xref: /linux-6.15/include/linux/memcontrol.h (revision 02da7b42)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mmzone.h>
30 #include <linux/writeback.h>
31 
32 struct mem_cgroup;
33 struct page;
34 struct mm_struct;
35 struct kmem_cache;
36 
37 /*
38  * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
39  * These two lists should keep in accord with each other.
40  */
41 enum mem_cgroup_stat_index {
42 	/*
43 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
44 	 */
45 	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
46 	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
47 	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
48 	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
49 	MEM_CGROUP_STAT_DIRTY,          /* # of dirty pages in page cache */
50 	MEM_CGROUP_STAT_WRITEBACK,	/* # of pages under writeback */
51 	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
52 	MEM_CGROUP_STAT_NSTATS,
53 };
54 
55 struct mem_cgroup_reclaim_cookie {
56 	struct zone *zone;
57 	int priority;
58 	unsigned int generation;
59 };
60 
61 enum mem_cgroup_events_index {
62 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
63 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
64 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
65 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
66 	MEM_CGROUP_EVENTS_NSTATS,
67 	/* default hierarchy events */
68 	MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
69 	MEMCG_HIGH,
70 	MEMCG_MAX,
71 	MEMCG_OOM,
72 	MEMCG_NR_EVENTS,
73 };
74 
75 /*
76  * Per memcg event counter is incremented at every pagein/pageout. With THP,
77  * it will be incremated by the number of pages. This counter is used for
78  * for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  */
81 enum mem_cgroup_events_target {
82 	MEM_CGROUP_TARGET_THRESH,
83 	MEM_CGROUP_TARGET_SOFTLIMIT,
84 	MEM_CGROUP_TARGET_NUMAINFO,
85 	MEM_CGROUP_NTARGETS,
86 };
87 
88 /*
89  * Bits in struct cg_proto.flags
90  */
91 enum cg_proto_flags {
92 	/* Currently active and new sockets should be assigned to cgroups */
93 	MEMCG_SOCK_ACTIVE,
94 	/* It was ever activated; we must disarm static keys on destruction */
95 	MEMCG_SOCK_ACTIVATED,
96 };
97 
98 struct cg_proto {
99 	struct page_counter	memory_allocated;	/* Current allocated memory. */
100 	struct percpu_counter	sockets_allocated;	/* Current number of sockets. */
101 	int			memory_pressure;
102 	long			sysctl_mem[3];
103 	unsigned long		flags;
104 	/*
105 	 * memcg field is used to find which memcg we belong directly
106 	 * Each memcg struct can hold more than one cg_proto, so container_of
107 	 * won't really cut.
108 	 *
109 	 * The elegant solution would be having an inverse function to
110 	 * proto_cgroup in struct proto, but that means polluting the structure
111 	 * for everybody, instead of just for memcg users.
112 	 */
113 	struct mem_cgroup	*memcg;
114 };
115 
116 #ifdef CONFIG_MEMCG
117 struct mem_cgroup_stat_cpu {
118 	long count[MEM_CGROUP_STAT_NSTATS];
119 	unsigned long events[MEMCG_NR_EVENTS];
120 	unsigned long nr_page_events;
121 	unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123 
124 struct mem_cgroup_reclaim_iter {
125 	struct mem_cgroup *position;
126 	/* scan generation, increased every round-trip */
127 	unsigned int generation;
128 };
129 
130 /*
131  * per-zone information in memory controller.
132  */
133 struct mem_cgroup_per_zone {
134 	struct lruvec		lruvec;
135 	unsigned long		lru_size[NR_LRU_LISTS];
136 
137 	struct mem_cgroup_reclaim_iter	iter[DEF_PRIORITY + 1];
138 
139 	struct rb_node		tree_node;	/* RB tree node */
140 	unsigned long		usage_in_excess;/* Set to the value by which */
141 						/* the soft limit is exceeded*/
142 	bool			on_tree;
143 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
144 						/* use container_of	   */
145 };
146 
147 struct mem_cgroup_per_node {
148 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149 };
150 
151 struct mem_cgroup_threshold {
152 	struct eventfd_ctx *eventfd;
153 	unsigned long threshold;
154 };
155 
156 /* For threshold */
157 struct mem_cgroup_threshold_ary {
158 	/* An array index points to threshold just below or equal to usage. */
159 	int current_threshold;
160 	/* Size of entries[] */
161 	unsigned int size;
162 	/* Array of thresholds */
163 	struct mem_cgroup_threshold entries[0];
164 };
165 
166 struct mem_cgroup_thresholds {
167 	/* Primary thresholds array */
168 	struct mem_cgroup_threshold_ary *primary;
169 	/*
170 	 * Spare threshold array.
171 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
172 	 * It must be able to store at least primary->size - 1 entries.
173 	 */
174 	struct mem_cgroup_threshold_ary *spare;
175 };
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  */
183 struct mem_cgroup {
184 	struct cgroup_subsys_state css;
185 
186 	/* Accounted resources */
187 	struct page_counter memory;
188 	struct page_counter memsw;
189 	struct page_counter kmem;
190 
191 	/* Normal memory consumption range */
192 	unsigned long low;
193 	unsigned long high;
194 
195 	unsigned long soft_limit;
196 
197 	/* vmpressure notifications */
198 	struct vmpressure vmpressure;
199 
200 	/* css_online() has been completed */
201 	int initialized;
202 
203 	/*
204 	 * Should the accounting and control be hierarchical, per subtree?
205 	 */
206 	bool use_hierarchy;
207 
208 	/* protected by memcg_oom_lock */
209 	bool		oom_lock;
210 	int		under_oom;
211 
212 	int	swappiness;
213 	/* OOM-Killer disable */
214 	int		oom_kill_disable;
215 
216 	/* protect arrays of thresholds */
217 	struct mutex thresholds_lock;
218 
219 	/* thresholds for memory usage. RCU-protected */
220 	struct mem_cgroup_thresholds thresholds;
221 
222 	/* thresholds for mem+swap usage. RCU-protected */
223 	struct mem_cgroup_thresholds memsw_thresholds;
224 
225 	/* For oom notifier event fd */
226 	struct list_head oom_notify;
227 
228 	/*
229 	 * Should we move charges of a task when a task is moved into this
230 	 * mem_cgroup ? And what type of charges should we move ?
231 	 */
232 	unsigned long move_charge_at_immigrate;
233 	/*
234 	 * set > 0 if pages under this cgroup are moving to other cgroup.
235 	 */
236 	atomic_t		moving_account;
237 	/* taken only while moving_account > 0 */
238 	spinlock_t		move_lock;
239 	struct task_struct	*move_lock_task;
240 	unsigned long		move_lock_flags;
241 	/*
242 	 * percpu counter.
243 	 */
244 	struct mem_cgroup_stat_cpu __percpu *stat;
245 	spinlock_t pcp_counter_lock;
246 
247 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
248 	struct cg_proto tcp_mem;
249 #endif
250 #if defined(CONFIG_MEMCG_KMEM)
251         /* Index in the kmem_cache->memcg_params.memcg_caches array */
252 	int kmemcg_id;
253 	bool kmem_acct_activated;
254 	bool kmem_acct_active;
255 #endif
256 
257 	int last_scanned_node;
258 #if MAX_NUMNODES > 1
259 	nodemask_t	scan_nodes;
260 	atomic_t	numainfo_events;
261 	atomic_t	numainfo_updating;
262 #endif
263 
264 #ifdef CONFIG_CGROUP_WRITEBACK
265 	struct list_head cgwb_list;
266 	struct wb_domain cgwb_domain;
267 #endif
268 
269 	/* List of events which userspace want to receive */
270 	struct list_head event_list;
271 	spinlock_t event_list_lock;
272 
273 	struct mem_cgroup_per_node *nodeinfo[0];
274 	/* WARNING: nodeinfo must be the last member here */
275 };
276 extern struct cgroup_subsys_state *mem_cgroup_root_css;
277 
278 /**
279  * mem_cgroup_events - count memory events against a cgroup
280  * @memcg: the memory cgroup
281  * @idx: the event index
282  * @nr: the number of events to account for
283  */
284 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
285 		       enum mem_cgroup_events_index idx,
286 		       unsigned int nr)
287 {
288 	this_cpu_add(memcg->stat->events[idx], nr);
289 }
290 
291 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
292 
293 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
294 			  gfp_t gfp_mask, struct mem_cgroup **memcgp);
295 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
296 			      bool lrucare);
297 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
298 void mem_cgroup_uncharge(struct page *page);
299 void mem_cgroup_uncharge_list(struct list_head *page_list);
300 
301 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
302 			bool lrucare);
303 
304 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
305 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
306 
307 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
308 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
309 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
310 
311 static inline
312 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
313 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
314 }
315 
316 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
317 				   struct mem_cgroup *,
318 				   struct mem_cgroup_reclaim_cookie *);
319 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
320 
321 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
322 			      struct mem_cgroup *root)
323 {
324 	if (root == memcg)
325 		return true;
326 	if (!root->use_hierarchy)
327 		return false;
328 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
329 }
330 
331 static inline bool mm_match_cgroup(struct mm_struct *mm,
332 				   struct mem_cgroup *memcg)
333 {
334 	struct mem_cgroup *task_memcg;
335 	bool match = false;
336 
337 	rcu_read_lock();
338 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
339 	if (task_memcg)
340 		match = mem_cgroup_is_descendant(task_memcg, memcg);
341 	rcu_read_unlock();
342 	return match;
343 }
344 
345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
346 ino_t page_cgroup_ino(struct page *page);
347 
348 static inline bool mem_cgroup_disabled(void)
349 {
350 	if (memory_cgrp_subsys.disabled)
351 		return true;
352 	return false;
353 }
354 
355 /*
356  * For memory reclaim.
357  */
358 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
359 
360 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
361 		int nr_pages);
362 
363 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
364 {
365 	struct mem_cgroup_per_zone *mz;
366 	struct mem_cgroup *memcg;
367 
368 	if (mem_cgroup_disabled())
369 		return true;
370 
371 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
372 	memcg = mz->memcg;
373 
374 	return !!(memcg->css.flags & CSS_ONLINE);
375 }
376 
377 static inline
378 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
379 {
380 	struct mem_cgroup_per_zone *mz;
381 
382 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
383 	return mz->lru_size[lru];
384 }
385 
386 static inline int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
387 {
388 	unsigned long inactive_ratio;
389 	unsigned long inactive;
390 	unsigned long active;
391 	unsigned long gb;
392 
393 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
394 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
395 
396 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
397 	if (gb)
398 		inactive_ratio = int_sqrt(10 * gb);
399 	else
400 		inactive_ratio = 1;
401 
402 	return inactive * inactive_ratio < active;
403 }
404 
405 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
406 				struct task_struct *p);
407 
408 static inline void mem_cgroup_oom_enable(void)
409 {
410 	WARN_ON(current->memcg_oom.may_oom);
411 	current->memcg_oom.may_oom = 1;
412 }
413 
414 static inline void mem_cgroup_oom_disable(void)
415 {
416 	WARN_ON(!current->memcg_oom.may_oom);
417 	current->memcg_oom.may_oom = 0;
418 }
419 
420 static inline bool task_in_memcg_oom(struct task_struct *p)
421 {
422 	return p->memcg_oom.memcg;
423 }
424 
425 bool mem_cgroup_oom_synchronize(bool wait);
426 
427 #ifdef CONFIG_MEMCG_SWAP
428 extern int do_swap_account;
429 #endif
430 
431 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
432 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
433 
434 /**
435  * mem_cgroup_update_page_stat - update page state statistics
436  * @memcg: memcg to account against
437  * @idx: page state item to account
438  * @val: number of pages (positive or negative)
439  *
440  * See mem_cgroup_begin_page_stat() for locking requirements.
441  */
442 static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
443 				 enum mem_cgroup_stat_index idx, int val)
444 {
445 	VM_BUG_ON(!rcu_read_lock_held());
446 
447 	if (memcg)
448 		this_cpu_add(memcg->stat->count[idx], val);
449 }
450 
451 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
452 					    enum mem_cgroup_stat_index idx)
453 {
454 	mem_cgroup_update_page_stat(memcg, idx, 1);
455 }
456 
457 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
458 					    enum mem_cgroup_stat_index idx)
459 {
460 	mem_cgroup_update_page_stat(memcg, idx, -1);
461 }
462 
463 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
464 						gfp_t gfp_mask,
465 						unsigned long *total_scanned);
466 
467 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
468 					     enum vm_event_item idx)
469 {
470 	struct mem_cgroup *memcg;
471 
472 	if (mem_cgroup_disabled())
473 		return;
474 
475 	rcu_read_lock();
476 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
477 	if (unlikely(!memcg))
478 		goto out;
479 
480 	switch (idx) {
481 	case PGFAULT:
482 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
483 		break;
484 	case PGMAJFAULT:
485 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
486 		break;
487 	default:
488 		BUG();
489 	}
490 out:
491 	rcu_read_unlock();
492 }
493 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
494 void mem_cgroup_split_huge_fixup(struct page *head);
495 #endif
496 
497 #else /* CONFIG_MEMCG */
498 struct mem_cgroup;
499 
500 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
501 				     enum mem_cgroup_events_index idx,
502 				     unsigned int nr)
503 {
504 }
505 
506 static inline bool mem_cgroup_low(struct mem_cgroup *root,
507 				  struct mem_cgroup *memcg)
508 {
509 	return false;
510 }
511 
512 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
513 					gfp_t gfp_mask,
514 					struct mem_cgroup **memcgp)
515 {
516 	*memcgp = NULL;
517 	return 0;
518 }
519 
520 static inline void mem_cgroup_commit_charge(struct page *page,
521 					    struct mem_cgroup *memcg,
522 					    bool lrucare)
523 {
524 }
525 
526 static inline void mem_cgroup_cancel_charge(struct page *page,
527 					    struct mem_cgroup *memcg)
528 {
529 }
530 
531 static inline void mem_cgroup_uncharge(struct page *page)
532 {
533 }
534 
535 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
536 {
537 }
538 
539 static inline void mem_cgroup_migrate(struct page *oldpage,
540 				      struct page *newpage,
541 				      bool lrucare)
542 {
543 }
544 
545 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
546 						    struct mem_cgroup *memcg)
547 {
548 	return &zone->lruvec;
549 }
550 
551 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
552 						    struct zone *zone)
553 {
554 	return &zone->lruvec;
555 }
556 
557 static inline bool mm_match_cgroup(struct mm_struct *mm,
558 		struct mem_cgroup *memcg)
559 {
560 	return true;
561 }
562 
563 static inline bool task_in_mem_cgroup(struct task_struct *task,
564 				      const struct mem_cgroup *memcg)
565 {
566 	return true;
567 }
568 
569 static inline struct mem_cgroup *
570 mem_cgroup_iter(struct mem_cgroup *root,
571 		struct mem_cgroup *prev,
572 		struct mem_cgroup_reclaim_cookie *reclaim)
573 {
574 	return NULL;
575 }
576 
577 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
578 					 struct mem_cgroup *prev)
579 {
580 }
581 
582 static inline bool mem_cgroup_disabled(void)
583 {
584 	return true;
585 }
586 
587 static inline int
588 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
589 {
590 	return 1;
591 }
592 
593 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
594 {
595 	return true;
596 }
597 
598 static inline unsigned long
599 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
600 {
601 	return 0;
602 }
603 
604 static inline void
605 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
606 			      int increment)
607 {
608 }
609 
610 static inline void
611 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
612 {
613 }
614 
615 static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
616 {
617 	return NULL;
618 }
619 
620 static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
621 {
622 }
623 
624 static inline void mem_cgroup_oom_enable(void)
625 {
626 }
627 
628 static inline void mem_cgroup_oom_disable(void)
629 {
630 }
631 
632 static inline bool task_in_memcg_oom(struct task_struct *p)
633 {
634 	return false;
635 }
636 
637 static inline bool mem_cgroup_oom_synchronize(bool wait)
638 {
639 	return false;
640 }
641 
642 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
643 					    enum mem_cgroup_stat_index idx)
644 {
645 }
646 
647 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
648 					    enum mem_cgroup_stat_index idx)
649 {
650 }
651 
652 static inline
653 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
654 					    gfp_t gfp_mask,
655 					    unsigned long *total_scanned)
656 {
657 	return 0;
658 }
659 
660 static inline void mem_cgroup_split_huge_fixup(struct page *head)
661 {
662 }
663 
664 static inline
665 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
666 {
667 }
668 #endif /* CONFIG_MEMCG */
669 
670 enum {
671 	UNDER_LIMIT,
672 	SOFT_LIMIT,
673 	OVER_LIMIT,
674 };
675 
676 #ifdef CONFIG_CGROUP_WRITEBACK
677 
678 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
679 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
680 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
681 			 unsigned long *pdirty, unsigned long *pwriteback);
682 
683 #else	/* CONFIG_CGROUP_WRITEBACK */
684 
685 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
686 {
687 	return NULL;
688 }
689 
690 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
691 				       unsigned long *pavail,
692 				       unsigned long *pdirty,
693 				       unsigned long *pwriteback)
694 {
695 }
696 
697 #endif	/* CONFIG_CGROUP_WRITEBACK */
698 
699 struct sock;
700 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
701 void sock_update_memcg(struct sock *sk);
702 void sock_release_memcg(struct sock *sk);
703 #else
704 static inline void sock_update_memcg(struct sock *sk)
705 {
706 }
707 static inline void sock_release_memcg(struct sock *sk)
708 {
709 }
710 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
711 
712 #ifdef CONFIG_MEMCG_KMEM
713 extern struct static_key memcg_kmem_enabled_key;
714 
715 extern int memcg_nr_cache_ids;
716 void memcg_get_cache_ids(void);
717 void memcg_put_cache_ids(void);
718 
719 /*
720  * Helper macro to loop through all memcg-specific caches. Callers must still
721  * check if the cache is valid (it is either valid or NULL).
722  * the slab_mutex must be held when looping through those caches
723  */
724 #define for_each_memcg_cache_index(_idx)	\
725 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
726 
727 static inline bool memcg_kmem_enabled(void)
728 {
729 	return static_key_false(&memcg_kmem_enabled_key);
730 }
731 
732 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
733 {
734 	return memcg->kmem_acct_active;
735 }
736 
737 /*
738  * In general, we'll do everything in our power to not incur in any overhead
739  * for non-memcg users for the kmem functions. Not even a function call, if we
740  * can avoid it.
741  *
742  * Therefore, we'll inline all those functions so that in the best case, we'll
743  * see that kmemcg is off for everybody and proceed quickly.  If it is on,
744  * we'll still do most of the flag checking inline. We check a lot of
745  * conditions, but because they are pretty simple, they are expected to be
746  * fast.
747  */
748 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
749 					int order);
750 void __memcg_kmem_commit_charge(struct page *page,
751 				       struct mem_cgroup *memcg, int order);
752 void __memcg_kmem_uncharge_pages(struct page *page, int order);
753 
754 /*
755  * helper for acessing a memcg's index. It will be used as an index in the
756  * child cache array in kmem_cache, and also to derive its name. This function
757  * will return -1 when this is not a kmem-limited memcg.
758  */
759 static inline int memcg_cache_id(struct mem_cgroup *memcg)
760 {
761 	return memcg ? memcg->kmemcg_id : -1;
762 }
763 
764 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
765 void __memcg_kmem_put_cache(struct kmem_cache *cachep);
766 
767 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr);
768 
769 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
770 		      unsigned long nr_pages);
771 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages);
772 
773 /**
774  * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
775  * @gfp: the gfp allocation flags.
776  * @memcg: a pointer to the memcg this was charged against.
777  * @order: allocation order.
778  *
779  * returns true if the memcg where the current task belongs can hold this
780  * allocation.
781  *
782  * We return true automatically if this allocation is not to be accounted to
783  * any memcg.
784  */
785 static inline bool
786 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
787 {
788 	if (!memcg_kmem_enabled())
789 		return true;
790 
791 	if (gfp & __GFP_NOACCOUNT)
792 		return true;
793 	/*
794 	 * __GFP_NOFAIL allocations will move on even if charging is not
795 	 * possible. Therefore we don't even try, and have this allocation
796 	 * unaccounted. We could in theory charge it forcibly, but we hope
797 	 * those allocations are rare, and won't be worth the trouble.
798 	 */
799 	if (gfp & __GFP_NOFAIL)
800 		return true;
801 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
802 		return true;
803 
804 	/* If the test is dying, just let it go. */
805 	if (unlikely(fatal_signal_pending(current)))
806 		return true;
807 
808 	return __memcg_kmem_newpage_charge(gfp, memcg, order);
809 }
810 
811 /**
812  * memcg_kmem_uncharge_pages: uncharge pages from memcg
813  * @page: pointer to struct page being freed
814  * @order: allocation order.
815  */
816 static inline void
817 memcg_kmem_uncharge_pages(struct page *page, int order)
818 {
819 	if (memcg_kmem_enabled())
820 		__memcg_kmem_uncharge_pages(page, order);
821 }
822 
823 /**
824  * memcg_kmem_commit_charge: embeds correct memcg in a page
825  * @page: pointer to struct page recently allocated
826  * @memcg: the memcg structure we charged against
827  * @order: allocation order.
828  *
829  * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
830  * failure of the allocation. if @page is NULL, this function will revert the
831  * charges. Otherwise, it will commit @page to @memcg.
832  */
833 static inline void
834 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
835 {
836 	if (memcg_kmem_enabled() && memcg)
837 		__memcg_kmem_commit_charge(page, memcg, order);
838 }
839 
840 /**
841  * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
842  * @cachep: the original global kmem cache
843  * @gfp: allocation flags.
844  *
845  * All memory allocated from a per-memcg cache is charged to the owner memcg.
846  */
847 static __always_inline struct kmem_cache *
848 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
849 {
850 	if (!memcg_kmem_enabled())
851 		return cachep;
852 	if (gfp & __GFP_NOACCOUNT)
853 		return cachep;
854 	if (gfp & __GFP_NOFAIL)
855 		return cachep;
856 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
857 		return cachep;
858 	if (unlikely(fatal_signal_pending(current)))
859 		return cachep;
860 
861 	return __memcg_kmem_get_cache(cachep);
862 }
863 
864 static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
865 {
866 	if (memcg_kmem_enabled())
867 		__memcg_kmem_put_cache(cachep);
868 }
869 
870 static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
871 {
872 	if (!memcg_kmem_enabled())
873 		return NULL;
874 	return __mem_cgroup_from_kmem(ptr);
875 }
876 #else
877 #define for_each_memcg_cache_index(_idx)	\
878 	for (; NULL; )
879 
880 static inline bool memcg_kmem_enabled(void)
881 {
882 	return false;
883 }
884 
885 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
886 {
887 	return false;
888 }
889 
890 static inline bool
891 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
892 {
893 	return true;
894 }
895 
896 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
897 {
898 }
899 
900 static inline void
901 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
902 {
903 }
904 
905 static inline int memcg_cache_id(struct mem_cgroup *memcg)
906 {
907 	return -1;
908 }
909 
910 static inline void memcg_get_cache_ids(void)
911 {
912 }
913 
914 static inline void memcg_put_cache_ids(void)
915 {
916 }
917 
918 static inline struct kmem_cache *
919 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
920 {
921 	return cachep;
922 }
923 
924 static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
925 {
926 }
927 
928 static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
929 {
930 	return NULL;
931 }
932 #endif /* CONFIG_MEMCG_KMEM */
933 #endif /* _LINUX_MEMCONTROL_H */
934 
935