xref: /linux-6.15/include/linux/memcontrol.h (revision 02f4bbef)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	unsigned int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 struct memcg_vmstats_percpu;
73 struct memcg_vmstats;
74 struct lruvec_stats_percpu;
75 struct lruvec_stats;
76 
77 struct mem_cgroup_reclaim_iter {
78 	struct mem_cgroup *position;
79 	/* scan generation, increased every round-trip */
80 	unsigned int generation;
81 };
82 
83 /*
84  * per-node information in memory controller.
85  */
86 struct mem_cgroup_per_node {
87 	/* Keep the read-only fields at the start */
88 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
89 						/* use container_of	   */
90 
91 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
92 	struct lruvec_stats			*lruvec_stats;
93 	struct shrinker_info __rcu	*shrinker_info;
94 
95 #ifdef CONFIG_MEMCG_V1
96 	/*
97 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
98 	 * and update often fields to avoid false sharing. If v1 stuff is
99 	 * not present, an explicit padding is needed.
100 	 */
101 
102 	struct rb_node		tree_node;	/* RB tree node */
103 	unsigned long		usage_in_excess;/* Set to the value by which */
104 						/* the soft limit is exceeded*/
105 	bool			on_tree;
106 #else
107 	CACHELINE_PADDING(_pad1_);
108 #endif
109 
110 	/* Fields which get updated often at the end. */
111 	struct lruvec		lruvec;
112 	CACHELINE_PADDING(_pad2_);
113 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
114 	struct mem_cgroup_reclaim_iter	iter;
115 };
116 
117 struct mem_cgroup_threshold {
118 	struct eventfd_ctx *eventfd;
119 	unsigned long threshold;
120 };
121 
122 /* For threshold */
123 struct mem_cgroup_threshold_ary {
124 	/* An array index points to threshold just below or equal to usage. */
125 	int current_threshold;
126 	/* Size of entries[] */
127 	unsigned int size;
128 	/* Array of thresholds */
129 	struct mem_cgroup_threshold entries[] __counted_by(size);
130 };
131 
132 struct mem_cgroup_thresholds {
133 	/* Primary thresholds array */
134 	struct mem_cgroup_threshold_ary *primary;
135 	/*
136 	 * Spare threshold array.
137 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
138 	 * It must be able to store at least primary->size - 1 entries.
139 	 */
140 	struct mem_cgroup_threshold_ary *spare;
141 };
142 
143 /*
144  * Remember four most recent foreign writebacks with dirty pages in this
145  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
146  * one in a given round, we're likely to catch it later if it keeps
147  * foreign-dirtying, so a fairly low count should be enough.
148  *
149  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
150  */
151 #define MEMCG_CGWB_FRN_CNT	4
152 
153 struct memcg_cgwb_frn {
154 	u64 bdi_id;			/* bdi->id of the foreign inode */
155 	int memcg_id;			/* memcg->css.id of foreign inode */
156 	u64 at;				/* jiffies_64 at the time of dirtying */
157 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
158 };
159 
160 /*
161  * Bucket for arbitrarily byte-sized objects charged to a memory
162  * cgroup. The bucket can be reparented in one piece when the cgroup
163  * is destroyed, without having to round up the individual references
164  * of all live memory objects in the wild.
165  */
166 struct obj_cgroup {
167 	struct percpu_ref refcnt;
168 	struct mem_cgroup *memcg;
169 	atomic_t nr_charged_bytes;
170 	union {
171 		struct list_head list; /* protected by objcg_lock */
172 		struct rcu_head rcu;
173 	};
174 };
175 
176 /*
177  * The memory controller data structure. The memory controller controls both
178  * page cache and RSS per cgroup. We would eventually like to provide
179  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
180  * to help the administrator determine what knobs to tune.
181  */
182 struct mem_cgroup {
183 	struct cgroup_subsys_state css;
184 
185 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
186 	struct mem_cgroup_id id;
187 
188 	/* Accounted resources */
189 	struct page_counter memory;		/* Both v1 & v2 */
190 
191 	union {
192 		struct page_counter swap;	/* v2 only */
193 		struct page_counter memsw;	/* v1 only */
194 	};
195 
196 	/* registered local peak watchers */
197 	struct list_head memory_peaks;
198 	struct list_head swap_peaks;
199 	spinlock_t	 peaks_lock;
200 
201 	/* Range enforcement for interrupt charges */
202 	struct work_struct high_work;
203 
204 #ifdef CONFIG_ZSWAP
205 	unsigned long zswap_max;
206 
207 	/*
208 	 * Prevent pages from this memcg from being written back from zswap to
209 	 * swap, and from being swapped out on zswap store failures.
210 	 */
211 	bool zswap_writeback;
212 #endif
213 
214 	/* vmpressure notifications */
215 	struct vmpressure vmpressure;
216 
217 	/*
218 	 * Should the OOM killer kill all belonging tasks, had it kill one?
219 	 */
220 	bool oom_group;
221 
222 	int swappiness;
223 
224 	/* memory.events and memory.events.local */
225 	struct cgroup_file events_file;
226 	struct cgroup_file events_local_file;
227 
228 	/* handle for "memory.swap.events" */
229 	struct cgroup_file swap_events_file;
230 
231 	/* memory.stat */
232 	struct memcg_vmstats	*vmstats;
233 
234 	/* memory.events */
235 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
236 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
237 
238 	/*
239 	 * Hint of reclaim pressure for socket memroy management. Note
240 	 * that this indicator should NOT be used in legacy cgroup mode
241 	 * where socket memory is accounted/charged separately.
242 	 */
243 	unsigned long		socket_pressure;
244 
245 	int kmemcg_id;
246 	/*
247 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
248 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
249 	 * to the original objcg until the end of live of memcg.
250 	 */
251 	struct obj_cgroup __rcu	*objcg;
252 	struct obj_cgroup	*orig_objcg;
253 	/* list of inherited objcgs, protected by objcg_lock */
254 	struct list_head objcg_list;
255 
256 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
257 
258 #ifdef CONFIG_CGROUP_WRITEBACK
259 	struct list_head cgwb_list;
260 	struct wb_domain cgwb_domain;
261 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
262 #endif
263 
264 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
265 	struct deferred_split deferred_split_queue;
266 #endif
267 
268 #ifdef CONFIG_LRU_GEN_WALKS_MMU
269 	/* per-memcg mm_struct list */
270 	struct lru_gen_mm_list mm_list;
271 #endif
272 
273 #ifdef CONFIG_MEMCG_V1
274 	/* Legacy consumer-oriented counters */
275 	struct page_counter kmem;		/* v1 only */
276 	struct page_counter tcpmem;		/* v1 only */
277 
278 	unsigned long soft_limit;
279 
280 	/* protected by memcg_oom_lock */
281 	bool oom_lock;
282 	int under_oom;
283 
284 	/* OOM-Killer disable */
285 	int oom_kill_disable;
286 
287 	/* protect arrays of thresholds */
288 	struct mutex thresholds_lock;
289 
290 	/* thresholds for memory usage. RCU-protected */
291 	struct mem_cgroup_thresholds thresholds;
292 
293 	/* thresholds for mem+swap usage. RCU-protected */
294 	struct mem_cgroup_thresholds memsw_thresholds;
295 
296 	/* For oom notifier event fd */
297 	struct list_head oom_notify;
298 
299 	/*
300 	 * Should we move charges of a task when a task is moved into this
301 	 * mem_cgroup ? And what type of charges should we move ?
302 	 */
303 	unsigned long move_charge_at_immigrate;
304 	/* taken only while moving_account > 0 */
305 	spinlock_t move_lock;
306 	unsigned long move_lock_flags;
307 
308 	/* Legacy tcp memory accounting */
309 	bool tcpmem_active;
310 	int tcpmem_pressure;
311 
312 	/*
313 	 * set > 0 if pages under this cgroup are moving to other cgroup.
314 	 */
315 	atomic_t moving_account;
316 	struct task_struct *move_lock_task;
317 
318 	/* List of events which userspace want to receive */
319 	struct list_head event_list;
320 	spinlock_t event_list_lock;
321 #endif /* CONFIG_MEMCG_V1 */
322 
323 	struct mem_cgroup_per_node *nodeinfo[];
324 };
325 
326 /*
327  * size of first charge trial.
328  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
329  * workload.
330  */
331 #define MEMCG_CHARGE_BATCH 64U
332 
333 extern struct mem_cgroup *root_mem_cgroup;
334 
335 enum page_memcg_data_flags {
336 	/* page->memcg_data is a pointer to an slabobj_ext vector */
337 	MEMCG_DATA_OBJEXTS = (1UL << 0),
338 	/* page has been accounted as a non-slab kernel page */
339 	MEMCG_DATA_KMEM = (1UL << 1),
340 	/* the next bit after the last actual flag */
341 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
342 };
343 
344 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
345 
346 #else /* CONFIG_MEMCG */
347 
348 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
349 
350 #endif /* CONFIG_MEMCG */
351 
352 enum objext_flags {
353 	/* slabobj_ext vector failed to allocate */
354 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
355 	/* the next bit after the last actual flag */
356 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
357 };
358 
359 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
360 
361 #ifdef CONFIG_MEMCG
362 
363 static inline bool folio_memcg_kmem(struct folio *folio);
364 
365 /*
366  * After the initialization objcg->memcg is always pointing at
367  * a valid memcg, but can be atomically swapped to the parent memcg.
368  *
369  * The caller must ensure that the returned memcg won't be released.
370  */
371 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
372 {
373 	lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
374 	return READ_ONCE(objcg->memcg);
375 }
376 
377 /*
378  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
379  * @folio: Pointer to the folio.
380  *
381  * Returns a pointer to the memory cgroup associated with the folio,
382  * or NULL. This function assumes that the folio is known to have a
383  * proper memory cgroup pointer. It's not safe to call this function
384  * against some type of folios, e.g. slab folios or ex-slab folios or
385  * kmem folios.
386  */
387 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
388 {
389 	unsigned long memcg_data = folio->memcg_data;
390 
391 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
392 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
393 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
394 
395 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
396 }
397 
398 /*
399  * __folio_objcg - get the object cgroup associated with a kmem folio.
400  * @folio: Pointer to the folio.
401  *
402  * Returns a pointer to the object cgroup associated with the folio,
403  * or NULL. This function assumes that the folio is known to have a
404  * proper object cgroup pointer. It's not safe to call this function
405  * against some type of folios, e.g. slab folios or ex-slab folios or
406  * LRU folios.
407  */
408 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
409 {
410 	unsigned long memcg_data = folio->memcg_data;
411 
412 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
413 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
414 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
415 
416 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
417 }
418 
419 /*
420  * folio_memcg - Get the memory cgroup associated with a folio.
421  * @folio: Pointer to the folio.
422  *
423  * Returns a pointer to the memory cgroup associated with the folio,
424  * or NULL. This function assumes that the folio is known to have a
425  * proper memory cgroup pointer. It's not safe to call this function
426  * against some type of folios, e.g. slab folios or ex-slab folios.
427  *
428  * For a non-kmem folio any of the following ensures folio and memcg binding
429  * stability:
430  *
431  * - the folio lock
432  * - LRU isolation
433  * - folio_memcg_lock()
434  * - exclusive reference
435  * - mem_cgroup_trylock_pages()
436  *
437  * For a kmem folio a caller should hold an rcu read lock to protect memcg
438  * associated with a kmem folio from being released.
439  */
440 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
441 {
442 	if (folio_memcg_kmem(folio))
443 		return obj_cgroup_memcg(__folio_objcg(folio));
444 	return __folio_memcg(folio);
445 }
446 
447 /*
448  * folio_memcg_charged - If a folio is charged to a memory cgroup.
449  * @folio: Pointer to the folio.
450  *
451  * Returns true if folio is charged to a memory cgroup, otherwise returns false.
452  */
453 static inline bool folio_memcg_charged(struct folio *folio)
454 {
455 	if (folio_memcg_kmem(folio))
456 		return __folio_objcg(folio) != NULL;
457 	return __folio_memcg(folio) != NULL;
458 }
459 
460 /**
461  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
462  * @folio: Pointer to the folio.
463  *
464  * This function assumes that the folio is known to have a
465  * proper memory cgroup pointer. It's not safe to call this function
466  * against some type of folios, e.g. slab folios or ex-slab folios.
467  *
468  * Return: A pointer to the memory cgroup associated with the folio,
469  * or NULL.
470  */
471 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
472 {
473 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
474 
475 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
476 
477 	if (memcg_data & MEMCG_DATA_KMEM) {
478 		struct obj_cgroup *objcg;
479 
480 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
481 		return obj_cgroup_memcg(objcg);
482 	}
483 
484 	WARN_ON_ONCE(!rcu_read_lock_held());
485 
486 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
487 }
488 
489 /*
490  * folio_memcg_check - Get the memory cgroup associated with a folio.
491  * @folio: Pointer to the folio.
492  *
493  * Returns a pointer to the memory cgroup associated with the folio,
494  * or NULL. This function unlike folio_memcg() can take any folio
495  * as an argument. It has to be used in cases when it's not known if a folio
496  * has an associated memory cgroup pointer or an object cgroups vector or
497  * an object cgroup.
498  *
499  * For a non-kmem folio any of the following ensures folio and memcg binding
500  * stability:
501  *
502  * - the folio lock
503  * - LRU isolation
504  * - lock_folio_memcg()
505  * - exclusive reference
506  * - mem_cgroup_trylock_pages()
507  *
508  * For a kmem folio a caller should hold an rcu read lock to protect memcg
509  * associated with a kmem folio from being released.
510  */
511 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
512 {
513 	/*
514 	 * Because folio->memcg_data might be changed asynchronously
515 	 * for slabs, READ_ONCE() should be used here.
516 	 */
517 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
518 
519 	if (memcg_data & MEMCG_DATA_OBJEXTS)
520 		return NULL;
521 
522 	if (memcg_data & MEMCG_DATA_KMEM) {
523 		struct obj_cgroup *objcg;
524 
525 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
526 		return obj_cgroup_memcg(objcg);
527 	}
528 
529 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
530 }
531 
532 static inline struct mem_cgroup *page_memcg_check(struct page *page)
533 {
534 	if (PageTail(page))
535 		return NULL;
536 	return folio_memcg_check((struct folio *)page);
537 }
538 
539 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
540 {
541 	struct mem_cgroup *memcg;
542 
543 	rcu_read_lock();
544 retry:
545 	memcg = obj_cgroup_memcg(objcg);
546 	if (unlikely(!css_tryget(&memcg->css)))
547 		goto retry;
548 	rcu_read_unlock();
549 
550 	return memcg;
551 }
552 
553 /*
554  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
555  * @folio: Pointer to the folio.
556  *
557  * Checks if the folio has MemcgKmem flag set. The caller must ensure
558  * that the folio has an associated memory cgroup. It's not safe to call
559  * this function against some types of folios, e.g. slab folios.
560  */
561 static inline bool folio_memcg_kmem(struct folio *folio)
562 {
563 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
564 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
565 	return folio->memcg_data & MEMCG_DATA_KMEM;
566 }
567 
568 static inline bool PageMemcgKmem(struct page *page)
569 {
570 	return folio_memcg_kmem(page_folio(page));
571 }
572 
573 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
574 {
575 	return (memcg == root_mem_cgroup);
576 }
577 
578 static inline bool mem_cgroup_disabled(void)
579 {
580 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
581 }
582 
583 static inline void mem_cgroup_protection(struct mem_cgroup *root,
584 					 struct mem_cgroup *memcg,
585 					 unsigned long *min,
586 					 unsigned long *low)
587 {
588 	*min = *low = 0;
589 
590 	if (mem_cgroup_disabled())
591 		return;
592 
593 	/*
594 	 * There is no reclaim protection applied to a targeted reclaim.
595 	 * We are special casing this specific case here because
596 	 * mem_cgroup_calculate_protection is not robust enough to keep
597 	 * the protection invariant for calculated effective values for
598 	 * parallel reclaimers with different reclaim target. This is
599 	 * especially a problem for tail memcgs (as they have pages on LRU)
600 	 * which would want to have effective values 0 for targeted reclaim
601 	 * but a different value for external reclaim.
602 	 *
603 	 * Example
604 	 * Let's have global and A's reclaim in parallel:
605 	 *  |
606 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
607 	 *  |\
608 	 *  | C (low = 1G, usage = 2.5G)
609 	 *  B (low = 1G, usage = 0.5G)
610 	 *
611 	 * For the global reclaim
612 	 * A.elow = A.low
613 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
614 	 * C.elow = min(C.usage, C.low)
615 	 *
616 	 * With the effective values resetting we have A reclaim
617 	 * A.elow = 0
618 	 * B.elow = B.low
619 	 * C.elow = C.low
620 	 *
621 	 * If the global reclaim races with A's reclaim then
622 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
623 	 * is possible and reclaiming B would be violating the protection.
624 	 *
625 	 */
626 	if (root == memcg)
627 		return;
628 
629 	*min = READ_ONCE(memcg->memory.emin);
630 	*low = READ_ONCE(memcg->memory.elow);
631 }
632 
633 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
634 				     struct mem_cgroup *memcg);
635 
636 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
637 					  struct mem_cgroup *memcg)
638 {
639 	/*
640 	 * The root memcg doesn't account charges, and doesn't support
641 	 * protection. The target memcg's protection is ignored, see
642 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
643 	 */
644 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
645 		memcg == target;
646 }
647 
648 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
649 					struct mem_cgroup *memcg)
650 {
651 	if (mem_cgroup_unprotected(target, memcg))
652 		return false;
653 
654 	return READ_ONCE(memcg->memory.elow) >=
655 		page_counter_read(&memcg->memory);
656 }
657 
658 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
659 					struct mem_cgroup *memcg)
660 {
661 	if (mem_cgroup_unprotected(target, memcg))
662 		return false;
663 
664 	return READ_ONCE(memcg->memory.emin) >=
665 		page_counter_read(&memcg->memory);
666 }
667 
668 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
669 
670 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
671 
672 /**
673  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
674  * @folio: Folio to charge.
675  * @mm: mm context of the allocating task.
676  * @gfp: Reclaim mode.
677  *
678  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
679  * pages according to @gfp if necessary.  If @mm is NULL, try to
680  * charge to the active memcg.
681  *
682  * Do not use this for folios allocated for swapin.
683  *
684  * Return: 0 on success. Otherwise, an error code is returned.
685  */
686 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
687 				    gfp_t gfp)
688 {
689 	if (mem_cgroup_disabled())
690 		return 0;
691 	return __mem_cgroup_charge(folio, mm, gfp);
692 }
693 
694 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
695 		long nr_pages);
696 
697 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
698 				  gfp_t gfp, swp_entry_t entry);
699 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
700 
701 void __mem_cgroup_uncharge(struct folio *folio);
702 
703 /**
704  * mem_cgroup_uncharge - Uncharge a folio.
705  * @folio: Folio to uncharge.
706  *
707  * Uncharge a folio previously charged with mem_cgroup_charge().
708  */
709 static inline void mem_cgroup_uncharge(struct folio *folio)
710 {
711 	if (mem_cgroup_disabled())
712 		return;
713 	__mem_cgroup_uncharge(folio);
714 }
715 
716 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
717 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
718 {
719 	if (mem_cgroup_disabled())
720 		return;
721 	__mem_cgroup_uncharge_folios(folios);
722 }
723 
724 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
725 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
726 void mem_cgroup_migrate(struct folio *old, struct folio *new);
727 
728 /**
729  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
730  * @memcg: memcg of the wanted lruvec
731  * @pgdat: pglist_data
732  *
733  * Returns the lru list vector holding pages for a given @memcg &
734  * @pgdat combination. This can be the node lruvec, if the memory
735  * controller is disabled.
736  */
737 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
738 					       struct pglist_data *pgdat)
739 {
740 	struct mem_cgroup_per_node *mz;
741 	struct lruvec *lruvec;
742 
743 	if (mem_cgroup_disabled()) {
744 		lruvec = &pgdat->__lruvec;
745 		goto out;
746 	}
747 
748 	if (!memcg)
749 		memcg = root_mem_cgroup;
750 
751 	mz = memcg->nodeinfo[pgdat->node_id];
752 	lruvec = &mz->lruvec;
753 out:
754 	/*
755 	 * Since a node can be onlined after the mem_cgroup was created,
756 	 * we have to be prepared to initialize lruvec->pgdat here;
757 	 * and if offlined then reonlined, we need to reinitialize it.
758 	 */
759 	if (unlikely(lruvec->pgdat != pgdat))
760 		lruvec->pgdat = pgdat;
761 	return lruvec;
762 }
763 
764 /**
765  * folio_lruvec - return lruvec for isolating/putting an LRU folio
766  * @folio: Pointer to the folio.
767  *
768  * This function relies on folio->mem_cgroup being stable.
769  */
770 static inline struct lruvec *folio_lruvec(struct folio *folio)
771 {
772 	struct mem_cgroup *memcg = folio_memcg(folio);
773 
774 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
775 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
776 }
777 
778 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
779 
780 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
781 
782 struct mem_cgroup *get_mem_cgroup_from_current(void);
783 
784 struct lruvec *folio_lruvec_lock(struct folio *folio);
785 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
786 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
787 						unsigned long *flags);
788 
789 #ifdef CONFIG_DEBUG_VM
790 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
791 #else
792 static inline
793 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
794 {
795 }
796 #endif
797 
798 static inline
799 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
800 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
801 }
802 
803 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
804 {
805 	return percpu_ref_tryget(&objcg->refcnt);
806 }
807 
808 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
809 {
810 	percpu_ref_get(&objcg->refcnt);
811 }
812 
813 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
814 				       unsigned long nr)
815 {
816 	percpu_ref_get_many(&objcg->refcnt, nr);
817 }
818 
819 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
820 {
821 	if (objcg)
822 		percpu_ref_put(&objcg->refcnt);
823 }
824 
825 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
826 {
827 	return !memcg || css_tryget(&memcg->css);
828 }
829 
830 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
831 {
832 	return !memcg || css_tryget_online(&memcg->css);
833 }
834 
835 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
836 {
837 	if (memcg)
838 		css_put(&memcg->css);
839 }
840 
841 #define mem_cgroup_from_counter(counter, member)	\
842 	container_of(counter, struct mem_cgroup, member)
843 
844 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
845 				   struct mem_cgroup *,
846 				   struct mem_cgroup_reclaim_cookie *);
847 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
848 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
849 			   int (*)(struct task_struct *, void *), void *arg);
850 
851 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
852 {
853 	if (mem_cgroup_disabled())
854 		return 0;
855 
856 	return memcg->id.id;
857 }
858 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
859 
860 #ifdef CONFIG_SHRINKER_DEBUG
861 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
862 {
863 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
864 }
865 
866 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
867 #endif
868 
869 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
870 {
871 	return mem_cgroup_from_css(seq_css(m));
872 }
873 
874 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
875 {
876 	struct mem_cgroup_per_node *mz;
877 
878 	if (mem_cgroup_disabled())
879 		return NULL;
880 
881 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
882 	return mz->memcg;
883 }
884 
885 /**
886  * parent_mem_cgroup - find the accounting parent of a memcg
887  * @memcg: memcg whose parent to find
888  *
889  * Returns the parent memcg, or NULL if this is the root.
890  */
891 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
892 {
893 	return mem_cgroup_from_css(memcg->css.parent);
894 }
895 
896 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
897 			      struct mem_cgroup *root)
898 {
899 	if (root == memcg)
900 		return true;
901 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
902 }
903 
904 static inline bool mm_match_cgroup(struct mm_struct *mm,
905 				   struct mem_cgroup *memcg)
906 {
907 	struct mem_cgroup *task_memcg;
908 	bool match = false;
909 
910 	rcu_read_lock();
911 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
912 	if (task_memcg)
913 		match = mem_cgroup_is_descendant(task_memcg, memcg);
914 	rcu_read_unlock();
915 	return match;
916 }
917 
918 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
919 ino_t page_cgroup_ino(struct page *page);
920 
921 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
922 {
923 	if (mem_cgroup_disabled())
924 		return true;
925 	return !!(memcg->css.flags & CSS_ONLINE);
926 }
927 
928 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
929 		int zid, int nr_pages);
930 
931 static inline
932 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
933 		enum lru_list lru, int zone_idx)
934 {
935 	struct mem_cgroup_per_node *mz;
936 
937 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
938 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
939 }
940 
941 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
942 
943 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
944 
945 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
946 
947 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
948 				struct task_struct *p);
949 
950 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
951 
952 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
953 					    struct mem_cgroup *oom_domain);
954 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
955 
956 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
957 		       int val);
958 
959 /* idx can be of type enum memcg_stat_item or node_stat_item */
960 static inline void mod_memcg_state(struct mem_cgroup *memcg,
961 				   enum memcg_stat_item idx, int val)
962 {
963 	unsigned long flags;
964 
965 	local_irq_save(flags);
966 	__mod_memcg_state(memcg, idx, val);
967 	local_irq_restore(flags);
968 }
969 
970 static inline void mod_memcg_page_state(struct page *page,
971 					enum memcg_stat_item idx, int val)
972 {
973 	struct mem_cgroup *memcg;
974 
975 	if (mem_cgroup_disabled())
976 		return;
977 
978 	rcu_read_lock();
979 	memcg = folio_memcg(page_folio(page));
980 	if (memcg)
981 		mod_memcg_state(memcg, idx, val);
982 	rcu_read_unlock();
983 }
984 
985 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
986 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
987 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
988 				      enum node_stat_item idx);
989 
990 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
991 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
992 
993 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
994 
995 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
996 					 int val)
997 {
998 	unsigned long flags;
999 
1000 	local_irq_save(flags);
1001 	__mod_lruvec_kmem_state(p, idx, val);
1002 	local_irq_restore(flags);
1003 }
1004 
1005 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1006 			  unsigned long count);
1007 
1008 static inline void count_memcg_events(struct mem_cgroup *memcg,
1009 				      enum vm_event_item idx,
1010 				      unsigned long count)
1011 {
1012 	unsigned long flags;
1013 
1014 	local_irq_save(flags);
1015 	__count_memcg_events(memcg, idx, count);
1016 	local_irq_restore(flags);
1017 }
1018 
1019 static inline void count_memcg_folio_events(struct folio *folio,
1020 		enum vm_event_item idx, unsigned long nr)
1021 {
1022 	struct mem_cgroup *memcg = folio_memcg(folio);
1023 
1024 	if (memcg)
1025 		count_memcg_events(memcg, idx, nr);
1026 }
1027 
1028 static inline void count_memcg_event_mm(struct mm_struct *mm,
1029 					enum vm_event_item idx)
1030 {
1031 	struct mem_cgroup *memcg;
1032 
1033 	if (mem_cgroup_disabled())
1034 		return;
1035 
1036 	rcu_read_lock();
1037 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1038 	if (likely(memcg))
1039 		count_memcg_events(memcg, idx, 1);
1040 	rcu_read_unlock();
1041 }
1042 
1043 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1044 				      enum memcg_memory_event event)
1045 {
1046 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1047 			  event == MEMCG_SWAP_FAIL;
1048 
1049 	atomic_long_inc(&memcg->memory_events_local[event]);
1050 	if (!swap_event)
1051 		cgroup_file_notify(&memcg->events_local_file);
1052 
1053 	do {
1054 		atomic_long_inc(&memcg->memory_events[event]);
1055 		if (swap_event)
1056 			cgroup_file_notify(&memcg->swap_events_file);
1057 		else
1058 			cgroup_file_notify(&memcg->events_file);
1059 
1060 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1061 			break;
1062 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1063 			break;
1064 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1065 		 !mem_cgroup_is_root(memcg));
1066 }
1067 
1068 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1069 					 enum memcg_memory_event event)
1070 {
1071 	struct mem_cgroup *memcg;
1072 
1073 	if (mem_cgroup_disabled())
1074 		return;
1075 
1076 	rcu_read_lock();
1077 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1078 	if (likely(memcg))
1079 		memcg_memory_event(memcg, event);
1080 	rcu_read_unlock();
1081 }
1082 
1083 void split_page_memcg(struct page *head, int old_order, int new_order);
1084 
1085 #else /* CONFIG_MEMCG */
1086 
1087 #define MEM_CGROUP_ID_SHIFT	0
1088 
1089 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1090 {
1091 	return NULL;
1092 }
1093 
1094 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1095 {
1096 	WARN_ON_ONCE(!rcu_read_lock_held());
1097 	return NULL;
1098 }
1099 
1100 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1101 {
1102 	return NULL;
1103 }
1104 
1105 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1106 {
1107 	return NULL;
1108 }
1109 
1110 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1111 {
1112 	return NULL;
1113 }
1114 
1115 static inline bool folio_memcg_kmem(struct folio *folio)
1116 {
1117 	return false;
1118 }
1119 
1120 static inline bool PageMemcgKmem(struct page *page)
1121 {
1122 	return false;
1123 }
1124 
1125 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1126 {
1127 	return true;
1128 }
1129 
1130 static inline bool mem_cgroup_disabled(void)
1131 {
1132 	return true;
1133 }
1134 
1135 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1136 				      enum memcg_memory_event event)
1137 {
1138 }
1139 
1140 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1141 					 enum memcg_memory_event event)
1142 {
1143 }
1144 
1145 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1146 					 struct mem_cgroup *memcg,
1147 					 unsigned long *min,
1148 					 unsigned long *low)
1149 {
1150 	*min = *low = 0;
1151 }
1152 
1153 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1154 						   struct mem_cgroup *memcg)
1155 {
1156 }
1157 
1158 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1159 					  struct mem_cgroup *memcg)
1160 {
1161 	return true;
1162 }
1163 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1164 					struct mem_cgroup *memcg)
1165 {
1166 	return false;
1167 }
1168 
1169 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1170 					struct mem_cgroup *memcg)
1171 {
1172 	return false;
1173 }
1174 
1175 static inline void mem_cgroup_commit_charge(struct folio *folio,
1176 		struct mem_cgroup *memcg)
1177 {
1178 }
1179 
1180 static inline int mem_cgroup_charge(struct folio *folio,
1181 		struct mm_struct *mm, gfp_t gfp)
1182 {
1183 	return 0;
1184 }
1185 
1186 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1187 		gfp_t gfp, long nr_pages)
1188 {
1189 	return 0;
1190 }
1191 
1192 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1193 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1194 {
1195 	return 0;
1196 }
1197 
1198 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1199 {
1200 }
1201 
1202 static inline void mem_cgroup_uncharge(struct folio *folio)
1203 {
1204 }
1205 
1206 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1207 {
1208 }
1209 
1210 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1211 		unsigned int nr_pages)
1212 {
1213 }
1214 
1215 static inline void mem_cgroup_replace_folio(struct folio *old,
1216 		struct folio *new)
1217 {
1218 }
1219 
1220 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1221 {
1222 }
1223 
1224 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1225 					       struct pglist_data *pgdat)
1226 {
1227 	return &pgdat->__lruvec;
1228 }
1229 
1230 static inline struct lruvec *folio_lruvec(struct folio *folio)
1231 {
1232 	struct pglist_data *pgdat = folio_pgdat(folio);
1233 	return &pgdat->__lruvec;
1234 }
1235 
1236 static inline
1237 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1238 {
1239 }
1240 
1241 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1242 {
1243 	return NULL;
1244 }
1245 
1246 static inline bool mm_match_cgroup(struct mm_struct *mm,
1247 		struct mem_cgroup *memcg)
1248 {
1249 	return true;
1250 }
1251 
1252 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1253 {
1254 	return NULL;
1255 }
1256 
1257 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1258 {
1259 	return NULL;
1260 }
1261 
1262 static inline
1263 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1264 {
1265 	return NULL;
1266 }
1267 
1268 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1269 {
1270 }
1271 
1272 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1273 {
1274 	return true;
1275 }
1276 
1277 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1278 {
1279 	return true;
1280 }
1281 
1282 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1283 {
1284 }
1285 
1286 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1287 {
1288 	struct pglist_data *pgdat = folio_pgdat(folio);
1289 
1290 	spin_lock(&pgdat->__lruvec.lru_lock);
1291 	return &pgdat->__lruvec;
1292 }
1293 
1294 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1295 {
1296 	struct pglist_data *pgdat = folio_pgdat(folio);
1297 
1298 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1299 	return &pgdat->__lruvec;
1300 }
1301 
1302 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1303 		unsigned long *flagsp)
1304 {
1305 	struct pglist_data *pgdat = folio_pgdat(folio);
1306 
1307 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1308 	return &pgdat->__lruvec;
1309 }
1310 
1311 static inline struct mem_cgroup *
1312 mem_cgroup_iter(struct mem_cgroup *root,
1313 		struct mem_cgroup *prev,
1314 		struct mem_cgroup_reclaim_cookie *reclaim)
1315 {
1316 	return NULL;
1317 }
1318 
1319 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1320 					 struct mem_cgroup *prev)
1321 {
1322 }
1323 
1324 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1325 		int (*fn)(struct task_struct *, void *), void *arg)
1326 {
1327 }
1328 
1329 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1330 {
1331 	return 0;
1332 }
1333 
1334 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1335 {
1336 	WARN_ON_ONCE(id);
1337 	/* XXX: This should always return root_mem_cgroup */
1338 	return NULL;
1339 }
1340 
1341 #ifdef CONFIG_SHRINKER_DEBUG
1342 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1343 {
1344 	return 0;
1345 }
1346 
1347 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1348 {
1349 	return NULL;
1350 }
1351 #endif
1352 
1353 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1354 {
1355 	return NULL;
1356 }
1357 
1358 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1359 {
1360 	return NULL;
1361 }
1362 
1363 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1364 {
1365 	return true;
1366 }
1367 
1368 static inline
1369 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1370 		enum lru_list lru, int zone_idx)
1371 {
1372 	return 0;
1373 }
1374 
1375 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1376 {
1377 	return 0;
1378 }
1379 
1380 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1381 {
1382 	return 0;
1383 }
1384 
1385 static inline void
1386 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1387 {
1388 }
1389 
1390 static inline void
1391 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1392 {
1393 }
1394 
1395 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1396 {
1397 }
1398 
1399 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1400 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1401 {
1402 	return NULL;
1403 }
1404 
1405 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1406 {
1407 }
1408 
1409 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1410 				     enum memcg_stat_item idx,
1411 				     int nr)
1412 {
1413 }
1414 
1415 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1416 				   enum memcg_stat_item idx,
1417 				   int nr)
1418 {
1419 }
1420 
1421 static inline void mod_memcg_page_state(struct page *page,
1422 					enum memcg_stat_item idx, int val)
1423 {
1424 }
1425 
1426 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1427 {
1428 	return 0;
1429 }
1430 
1431 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1432 					      enum node_stat_item idx)
1433 {
1434 	return node_page_state(lruvec_pgdat(lruvec), idx);
1435 }
1436 
1437 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1438 						    enum node_stat_item idx)
1439 {
1440 	return node_page_state(lruvec_pgdat(lruvec), idx);
1441 }
1442 
1443 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1444 {
1445 }
1446 
1447 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1448 {
1449 }
1450 
1451 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1452 					   int val)
1453 {
1454 	struct page *page = virt_to_head_page(p);
1455 
1456 	__mod_node_page_state(page_pgdat(page), idx, val);
1457 }
1458 
1459 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1460 					 int val)
1461 {
1462 	struct page *page = virt_to_head_page(p);
1463 
1464 	mod_node_page_state(page_pgdat(page), idx, val);
1465 }
1466 
1467 static inline void count_memcg_events(struct mem_cgroup *memcg,
1468 				      enum vm_event_item idx,
1469 				      unsigned long count)
1470 {
1471 }
1472 
1473 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1474 					enum vm_event_item idx,
1475 					unsigned long count)
1476 {
1477 }
1478 
1479 static inline void count_memcg_folio_events(struct folio *folio,
1480 		enum vm_event_item idx, unsigned long nr)
1481 {
1482 }
1483 
1484 static inline
1485 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1486 {
1487 }
1488 
1489 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1490 {
1491 }
1492 #endif /* CONFIG_MEMCG */
1493 
1494 /*
1495  * Extended information for slab objects stored as an array in page->memcg_data
1496  * if MEMCG_DATA_OBJEXTS is set.
1497  */
1498 struct slabobj_ext {
1499 #ifdef CONFIG_MEMCG
1500 	struct obj_cgroup *objcg;
1501 #endif
1502 #ifdef CONFIG_MEM_ALLOC_PROFILING
1503 	union codetag_ref ref;
1504 #endif
1505 } __aligned(8);
1506 
1507 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1508 {
1509 	__mod_lruvec_kmem_state(p, idx, 1);
1510 }
1511 
1512 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1513 {
1514 	__mod_lruvec_kmem_state(p, idx, -1);
1515 }
1516 
1517 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1518 {
1519 	struct mem_cgroup *memcg;
1520 
1521 	memcg = lruvec_memcg(lruvec);
1522 	if (!memcg)
1523 		return NULL;
1524 	memcg = parent_mem_cgroup(memcg);
1525 	if (!memcg)
1526 		return NULL;
1527 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1528 }
1529 
1530 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1531 {
1532 	spin_unlock(&lruvec->lru_lock);
1533 }
1534 
1535 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1536 {
1537 	spin_unlock_irq(&lruvec->lru_lock);
1538 }
1539 
1540 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1541 		unsigned long flags)
1542 {
1543 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1544 }
1545 
1546 /* Test requires a stable folio->memcg binding, see folio_memcg() */
1547 static inline bool folio_matches_lruvec(struct folio *folio,
1548 		struct lruvec *lruvec)
1549 {
1550 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1551 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1552 }
1553 
1554 /* Don't lock again iff page's lruvec locked */
1555 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1556 		struct lruvec *locked_lruvec)
1557 {
1558 	if (locked_lruvec) {
1559 		if (folio_matches_lruvec(folio, locked_lruvec))
1560 			return locked_lruvec;
1561 
1562 		unlock_page_lruvec_irq(locked_lruvec);
1563 	}
1564 
1565 	return folio_lruvec_lock_irq(folio);
1566 }
1567 
1568 /* Don't lock again iff folio's lruvec locked */
1569 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1570 		struct lruvec **lruvecp, unsigned long *flags)
1571 {
1572 	if (*lruvecp) {
1573 		if (folio_matches_lruvec(folio, *lruvecp))
1574 			return;
1575 
1576 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1577 	}
1578 
1579 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1580 }
1581 
1582 #ifdef CONFIG_CGROUP_WRITEBACK
1583 
1584 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1585 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1586 			 unsigned long *pheadroom, unsigned long *pdirty,
1587 			 unsigned long *pwriteback);
1588 
1589 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1590 					     struct bdi_writeback *wb);
1591 
1592 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1593 						  struct bdi_writeback *wb)
1594 {
1595 	struct mem_cgroup *memcg;
1596 
1597 	if (mem_cgroup_disabled())
1598 		return;
1599 
1600 	memcg = folio_memcg(folio);
1601 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1602 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1603 }
1604 
1605 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1606 
1607 #else	/* CONFIG_CGROUP_WRITEBACK */
1608 
1609 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1610 {
1611 	return NULL;
1612 }
1613 
1614 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1615 				       unsigned long *pfilepages,
1616 				       unsigned long *pheadroom,
1617 				       unsigned long *pdirty,
1618 				       unsigned long *pwriteback)
1619 {
1620 }
1621 
1622 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1623 						  struct bdi_writeback *wb)
1624 {
1625 }
1626 
1627 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1628 {
1629 }
1630 
1631 #endif	/* CONFIG_CGROUP_WRITEBACK */
1632 
1633 struct sock;
1634 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1635 			     gfp_t gfp_mask);
1636 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1637 #ifdef CONFIG_MEMCG
1638 extern struct static_key_false memcg_sockets_enabled_key;
1639 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1640 void mem_cgroup_sk_alloc(struct sock *sk);
1641 void mem_cgroup_sk_free(struct sock *sk);
1642 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1643 {
1644 #ifdef CONFIG_MEMCG_V1
1645 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1646 		return !!memcg->tcpmem_pressure;
1647 #endif /* CONFIG_MEMCG_V1 */
1648 	do {
1649 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1650 			return true;
1651 	} while ((memcg = parent_mem_cgroup(memcg)));
1652 	return false;
1653 }
1654 
1655 int alloc_shrinker_info(struct mem_cgroup *memcg);
1656 void free_shrinker_info(struct mem_cgroup *memcg);
1657 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1658 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1659 #else
1660 #define mem_cgroup_sockets_enabled 0
1661 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1662 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1663 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1664 {
1665 	return false;
1666 }
1667 
1668 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1669 				    int nid, int shrinker_id)
1670 {
1671 }
1672 #endif
1673 
1674 #ifdef CONFIG_MEMCG
1675 bool mem_cgroup_kmem_disabled(void);
1676 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1677 void __memcg_kmem_uncharge_page(struct page *page, int order);
1678 
1679 /*
1680  * The returned objcg pointer is safe to use without additional
1681  * protection within a scope. The scope is defined either by
1682  * the current task (similar to the "current" global variable)
1683  * or by set_active_memcg() pair.
1684  * Please, use obj_cgroup_get() to get a reference if the pointer
1685  * needs to be used outside of the local scope.
1686  */
1687 struct obj_cgroup *current_obj_cgroup(void);
1688 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1689 
1690 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1691 {
1692 	struct obj_cgroup *objcg = current_obj_cgroup();
1693 
1694 	if (objcg)
1695 		obj_cgroup_get(objcg);
1696 
1697 	return objcg;
1698 }
1699 
1700 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1701 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1702 
1703 extern struct static_key_false memcg_bpf_enabled_key;
1704 static inline bool memcg_bpf_enabled(void)
1705 {
1706 	return static_branch_likely(&memcg_bpf_enabled_key);
1707 }
1708 
1709 extern struct static_key_false memcg_kmem_online_key;
1710 
1711 static inline bool memcg_kmem_online(void)
1712 {
1713 	return static_branch_likely(&memcg_kmem_online_key);
1714 }
1715 
1716 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1717 					 int order)
1718 {
1719 	if (memcg_kmem_online())
1720 		return __memcg_kmem_charge_page(page, gfp, order);
1721 	return 0;
1722 }
1723 
1724 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1725 {
1726 	if (memcg_kmem_online())
1727 		__memcg_kmem_uncharge_page(page, order);
1728 }
1729 
1730 /*
1731  * A helper for accessing memcg's kmem_id, used for getting
1732  * corresponding LRU lists.
1733  */
1734 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1735 {
1736 	return memcg ? memcg->kmemcg_id : -1;
1737 }
1738 
1739 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1740 
1741 static inline void count_objcg_event(struct obj_cgroup *objcg,
1742 				     enum vm_event_item idx)
1743 {
1744 	struct mem_cgroup *memcg;
1745 
1746 	if (!memcg_kmem_online())
1747 		return;
1748 
1749 	rcu_read_lock();
1750 	memcg = obj_cgroup_memcg(objcg);
1751 	count_memcg_events(memcg, idx, 1);
1752 	rcu_read_unlock();
1753 }
1754 
1755 #else
1756 static inline bool mem_cgroup_kmem_disabled(void)
1757 {
1758 	return true;
1759 }
1760 
1761 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1762 					 int order)
1763 {
1764 	return 0;
1765 }
1766 
1767 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1768 {
1769 }
1770 
1771 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1772 					   int order)
1773 {
1774 	return 0;
1775 }
1776 
1777 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1778 {
1779 }
1780 
1781 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1782 {
1783 	return NULL;
1784 }
1785 
1786 static inline bool memcg_bpf_enabled(void)
1787 {
1788 	return false;
1789 }
1790 
1791 static inline bool memcg_kmem_online(void)
1792 {
1793 	return false;
1794 }
1795 
1796 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1797 {
1798 	return -1;
1799 }
1800 
1801 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1802 {
1803 	return NULL;
1804 }
1805 
1806 static inline void count_objcg_event(struct obj_cgroup *objcg,
1807 				     enum vm_event_item idx)
1808 {
1809 }
1810 
1811 #endif /* CONFIG_MEMCG */
1812 
1813 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1814 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1815 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1816 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1817 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1818 #else
1819 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1820 {
1821 	return true;
1822 }
1823 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1824 					   size_t size)
1825 {
1826 }
1827 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1828 					     size_t size)
1829 {
1830 }
1831 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1832 {
1833 	/* if zswap is disabled, do not block pages going to the swapping device */
1834 	return true;
1835 }
1836 #endif
1837 
1838 
1839 /* Cgroup v1-related declarations */
1840 
1841 #ifdef CONFIG_MEMCG_V1
1842 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1843 					gfp_t gfp_mask,
1844 					unsigned long *total_scanned);
1845 
1846 bool mem_cgroup_oom_synchronize(bool wait);
1847 
1848 static inline bool task_in_memcg_oom(struct task_struct *p)
1849 {
1850 	return p->memcg_in_oom;
1851 }
1852 
1853 void folio_memcg_lock(struct folio *folio);
1854 void folio_memcg_unlock(struct folio *folio);
1855 
1856 /* try to stablize folio_memcg() for all the pages in a memcg */
1857 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1858 {
1859 	rcu_read_lock();
1860 
1861 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
1862 		return true;
1863 
1864 	rcu_read_unlock();
1865 	return false;
1866 }
1867 
1868 static inline void mem_cgroup_unlock_pages(void)
1869 {
1870 	rcu_read_unlock();
1871 }
1872 
1873 static inline void mem_cgroup_enter_user_fault(void)
1874 {
1875 	WARN_ON(current->in_user_fault);
1876 	current->in_user_fault = 1;
1877 }
1878 
1879 static inline void mem_cgroup_exit_user_fault(void)
1880 {
1881 	WARN_ON(!current->in_user_fault);
1882 	current->in_user_fault = 0;
1883 }
1884 
1885 #else /* CONFIG_MEMCG_V1 */
1886 static inline
1887 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1888 					gfp_t gfp_mask,
1889 					unsigned long *total_scanned)
1890 {
1891 	return 0;
1892 }
1893 
1894 static inline void folio_memcg_lock(struct folio *folio)
1895 {
1896 }
1897 
1898 static inline void folio_memcg_unlock(struct folio *folio)
1899 {
1900 }
1901 
1902 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1903 {
1904 	/* to match folio_memcg_rcu() */
1905 	rcu_read_lock();
1906 	return true;
1907 }
1908 
1909 static inline void mem_cgroup_unlock_pages(void)
1910 {
1911 	rcu_read_unlock();
1912 }
1913 
1914 static inline bool task_in_memcg_oom(struct task_struct *p)
1915 {
1916 	return false;
1917 }
1918 
1919 static inline bool mem_cgroup_oom_synchronize(bool wait)
1920 {
1921 	return false;
1922 }
1923 
1924 static inline void mem_cgroup_enter_user_fault(void)
1925 {
1926 }
1927 
1928 static inline void mem_cgroup_exit_user_fault(void)
1929 {
1930 }
1931 
1932 #endif /* CONFIG_MEMCG_V1 */
1933 
1934 #endif /* _LINUX_MEMCONTROL_H */
1935