1769 
1770 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1771 {
1772 }
1773 
1774 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1775 					   int order)
1776 {
1777 	return 0;
1778 }
1779 
1780 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1781 {
1782 }
1783 
1784 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1785 {
1786 	return NULL;
1787 }
1788 
1789 static inline bool memcg_bpf_enabled(void)
1790 {
1791 	return false;
1792 }
1793 
1794 static inline bool memcg_kmem_online(void)
1795 {
1796 	return false;
1797 }
1798 
1799 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1800 {
1801 	return -1;
1802 }
1803 
1804 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1805 {
1806 	return NULL;
1807 }
1808 
1809 static inline void count_objcg_event(struct obj_cgroup *objcg,
1810 				     enum vm_event_item idx)
1811 {
1812 }
1813 
1814 #endif /* CONFIG_MEMCG */
1815 
1816 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1817 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1818 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1819 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1820 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1821 #else
1822 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1823 {
1824 	return true;
1825 }
1826 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1827 					   size_t size)
1828 {
1829 }
1830 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1831 					     size_t size)
1832 {
1833 }
1834 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1835 {
1836 	/* if zswap is disabled, do not block pages going to the swapping device */
1837 	return true;
1838 }
1839 #endif
1840 
1841 
1842 /* Cgroup v1-related declarations */
1843 
1844 #ifdef CONFIG_MEMCG_V1
1845 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1846 					gfp_t gfp_mask,
1847 					unsigned long *total_scanned);
1848 
1849 bool mem_cgroup_oom_synchronize(bool wait);
1850 
1851 static inline bool task_in_memcg_oom(struct task_struct *p)
1852 {
1853 	return p->memcg_in_oom;
1854 }
1855 
1856 void folio_memcg_lock(struct folio *folio);
1857 void folio_memcg_unlock(struct folio *folio);
1858 
1859 /* try to stablize folio_memcg() for all the pages in a memcg */
1860 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1861 {
1862 	rcu_read_lock();
1863 
1864 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
1865 		return true;
1866 
1867 	rcu_read_unlock();
1868 	return false;
1869 }
1870 
1871 static inline void mem_cgroup_unlock_pages(void)
1872 {
1873 	rcu_read_unlock();
1874 }
1875 
1876 static inline void mem_cgroup_enter_user_fault(void)
1877 {
1878 	WARN_ON(current->in_user_fault);
1879 	current->in_user_fault = 1;
1880 }
1881 
1882 static inline void mem_cgroup_exit_user_fault(void)
1883 {
1884 	WARN_ON(!current->in_user_fault);
1885 	current->in_user_fault = 0;
1886 }
1887 
1888 #else /* CONFIG_MEMCG_V1 */
1889 static inline
1890 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1891 					gfp_t gfp_mask,
1892 					unsigned long *total_scanned)
1893 {
1894 	return 0;
1895 }
1896 
1897 static inline void folio_memcg_lock(struct folio *folio)
1898 {
1899 }
1900 
1901 static inline void folio_memcg_unlock(struct folio *folio)
1902 {
1903 }
1904 
1905 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1906 {
1907 	/* to match folio_memcg_rcu() */
1908 	rcu_read_lock();
1909 	return true;
1910 }
1911 
1912 static inline void mem_cgroup_unlock_pages(void)
1913 {
1914 	rcu_read_unlock();
1915 }
1916 
1917 static inline bool task_in_memcg_oom(struct task_struct *p)
1918 {
1919 	return false;
1920 }
1921 
1922 static inline bool mem_cgroup_oom_synchronize(bool wait)
1923 {
1924 	return false;
1925 }
1926 
1927 static inline void mem_cgroup_enter_user_fault(void)
1928 {
1929 }
1930 
1931 static inline void mem_cgroup_exit_user_fault(void)
1932 {
1933 }
1934 
1935 #endif /* CONFIG_MEMCG_V1 */
1936 
1937 #endif /* _LINUX_MEMCONTROL_H */
1938