xref: /linux-6.15/include/linux/memcontrol.h (revision 024bfd2e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 struct memcg_vmstats_percpu;
73 struct memcg1_events_percpu;
74 struct memcg_vmstats;
75 struct lruvec_stats_percpu;
76 struct lruvec_stats;
77 
78 struct mem_cgroup_reclaim_iter {
79 	struct mem_cgroup *position;
80 	/* scan generation, increased every round-trip */
81 	atomic_t generation;
82 };
83 
84 /*
85  * per-node information in memory controller.
86  */
87 struct mem_cgroup_per_node {
88 	/* Keep the read-only fields at the start */
89 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
90 						/* use container_of	   */
91 
92 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
93 	struct lruvec_stats			*lruvec_stats;
94 	struct shrinker_info __rcu	*shrinker_info;
95 
96 #ifdef CONFIG_MEMCG_V1
97 	/*
98 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 	 * and update often fields to avoid false sharing. If v1 stuff is
100 	 * not present, an explicit padding is needed.
101 	 */
102 
103 	struct rb_node		tree_node;	/* RB tree node */
104 	unsigned long		usage_in_excess;/* Set to the value by which */
105 						/* the soft limit is exceeded*/
106 	bool			on_tree;
107 #else
108 	CACHELINE_PADDING(_pad1_);
109 #endif
110 
111 	/* Fields which get updated often at the end. */
112 	struct lruvec		lruvec;
113 	CACHELINE_PADDING(_pad2_);
114 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 	struct mem_cgroup_reclaim_iter	iter;
116 };
117 
118 struct mem_cgroup_threshold {
119 	struct eventfd_ctx *eventfd;
120 	unsigned long threshold;
121 };
122 
123 /* For threshold */
124 struct mem_cgroup_threshold_ary {
125 	/* An array index points to threshold just below or equal to usage. */
126 	int current_threshold;
127 	/* Size of entries[] */
128 	unsigned int size;
129 	/* Array of thresholds */
130 	struct mem_cgroup_threshold entries[] __counted_by(size);
131 };
132 
133 struct mem_cgroup_thresholds {
134 	/* Primary thresholds array */
135 	struct mem_cgroup_threshold_ary *primary;
136 	/*
137 	 * Spare threshold array.
138 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 	 * It must be able to store at least primary->size - 1 entries.
140 	 */
141 	struct mem_cgroup_threshold_ary *spare;
142 };
143 
144 /*
145  * Remember four most recent foreign writebacks with dirty pages in this
146  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
147  * one in a given round, we're likely to catch it later if it keeps
148  * foreign-dirtying, so a fairly low count should be enough.
149  *
150  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
151  */
152 #define MEMCG_CGWB_FRN_CNT	4
153 
154 struct memcg_cgwb_frn {
155 	u64 bdi_id;			/* bdi->id of the foreign inode */
156 	int memcg_id;			/* memcg->css.id of foreign inode */
157 	u64 at;				/* jiffies_64 at the time of dirtying */
158 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
159 };
160 
161 /*
162  * Bucket for arbitrarily byte-sized objects charged to a memory
163  * cgroup. The bucket can be reparented in one piece when the cgroup
164  * is destroyed, without having to round up the individual references
165  * of all live memory objects in the wild.
166  */
167 struct obj_cgroup {
168 	struct percpu_ref refcnt;
169 	struct mem_cgroup *memcg;
170 	atomic_t nr_charged_bytes;
171 	union {
172 		struct list_head list; /* protected by objcg_lock */
173 		struct rcu_head rcu;
174 	};
175 };
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  */
183 struct mem_cgroup {
184 	struct cgroup_subsys_state css;
185 
186 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
187 	struct mem_cgroup_id id;
188 
189 	/* Accounted resources */
190 	struct page_counter memory;		/* Both v1 & v2 */
191 
192 	union {
193 		struct page_counter swap;	/* v2 only */
194 		struct page_counter memsw;	/* v1 only */
195 	};
196 
197 	/* registered local peak watchers */
198 	struct list_head memory_peaks;
199 	struct list_head swap_peaks;
200 	spinlock_t	 peaks_lock;
201 
202 	/* Range enforcement for interrupt charges */
203 	struct work_struct high_work;
204 
205 #ifdef CONFIG_ZSWAP
206 	unsigned long zswap_max;
207 
208 	/*
209 	 * Prevent pages from this memcg from being written back from zswap to
210 	 * swap, and from being swapped out on zswap store failures.
211 	 */
212 	bool zswap_writeback;
213 #endif
214 
215 	/* vmpressure notifications */
216 	struct vmpressure vmpressure;
217 
218 	/*
219 	 * Should the OOM killer kill all belonging tasks, had it kill one?
220 	 */
221 	bool oom_group;
222 
223 	int swappiness;
224 
225 	/* memory.events and memory.events.local */
226 	struct cgroup_file events_file;
227 	struct cgroup_file events_local_file;
228 
229 	/* handle for "memory.swap.events" */
230 	struct cgroup_file swap_events_file;
231 
232 	/* memory.stat */
233 	struct memcg_vmstats	*vmstats;
234 
235 	/* memory.events */
236 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
237 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
238 
239 	/*
240 	 * Hint of reclaim pressure for socket memroy management. Note
241 	 * that this indicator should NOT be used in legacy cgroup mode
242 	 * where socket memory is accounted/charged separately.
243 	 */
244 	unsigned long		socket_pressure;
245 
246 	int kmemcg_id;
247 	/*
248 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
249 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
250 	 * to the original objcg until the end of live of memcg.
251 	 */
252 	struct obj_cgroup __rcu	*objcg;
253 	struct obj_cgroup	*orig_objcg;
254 	/* list of inherited objcgs, protected by objcg_lock */
255 	struct list_head objcg_list;
256 
257 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
258 
259 #ifdef CONFIG_CGROUP_WRITEBACK
260 	struct list_head cgwb_list;
261 	struct wb_domain cgwb_domain;
262 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
263 #endif
264 
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 	struct deferred_split deferred_split_queue;
267 #endif
268 
269 #ifdef CONFIG_LRU_GEN_WALKS_MMU
270 	/* per-memcg mm_struct list */
271 	struct lru_gen_mm_list mm_list;
272 #endif
273 
274 #ifdef CONFIG_MEMCG_V1
275 	/* Legacy consumer-oriented counters */
276 	struct page_counter kmem;		/* v1 only */
277 	struct page_counter tcpmem;		/* v1 only */
278 
279 	struct memcg1_events_percpu __percpu *events_percpu;
280 
281 	unsigned long soft_limit;
282 
283 	/* protected by memcg_oom_lock */
284 	bool oom_lock;
285 	int under_oom;
286 
287 	/* OOM-Killer disable */
288 	int oom_kill_disable;
289 
290 	/* protect arrays of thresholds */
291 	struct mutex thresholds_lock;
292 
293 	/* thresholds for memory usage. RCU-protected */
294 	struct mem_cgroup_thresholds thresholds;
295 
296 	/* thresholds for mem+swap usage. RCU-protected */
297 	struct mem_cgroup_thresholds memsw_thresholds;
298 
299 	/* For oom notifier event fd */
300 	struct list_head oom_notify;
301 
302 	/* Legacy tcp memory accounting */
303 	bool tcpmem_active;
304 	int tcpmem_pressure;
305 
306 	/* List of events which userspace want to receive */
307 	struct list_head event_list;
308 	spinlock_t event_list_lock;
309 #endif /* CONFIG_MEMCG_V1 */
310 
311 	struct mem_cgroup_per_node *nodeinfo[];
312 };
313 
314 /*
315  * size of first charge trial.
316  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
317  * workload.
318  */
319 #define MEMCG_CHARGE_BATCH 64U
320 
321 extern struct mem_cgroup *root_mem_cgroup;
322 
323 enum page_memcg_data_flags {
324 	/* page->memcg_data is a pointer to an slabobj_ext vector */
325 	MEMCG_DATA_OBJEXTS = (1UL << 0),
326 	/* page has been accounted as a non-slab kernel page */
327 	MEMCG_DATA_KMEM = (1UL << 1),
328 	/* the next bit after the last actual flag */
329 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
330 };
331 
332 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
333 
334 #else /* CONFIG_MEMCG */
335 
336 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
337 
338 #endif /* CONFIG_MEMCG */
339 
340 enum objext_flags {
341 	/* slabobj_ext vector failed to allocate */
342 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
343 	/* the next bit after the last actual flag */
344 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
345 };
346 
347 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
348 
349 #ifdef CONFIG_MEMCG
350 
351 static inline bool folio_memcg_kmem(struct folio *folio);
352 
353 /*
354  * After the initialization objcg->memcg is always pointing at
355  * a valid memcg, but can be atomically swapped to the parent memcg.
356  *
357  * The caller must ensure that the returned memcg won't be released.
358  */
359 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
360 {
361 	lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
362 	return READ_ONCE(objcg->memcg);
363 }
364 
365 /*
366  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367  * @folio: Pointer to the folio.
368  *
369  * Returns a pointer to the memory cgroup associated with the folio,
370  * or NULL. This function assumes that the folio is known to have a
371  * proper memory cgroup pointer. It's not safe to call this function
372  * against some type of folios, e.g. slab folios or ex-slab folios or
373  * kmem folios.
374  */
375 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 {
377 	unsigned long memcg_data = folio->memcg_data;
378 
379 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
381 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382 
383 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
384 }
385 
386 /*
387  * __folio_objcg - get the object cgroup associated with a kmem folio.
388  * @folio: Pointer to the folio.
389  *
390  * Returns a pointer to the object cgroup associated with the folio,
391  * or NULL. This function assumes that the folio is known to have a
392  * proper object cgroup pointer. It's not safe to call this function
393  * against some type of folios, e.g. slab folios or ex-slab folios or
394  * LRU folios.
395  */
396 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 {
398 	unsigned long memcg_data = folio->memcg_data;
399 
400 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
402 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403 
404 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
405 }
406 
407 /*
408  * folio_memcg - Get the memory cgroup associated with a folio.
409  * @folio: Pointer to the folio.
410  *
411  * Returns a pointer to the memory cgroup associated with the folio,
412  * or NULL. This function assumes that the folio is known to have a
413  * proper memory cgroup pointer. It's not safe to call this function
414  * against some type of folios, e.g. slab folios or ex-slab folios.
415  *
416  * For a non-kmem folio any of the following ensures folio and memcg binding
417  * stability:
418  *
419  * - the folio lock
420  * - LRU isolation
421  * - exclusive reference
422  *
423  * For a kmem folio a caller should hold an rcu read lock to protect memcg
424  * associated with a kmem folio from being released.
425  */
426 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
427 {
428 	if (folio_memcg_kmem(folio))
429 		return obj_cgroup_memcg(__folio_objcg(folio));
430 	return __folio_memcg(folio);
431 }
432 
433 /*
434  * folio_memcg_charged - If a folio is charged to a memory cgroup.
435  * @folio: Pointer to the folio.
436  *
437  * Returns true if folio is charged to a memory cgroup, otherwise returns false.
438  */
439 static inline bool folio_memcg_charged(struct folio *folio)
440 {
441 	if (folio_memcg_kmem(folio))
442 		return __folio_objcg(folio) != NULL;
443 	return __folio_memcg(folio) != NULL;
444 }
445 
446 /*
447  * folio_memcg_check - Get the memory cgroup associated with a folio.
448  * @folio: Pointer to the folio.
449  *
450  * Returns a pointer to the memory cgroup associated with the folio,
451  * or NULL. This function unlike folio_memcg() can take any folio
452  * as an argument. It has to be used in cases when it's not known if a folio
453  * has an associated memory cgroup pointer or an object cgroups vector or
454  * an object cgroup.
455  *
456  * For a non-kmem folio any of the following ensures folio and memcg binding
457  * stability:
458  *
459  * - the folio lock
460  * - LRU isolation
461  * - exclusive reference
462  *
463  * For a kmem folio a caller should hold an rcu read lock to protect memcg
464  * associated with a kmem folio from being released.
465  */
466 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
467 {
468 	/*
469 	 * Because folio->memcg_data might be changed asynchronously
470 	 * for slabs, READ_ONCE() should be used here.
471 	 */
472 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
473 
474 	if (memcg_data & MEMCG_DATA_OBJEXTS)
475 		return NULL;
476 
477 	if (memcg_data & MEMCG_DATA_KMEM) {
478 		struct obj_cgroup *objcg;
479 
480 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
481 		return obj_cgroup_memcg(objcg);
482 	}
483 
484 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
485 }
486 
487 static inline struct mem_cgroup *page_memcg_check(struct page *page)
488 {
489 	if (PageTail(page))
490 		return NULL;
491 	return folio_memcg_check((struct folio *)page);
492 }
493 
494 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
495 {
496 	struct mem_cgroup *memcg;
497 
498 	rcu_read_lock();
499 retry:
500 	memcg = obj_cgroup_memcg(objcg);
501 	if (unlikely(!css_tryget(&memcg->css)))
502 		goto retry;
503 	rcu_read_unlock();
504 
505 	return memcg;
506 }
507 
508 /*
509  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
510  * @folio: Pointer to the folio.
511  *
512  * Checks if the folio has MemcgKmem flag set. The caller must ensure
513  * that the folio has an associated memory cgroup. It's not safe to call
514  * this function against some types of folios, e.g. slab folios.
515  */
516 static inline bool folio_memcg_kmem(struct folio *folio)
517 {
518 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
519 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
520 	return folio->memcg_data & MEMCG_DATA_KMEM;
521 }
522 
523 static inline bool PageMemcgKmem(struct page *page)
524 {
525 	return folio_memcg_kmem(page_folio(page));
526 }
527 
528 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
529 {
530 	return (memcg == root_mem_cgroup);
531 }
532 
533 static inline bool mem_cgroup_disabled(void)
534 {
535 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
536 }
537 
538 static inline void mem_cgroup_protection(struct mem_cgroup *root,
539 					 struct mem_cgroup *memcg,
540 					 unsigned long *min,
541 					 unsigned long *low)
542 {
543 	*min = *low = 0;
544 
545 	if (mem_cgroup_disabled())
546 		return;
547 
548 	/*
549 	 * There is no reclaim protection applied to a targeted reclaim.
550 	 * We are special casing this specific case here because
551 	 * mem_cgroup_calculate_protection is not robust enough to keep
552 	 * the protection invariant for calculated effective values for
553 	 * parallel reclaimers with different reclaim target. This is
554 	 * especially a problem for tail memcgs (as they have pages on LRU)
555 	 * which would want to have effective values 0 for targeted reclaim
556 	 * but a different value for external reclaim.
557 	 *
558 	 * Example
559 	 * Let's have global and A's reclaim in parallel:
560 	 *  |
561 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
562 	 *  |\
563 	 *  | C (low = 1G, usage = 2.5G)
564 	 *  B (low = 1G, usage = 0.5G)
565 	 *
566 	 * For the global reclaim
567 	 * A.elow = A.low
568 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
569 	 * C.elow = min(C.usage, C.low)
570 	 *
571 	 * With the effective values resetting we have A reclaim
572 	 * A.elow = 0
573 	 * B.elow = B.low
574 	 * C.elow = C.low
575 	 *
576 	 * If the global reclaim races with A's reclaim then
577 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
578 	 * is possible and reclaiming B would be violating the protection.
579 	 *
580 	 */
581 	if (root == memcg)
582 		return;
583 
584 	*min = READ_ONCE(memcg->memory.emin);
585 	*low = READ_ONCE(memcg->memory.elow);
586 }
587 
588 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
589 				     struct mem_cgroup *memcg);
590 
591 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
592 					  struct mem_cgroup *memcg)
593 {
594 	/*
595 	 * The root memcg doesn't account charges, and doesn't support
596 	 * protection. The target memcg's protection is ignored, see
597 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
598 	 */
599 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
600 		memcg == target;
601 }
602 
603 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
604 					struct mem_cgroup *memcg)
605 {
606 	if (mem_cgroup_unprotected(target, memcg))
607 		return false;
608 
609 	return READ_ONCE(memcg->memory.elow) >=
610 		page_counter_read(&memcg->memory);
611 }
612 
613 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
614 					struct mem_cgroup *memcg)
615 {
616 	if (mem_cgroup_unprotected(target, memcg))
617 		return false;
618 
619 	return READ_ONCE(memcg->memory.emin) >=
620 		page_counter_read(&memcg->memory);
621 }
622 
623 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
624 
625 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
626 
627 /**
628  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
629  * @folio: Folio to charge.
630  * @mm: mm context of the allocating task.
631  * @gfp: Reclaim mode.
632  *
633  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
634  * pages according to @gfp if necessary.  If @mm is NULL, try to
635  * charge to the active memcg.
636  *
637  * Do not use this for folios allocated for swapin.
638  *
639  * Return: 0 on success. Otherwise, an error code is returned.
640  */
641 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
642 				    gfp_t gfp)
643 {
644 	if (mem_cgroup_disabled())
645 		return 0;
646 	return __mem_cgroup_charge(folio, mm, gfp);
647 }
648 
649 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
650 		long nr_pages);
651 
652 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
653 				  gfp_t gfp, swp_entry_t entry);
654 
655 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages);
656 
657 void __mem_cgroup_uncharge(struct folio *folio);
658 
659 /**
660  * mem_cgroup_uncharge - Uncharge a folio.
661  * @folio: Folio to uncharge.
662  *
663  * Uncharge a folio previously charged with mem_cgroup_charge().
664  */
665 static inline void mem_cgroup_uncharge(struct folio *folio)
666 {
667 	if (mem_cgroup_disabled())
668 		return;
669 	__mem_cgroup_uncharge(folio);
670 }
671 
672 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
673 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
674 {
675 	if (mem_cgroup_disabled())
676 		return;
677 	__mem_cgroup_uncharge_folios(folios);
678 }
679 
680 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
681 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
682 void mem_cgroup_migrate(struct folio *old, struct folio *new);
683 
684 /**
685  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
686  * @memcg: memcg of the wanted lruvec
687  * @pgdat: pglist_data
688  *
689  * Returns the lru list vector holding pages for a given @memcg &
690  * @pgdat combination. This can be the node lruvec, if the memory
691  * controller is disabled.
692  */
693 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
694 					       struct pglist_data *pgdat)
695 {
696 	struct mem_cgroup_per_node *mz;
697 	struct lruvec *lruvec;
698 
699 	if (mem_cgroup_disabled()) {
700 		lruvec = &pgdat->__lruvec;
701 		goto out;
702 	}
703 
704 	if (!memcg)
705 		memcg = root_mem_cgroup;
706 
707 	mz = memcg->nodeinfo[pgdat->node_id];
708 	lruvec = &mz->lruvec;
709 out:
710 	/*
711 	 * Since a node can be onlined after the mem_cgroup was created,
712 	 * we have to be prepared to initialize lruvec->pgdat here;
713 	 * and if offlined then reonlined, we need to reinitialize it.
714 	 */
715 	if (unlikely(lruvec->pgdat != pgdat))
716 		lruvec->pgdat = pgdat;
717 	return lruvec;
718 }
719 
720 /**
721  * folio_lruvec - return lruvec for isolating/putting an LRU folio
722  * @folio: Pointer to the folio.
723  *
724  * This function relies on folio->mem_cgroup being stable.
725  */
726 static inline struct lruvec *folio_lruvec(struct folio *folio)
727 {
728 	struct mem_cgroup *memcg = folio_memcg(folio);
729 
730 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
731 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
732 }
733 
734 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
735 
736 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
737 
738 struct mem_cgroup *get_mem_cgroup_from_current(void);
739 
740 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
741 
742 struct lruvec *folio_lruvec_lock(struct folio *folio);
743 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
744 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
745 						unsigned long *flags);
746 
747 #ifdef CONFIG_DEBUG_VM
748 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
749 #else
750 static inline
751 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
752 {
753 }
754 #endif
755 
756 static inline
757 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
758 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
759 }
760 
761 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
762 {
763 	return percpu_ref_tryget(&objcg->refcnt);
764 }
765 
766 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
767 {
768 	percpu_ref_get(&objcg->refcnt);
769 }
770 
771 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
772 				       unsigned long nr)
773 {
774 	percpu_ref_get_many(&objcg->refcnt, nr);
775 }
776 
777 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
778 {
779 	if (objcg)
780 		percpu_ref_put(&objcg->refcnt);
781 }
782 
783 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
784 {
785 	return !memcg || css_tryget(&memcg->css);
786 }
787 
788 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
789 {
790 	return !memcg || css_tryget_online(&memcg->css);
791 }
792 
793 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
794 {
795 	if (memcg)
796 		css_put(&memcg->css);
797 }
798 
799 #define mem_cgroup_from_counter(counter, member)	\
800 	container_of(counter, struct mem_cgroup, member)
801 
802 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
803 				   struct mem_cgroup *,
804 				   struct mem_cgroup_reclaim_cookie *);
805 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
806 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
807 			   int (*)(struct task_struct *, void *), void *arg);
808 
809 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
810 {
811 	if (mem_cgroup_disabled())
812 		return 0;
813 
814 	return memcg->id.id;
815 }
816 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
817 
818 #ifdef CONFIG_SHRINKER_DEBUG
819 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
820 {
821 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
822 }
823 
824 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
825 #endif
826 
827 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
828 {
829 	return mem_cgroup_from_css(seq_css(m));
830 }
831 
832 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
833 {
834 	struct mem_cgroup_per_node *mz;
835 
836 	if (mem_cgroup_disabled())
837 		return NULL;
838 
839 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
840 	return mz->memcg;
841 }
842 
843 /**
844  * parent_mem_cgroup - find the accounting parent of a memcg
845  * @memcg: memcg whose parent to find
846  *
847  * Returns the parent memcg, or NULL if this is the root.
848  */
849 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
850 {
851 	return mem_cgroup_from_css(memcg->css.parent);
852 }
853 
854 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
855 			      struct mem_cgroup *root)
856 {
857 	if (root == memcg)
858 		return true;
859 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
860 }
861 
862 static inline bool mm_match_cgroup(struct mm_struct *mm,
863 				   struct mem_cgroup *memcg)
864 {
865 	struct mem_cgroup *task_memcg;
866 	bool match = false;
867 
868 	rcu_read_lock();
869 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
870 	if (task_memcg)
871 		match = mem_cgroup_is_descendant(task_memcg, memcg);
872 	rcu_read_unlock();
873 	return match;
874 }
875 
876 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
877 ino_t page_cgroup_ino(struct page *page);
878 
879 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
880 {
881 	if (mem_cgroup_disabled())
882 		return true;
883 	return !!(memcg->css.flags & CSS_ONLINE);
884 }
885 
886 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
887 		int zid, int nr_pages);
888 
889 static inline
890 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
891 		enum lru_list lru, int zone_idx)
892 {
893 	struct mem_cgroup_per_node *mz;
894 
895 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
896 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
897 }
898 
899 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
900 
901 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
902 
903 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
904 
905 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
906 				struct task_struct *p);
907 
908 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
909 
910 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
911 					    struct mem_cgroup *oom_domain);
912 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
913 
914 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
915 		       int val);
916 
917 /* idx can be of type enum memcg_stat_item or node_stat_item */
918 static inline void mod_memcg_state(struct mem_cgroup *memcg,
919 				   enum memcg_stat_item idx, int val)
920 {
921 	unsigned long flags;
922 
923 	local_irq_save(flags);
924 	__mod_memcg_state(memcg, idx, val);
925 	local_irq_restore(flags);
926 }
927 
928 static inline void mod_memcg_page_state(struct page *page,
929 					enum memcg_stat_item idx, int val)
930 {
931 	struct mem_cgroup *memcg;
932 
933 	if (mem_cgroup_disabled())
934 		return;
935 
936 	rcu_read_lock();
937 	memcg = folio_memcg(page_folio(page));
938 	if (memcg)
939 		mod_memcg_state(memcg, idx, val);
940 	rcu_read_unlock();
941 }
942 
943 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
944 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
945 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
946 				      enum node_stat_item idx);
947 
948 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
949 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
950 
951 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
952 
953 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
954 					 int val)
955 {
956 	unsigned long flags;
957 
958 	local_irq_save(flags);
959 	__mod_lruvec_kmem_state(p, idx, val);
960 	local_irq_restore(flags);
961 }
962 
963 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
964 			  unsigned long count);
965 
966 static inline void count_memcg_events(struct mem_cgroup *memcg,
967 				      enum vm_event_item idx,
968 				      unsigned long count)
969 {
970 	unsigned long flags;
971 
972 	local_irq_save(flags);
973 	__count_memcg_events(memcg, idx, count);
974 	local_irq_restore(flags);
975 }
976 
977 static inline void count_memcg_folio_events(struct folio *folio,
978 		enum vm_event_item idx, unsigned long nr)
979 {
980 	struct mem_cgroup *memcg = folio_memcg(folio);
981 
982 	if (memcg)
983 		count_memcg_events(memcg, idx, nr);
984 }
985 
986 static inline void count_memcg_events_mm(struct mm_struct *mm,
987 					enum vm_event_item idx, unsigned long count)
988 {
989 	struct mem_cgroup *memcg;
990 
991 	if (mem_cgroup_disabled())
992 		return;
993 
994 	rcu_read_lock();
995 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
996 	if (likely(memcg))
997 		count_memcg_events(memcg, idx, count);
998 	rcu_read_unlock();
999 }
1000 
1001 static inline void count_memcg_event_mm(struct mm_struct *mm,
1002 					enum vm_event_item idx)
1003 {
1004 	count_memcg_events_mm(mm, idx, 1);
1005 }
1006 
1007 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1008 				      enum memcg_memory_event event)
1009 {
1010 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1011 			  event == MEMCG_SWAP_FAIL;
1012 
1013 	atomic_long_inc(&memcg->memory_events_local[event]);
1014 	if (!swap_event)
1015 		cgroup_file_notify(&memcg->events_local_file);
1016 
1017 	do {
1018 		atomic_long_inc(&memcg->memory_events[event]);
1019 		if (swap_event)
1020 			cgroup_file_notify(&memcg->swap_events_file);
1021 		else
1022 			cgroup_file_notify(&memcg->events_file);
1023 
1024 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1025 			break;
1026 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1027 			break;
1028 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1029 		 !mem_cgroup_is_root(memcg));
1030 }
1031 
1032 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1033 					 enum memcg_memory_event event)
1034 {
1035 	struct mem_cgroup *memcg;
1036 
1037 	if (mem_cgroup_disabled())
1038 		return;
1039 
1040 	rcu_read_lock();
1041 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1042 	if (likely(memcg))
1043 		memcg_memory_event(memcg, event);
1044 	rcu_read_unlock();
1045 }
1046 
1047 void split_page_memcg(struct page *head, int old_order, int new_order);
1048 
1049 #else /* CONFIG_MEMCG */
1050 
1051 #define MEM_CGROUP_ID_SHIFT	0
1052 
1053 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1054 {
1055 	return NULL;
1056 }
1057 
1058 static inline bool folio_memcg_charged(struct folio *folio)
1059 {
1060 	return false;
1061 }
1062 
1063 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1064 {
1065 	return NULL;
1066 }
1067 
1068 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1069 {
1070 	return NULL;
1071 }
1072 
1073 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1074 {
1075 	return NULL;
1076 }
1077 
1078 static inline bool folio_memcg_kmem(struct folio *folio)
1079 {
1080 	return false;
1081 }
1082 
1083 static inline bool PageMemcgKmem(struct page *page)
1084 {
1085 	return false;
1086 }
1087 
1088 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1089 {
1090 	return true;
1091 }
1092 
1093 static inline bool mem_cgroup_disabled(void)
1094 {
1095 	return true;
1096 }
1097 
1098 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1099 				      enum memcg_memory_event event)
1100 {
1101 }
1102 
1103 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1104 					 enum memcg_memory_event event)
1105 {
1106 }
1107 
1108 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1109 					 struct mem_cgroup *memcg,
1110 					 unsigned long *min,
1111 					 unsigned long *low)
1112 {
1113 	*min = *low = 0;
1114 }
1115 
1116 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1117 						   struct mem_cgroup *memcg)
1118 {
1119 }
1120 
1121 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1122 					  struct mem_cgroup *memcg)
1123 {
1124 	return true;
1125 }
1126 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1127 					struct mem_cgroup *memcg)
1128 {
1129 	return false;
1130 }
1131 
1132 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1133 					struct mem_cgroup *memcg)
1134 {
1135 	return false;
1136 }
1137 
1138 static inline void mem_cgroup_commit_charge(struct folio *folio,
1139 		struct mem_cgroup *memcg)
1140 {
1141 }
1142 
1143 static inline int mem_cgroup_charge(struct folio *folio,
1144 		struct mm_struct *mm, gfp_t gfp)
1145 {
1146 	return 0;
1147 }
1148 
1149 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1150 		gfp_t gfp, long nr_pages)
1151 {
1152 	return 0;
1153 }
1154 
1155 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1156 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1157 {
1158 	return 0;
1159 }
1160 
1161 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr)
1162 {
1163 }
1164 
1165 static inline void mem_cgroup_uncharge(struct folio *folio)
1166 {
1167 }
1168 
1169 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1170 {
1171 }
1172 
1173 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1174 		unsigned int nr_pages)
1175 {
1176 }
1177 
1178 static inline void mem_cgroup_replace_folio(struct folio *old,
1179 		struct folio *new)
1180 {
1181 }
1182 
1183 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1184 {
1185 }
1186 
1187 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1188 					       struct pglist_data *pgdat)
1189 {
1190 	return &pgdat->__lruvec;
1191 }
1192 
1193 static inline struct lruvec *folio_lruvec(struct folio *folio)
1194 {
1195 	struct pglist_data *pgdat = folio_pgdat(folio);
1196 	return &pgdat->__lruvec;
1197 }
1198 
1199 static inline
1200 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1201 {
1202 }
1203 
1204 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1205 {
1206 	return NULL;
1207 }
1208 
1209 static inline bool mm_match_cgroup(struct mm_struct *mm,
1210 		struct mem_cgroup *memcg)
1211 {
1212 	return true;
1213 }
1214 
1215 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1216 {
1217 	return NULL;
1218 }
1219 
1220 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1221 {
1222 	return NULL;
1223 }
1224 
1225 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1226 {
1227 	return NULL;
1228 }
1229 
1230 static inline
1231 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1232 {
1233 	return NULL;
1234 }
1235 
1236 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1237 {
1238 }
1239 
1240 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1241 {
1242 }
1243 
1244 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1245 {
1246 	return true;
1247 }
1248 
1249 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1250 {
1251 	return true;
1252 }
1253 
1254 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1255 {
1256 }
1257 
1258 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1259 {
1260 	struct pglist_data *pgdat = folio_pgdat(folio);
1261 
1262 	spin_lock(&pgdat->__lruvec.lru_lock);
1263 	return &pgdat->__lruvec;
1264 }
1265 
1266 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1267 {
1268 	struct pglist_data *pgdat = folio_pgdat(folio);
1269 
1270 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1271 	return &pgdat->__lruvec;
1272 }
1273 
1274 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1275 		unsigned long *flagsp)
1276 {
1277 	struct pglist_data *pgdat = folio_pgdat(folio);
1278 
1279 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1280 	return &pgdat->__lruvec;
1281 }
1282 
1283 static inline struct mem_cgroup *
1284 mem_cgroup_iter(struct mem_cgroup *root,
1285 		struct mem_cgroup *prev,
1286 		struct mem_cgroup_reclaim_cookie *reclaim)
1287 {
1288 	return NULL;
1289 }
1290 
1291 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1292 					 struct mem_cgroup *prev)
1293 {
1294 }
1295 
1296 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1297 		int (*fn)(struct task_struct *, void *), void *arg)
1298 {
1299 }
1300 
1301 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1302 {
1303 	return 0;
1304 }
1305 
1306 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1307 {
1308 	WARN_ON_ONCE(id);
1309 	/* XXX: This should always return root_mem_cgroup */
1310 	return NULL;
1311 }
1312 
1313 #ifdef CONFIG_SHRINKER_DEBUG
1314 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1315 {
1316 	return 0;
1317 }
1318 
1319 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1320 {
1321 	return NULL;
1322 }
1323 #endif
1324 
1325 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1326 {
1327 	return NULL;
1328 }
1329 
1330 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1331 {
1332 	return NULL;
1333 }
1334 
1335 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1336 {
1337 	return true;
1338 }
1339 
1340 static inline
1341 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1342 		enum lru_list lru, int zone_idx)
1343 {
1344 	return 0;
1345 }
1346 
1347 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1348 {
1349 	return 0;
1350 }
1351 
1352 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1353 {
1354 	return 0;
1355 }
1356 
1357 static inline void
1358 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1359 {
1360 }
1361 
1362 static inline void
1363 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1364 {
1365 }
1366 
1367 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1368 {
1369 }
1370 
1371 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1372 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1373 {
1374 	return NULL;
1375 }
1376 
1377 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1378 {
1379 }
1380 
1381 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1382 				     enum memcg_stat_item idx,
1383 				     int nr)
1384 {
1385 }
1386 
1387 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1388 				   enum memcg_stat_item idx,
1389 				   int nr)
1390 {
1391 }
1392 
1393 static inline void mod_memcg_page_state(struct page *page,
1394 					enum memcg_stat_item idx, int val)
1395 {
1396 }
1397 
1398 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1399 {
1400 	return 0;
1401 }
1402 
1403 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1404 					      enum node_stat_item idx)
1405 {
1406 	return node_page_state(lruvec_pgdat(lruvec), idx);
1407 }
1408 
1409 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1410 						    enum node_stat_item idx)
1411 {
1412 	return node_page_state(lruvec_pgdat(lruvec), idx);
1413 }
1414 
1415 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1416 {
1417 }
1418 
1419 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1420 {
1421 }
1422 
1423 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1424 					   int val)
1425 {
1426 	struct page *page = virt_to_head_page(p);
1427 
1428 	__mod_node_page_state(page_pgdat(page), idx, val);
1429 }
1430 
1431 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1432 					 int val)
1433 {
1434 	struct page *page = virt_to_head_page(p);
1435 
1436 	mod_node_page_state(page_pgdat(page), idx, val);
1437 }
1438 
1439 static inline void count_memcg_events(struct mem_cgroup *memcg,
1440 				      enum vm_event_item idx,
1441 				      unsigned long count)
1442 {
1443 }
1444 
1445 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1446 					enum vm_event_item idx,
1447 					unsigned long count)
1448 {
1449 }
1450 
1451 static inline void count_memcg_folio_events(struct folio *folio,
1452 		enum vm_event_item idx, unsigned long nr)
1453 {
1454 }
1455 
1456 static inline void count_memcg_events_mm(struct mm_struct *mm,
1457 					enum vm_event_item idx, unsigned long count)
1458 {
1459 }
1460 
1461 static inline
1462 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1463 {
1464 }
1465 
1466 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1467 {
1468 }
1469 #endif /* CONFIG_MEMCG */
1470 
1471 /*
1472  * Extended information for slab objects stored as an array in page->memcg_data
1473  * if MEMCG_DATA_OBJEXTS is set.
1474  */
1475 struct slabobj_ext {
1476 #ifdef CONFIG_MEMCG
1477 	struct obj_cgroup *objcg;
1478 #endif
1479 #ifdef CONFIG_MEM_ALLOC_PROFILING
1480 	union codetag_ref ref;
1481 #endif
1482 } __aligned(8);
1483 
1484 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1485 {
1486 	__mod_lruvec_kmem_state(p, idx, 1);
1487 }
1488 
1489 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1490 {
1491 	__mod_lruvec_kmem_state(p, idx, -1);
1492 }
1493 
1494 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1495 {
1496 	struct mem_cgroup *memcg;
1497 
1498 	memcg = lruvec_memcg(lruvec);
1499 	if (!memcg)
1500 		return NULL;
1501 	memcg = parent_mem_cgroup(memcg);
1502 	if (!memcg)
1503 		return NULL;
1504 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1505 }
1506 
1507 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1508 {
1509 	spin_unlock(&lruvec->lru_lock);
1510 }
1511 
1512 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1513 {
1514 	spin_unlock_irq(&lruvec->lru_lock);
1515 }
1516 
1517 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1518 		unsigned long flags)
1519 {
1520 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1521 }
1522 
1523 /* Test requires a stable folio->memcg binding, see folio_memcg() */
1524 static inline bool folio_matches_lruvec(struct folio *folio,
1525 		struct lruvec *lruvec)
1526 {
1527 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1528 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1529 }
1530 
1531 /* Don't lock again iff page's lruvec locked */
1532 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1533 		struct lruvec *locked_lruvec)
1534 {
1535 	if (locked_lruvec) {
1536 		if (folio_matches_lruvec(folio, locked_lruvec))
1537 			return locked_lruvec;
1538 
1539 		unlock_page_lruvec_irq(locked_lruvec);
1540 	}
1541 
1542 	return folio_lruvec_lock_irq(folio);
1543 }
1544 
1545 /* Don't lock again iff folio's lruvec locked */
1546 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1547 		struct lruvec **lruvecp, unsigned long *flags)
1548 {
1549 	if (*lruvecp) {
1550 		if (folio_matches_lruvec(folio, *lruvecp))
1551 			return;
1552 
1553 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1554 	}
1555 
1556 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1557 }
1558 
1559 #ifdef CONFIG_CGROUP_WRITEBACK
1560 
1561 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1562 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1563 			 unsigned long *pheadroom, unsigned long *pdirty,
1564 			 unsigned long *pwriteback);
1565 
1566 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1567 					     struct bdi_writeback *wb);
1568 
1569 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1570 						  struct bdi_writeback *wb)
1571 {
1572 	struct mem_cgroup *memcg;
1573 
1574 	if (mem_cgroup_disabled())
1575 		return;
1576 
1577 	memcg = folio_memcg(folio);
1578 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1579 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1580 }
1581 
1582 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1583 
1584 #else	/* CONFIG_CGROUP_WRITEBACK */
1585 
1586 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1587 {
1588 	return NULL;
1589 }
1590 
1591 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1592 				       unsigned long *pfilepages,
1593 				       unsigned long *pheadroom,
1594 				       unsigned long *pdirty,
1595 				       unsigned long *pwriteback)
1596 {
1597 }
1598 
1599 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1600 						  struct bdi_writeback *wb)
1601 {
1602 }
1603 
1604 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1605 {
1606 }
1607 
1608 #endif	/* CONFIG_CGROUP_WRITEBACK */
1609 
1610 struct sock;
1611 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1612 			     gfp_t gfp_mask);
1613 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1614 #ifdef CONFIG_MEMCG
1615 extern struct static_key_false memcg_sockets_enabled_key;
1616 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1617 void mem_cgroup_sk_alloc(struct sock *sk);
1618 void mem_cgroup_sk_free(struct sock *sk);
1619 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1620 {
1621 #ifdef CONFIG_MEMCG_V1
1622 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1623 		return !!memcg->tcpmem_pressure;
1624 #endif /* CONFIG_MEMCG_V1 */
1625 	do {
1626 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1627 			return true;
1628 	} while ((memcg = parent_mem_cgroup(memcg)));
1629 	return false;
1630 }
1631 
1632 int alloc_shrinker_info(struct mem_cgroup *memcg);
1633 void free_shrinker_info(struct mem_cgroup *memcg);
1634 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1635 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1636 #else
1637 #define mem_cgroup_sockets_enabled 0
1638 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1639 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1640 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1641 {
1642 	return false;
1643 }
1644 
1645 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1646 				    int nid, int shrinker_id)
1647 {
1648 }
1649 #endif
1650 
1651 #ifdef CONFIG_MEMCG
1652 bool mem_cgroup_kmem_disabled(void);
1653 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1654 void __memcg_kmem_uncharge_page(struct page *page, int order);
1655 
1656 /*
1657  * The returned objcg pointer is safe to use without additional
1658  * protection within a scope. The scope is defined either by
1659  * the current task (similar to the "current" global variable)
1660  * or by set_active_memcg() pair.
1661  * Please, use obj_cgroup_get() to get a reference if the pointer
1662  * needs to be used outside of the local scope.
1663  */
1664 struct obj_cgroup *current_obj_cgroup(void);
1665 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1666 
1667 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1668 {
1669 	struct obj_cgroup *objcg = current_obj_cgroup();
1670 
1671 	if (objcg)
1672 		obj_cgroup_get(objcg);
1673 
1674 	return objcg;
1675 }
1676 
1677 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1678 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1679 
1680 extern struct static_key_false memcg_bpf_enabled_key;
1681 static inline bool memcg_bpf_enabled(void)
1682 {
1683 	return static_branch_likely(&memcg_bpf_enabled_key);
1684 }
1685 
1686 extern struct static_key_false memcg_kmem_online_key;
1687 
1688 static inline bool memcg_kmem_online(void)
1689 {
1690 	return static_branch_likely(&memcg_kmem_online_key);
1691 }
1692 
1693 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1694 					 int order)
1695 {
1696 	if (memcg_kmem_online())
1697 		return __memcg_kmem_charge_page(page, gfp, order);
1698 	return 0;
1699 }
1700 
1701 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1702 {
1703 	if (memcg_kmem_online())
1704 		__memcg_kmem_uncharge_page(page, order);
1705 }
1706 
1707 /*
1708  * A helper for accessing memcg's kmem_id, used for getting
1709  * corresponding LRU lists.
1710  */
1711 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1712 {
1713 	return memcg ? memcg->kmemcg_id : -1;
1714 }
1715 
1716 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1717 
1718 static inline void count_objcg_events(struct obj_cgroup *objcg,
1719 				      enum vm_event_item idx,
1720 				      unsigned long count)
1721 {
1722 	struct mem_cgroup *memcg;
1723 
1724 	if (!memcg_kmem_online())
1725 		return;
1726 
1727 	rcu_read_lock();
1728 	memcg = obj_cgroup_memcg(objcg);
1729 	count_memcg_events(memcg, idx, count);
1730 	rcu_read_unlock();
1731 }
1732 
1733 #else
1734 static inline bool mem_cgroup_kmem_disabled(void)
1735 {
1736 	return true;
1737 }
1738 
1739 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1740 					 int order)
1741 {
1742 	return 0;
1743 }
1744 
1745 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1746 {
1747 }
1748 
1749 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1750 					   int order)
1751 {
1752 	return 0;
1753 }
1754 
1755 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1756 {
1757 }
1758 
1759 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1760 {
1761 	return NULL;
1762 }
1763 
1764 static inline bool memcg_bpf_enabled(void)
1765 {
1766 	return false;
1767 }
1768 
1769 static inline bool memcg_kmem_online(void)
1770 {
1771 	return false;
1772 }
1773 
1774 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1775 {
1776 	return -1;
1777 }
1778 
1779 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1780 {
1781 	return NULL;
1782 }
1783 
1784 static inline void count_objcg_events(struct obj_cgroup *objcg,
1785 				      enum vm_event_item idx,
1786 				      unsigned long count)
1787 {
1788 }
1789 
1790 #endif /* CONFIG_MEMCG */
1791 
1792 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1793 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1794 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1795 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1796 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1797 #else
1798 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1799 {
1800 	return true;
1801 }
1802 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1803 					   size_t size)
1804 {
1805 }
1806 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1807 					     size_t size)
1808 {
1809 }
1810 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1811 {
1812 	/* if zswap is disabled, do not block pages going to the swapping device */
1813 	return true;
1814 }
1815 #endif
1816 
1817 
1818 /* Cgroup v1-related declarations */
1819 
1820 #ifdef CONFIG_MEMCG_V1
1821 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1822 					gfp_t gfp_mask,
1823 					unsigned long *total_scanned);
1824 
1825 bool mem_cgroup_oom_synchronize(bool wait);
1826 
1827 static inline bool task_in_memcg_oom(struct task_struct *p)
1828 {
1829 	return p->memcg_in_oom;
1830 }
1831 
1832 static inline void mem_cgroup_enter_user_fault(void)
1833 {
1834 	WARN_ON(current->in_user_fault);
1835 	current->in_user_fault = 1;
1836 }
1837 
1838 static inline void mem_cgroup_exit_user_fault(void)
1839 {
1840 	WARN_ON(!current->in_user_fault);
1841 	current->in_user_fault = 0;
1842 }
1843 
1844 #else /* CONFIG_MEMCG_V1 */
1845 static inline
1846 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1847 					gfp_t gfp_mask,
1848 					unsigned long *total_scanned)
1849 {
1850 	return 0;
1851 }
1852 
1853 static inline bool task_in_memcg_oom(struct task_struct *p)
1854 {
1855 	return false;
1856 }
1857 
1858 static inline bool mem_cgroup_oom_synchronize(bool wait)
1859 {
1860 	return false;
1861 }
1862 
1863 static inline void mem_cgroup_enter_user_fault(void)
1864 {
1865 }
1866 
1867 static inline void mem_cgroup_exit_user_fault(void)
1868 {
1869 }
1870 
1871 #endif /* CONFIG_MEMCG_V1 */
1872 
1873 #endif /* _LINUX_MEMCONTROL_H */
1874