1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 #include <linux/shrinker.h> 25 26 struct mem_cgroup; 27 struct obj_cgroup; 28 struct page; 29 struct mm_struct; 30 struct kmem_cache; 31 32 /* Cgroup-specific page state, on top of universal node page state */ 33 enum memcg_stat_item { 34 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 35 MEMCG_SOCK, 36 MEMCG_PERCPU_B, 37 MEMCG_VMALLOC, 38 MEMCG_KMEM, 39 MEMCG_ZSWAP_B, 40 MEMCG_ZSWAPPED, 41 MEMCG_NR_STAT, 42 }; 43 44 enum memcg_memory_event { 45 MEMCG_LOW, 46 MEMCG_HIGH, 47 MEMCG_MAX, 48 MEMCG_OOM, 49 MEMCG_OOM_KILL, 50 MEMCG_OOM_GROUP_KILL, 51 MEMCG_SWAP_HIGH, 52 MEMCG_SWAP_MAX, 53 MEMCG_SWAP_FAIL, 54 MEMCG_NR_MEMORY_EVENTS, 55 }; 56 57 struct mem_cgroup_reclaim_cookie { 58 pg_data_t *pgdat; 59 unsigned int generation; 60 }; 61 62 #ifdef CONFIG_MEMCG 63 64 #define MEM_CGROUP_ID_SHIFT 16 65 66 struct mem_cgroup_id { 67 int id; 68 refcount_t ref; 69 }; 70 71 /* 72 * Per memcg event counter is incremented at every pagein/pageout. With THP, 73 * it will be incremented by the number of pages. This counter is used 74 * to trigger some periodic events. This is straightforward and better 75 * than using jiffies etc. to handle periodic memcg event. 76 */ 77 enum mem_cgroup_events_target { 78 MEM_CGROUP_TARGET_THRESH, 79 MEM_CGROUP_TARGET_SOFTLIMIT, 80 MEM_CGROUP_NTARGETS, 81 }; 82 83 struct memcg_vmstats_percpu; 84 struct memcg_vmstats; 85 86 struct mem_cgroup_reclaim_iter { 87 struct mem_cgroup *position; 88 /* scan generation, increased every round-trip */ 89 unsigned int generation; 90 }; 91 92 struct lruvec_stats_percpu { 93 /* Local (CPU and cgroup) state */ 94 long state[NR_VM_NODE_STAT_ITEMS]; 95 96 /* Delta calculation for lockless upward propagation */ 97 long state_prev[NR_VM_NODE_STAT_ITEMS]; 98 }; 99 100 struct lruvec_stats { 101 /* Aggregated (CPU and subtree) state */ 102 long state[NR_VM_NODE_STAT_ITEMS]; 103 104 /* Non-hierarchical (CPU aggregated) state */ 105 long state_local[NR_VM_NODE_STAT_ITEMS]; 106 107 /* Pending child counts during tree propagation */ 108 long state_pending[NR_VM_NODE_STAT_ITEMS]; 109 }; 110 111 /* 112 * per-node information in memory controller. 113 */ 114 struct mem_cgroup_per_node { 115 struct lruvec lruvec; 116 117 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 118 struct lruvec_stats lruvec_stats; 119 120 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 121 122 struct mem_cgroup_reclaim_iter iter; 123 124 struct shrinker_info __rcu *shrinker_info; 125 126 struct rb_node tree_node; /* RB tree node */ 127 unsigned long usage_in_excess;/* Set to the value by which */ 128 /* the soft limit is exceeded*/ 129 bool on_tree; 130 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 131 /* use container_of */ 132 }; 133 134 struct mem_cgroup_threshold { 135 struct eventfd_ctx *eventfd; 136 unsigned long threshold; 137 }; 138 139 /* For threshold */ 140 struct mem_cgroup_threshold_ary { 141 /* An array index points to threshold just below or equal to usage. */ 142 int current_threshold; 143 /* Size of entries[] */ 144 unsigned int size; 145 /* Array of thresholds */ 146 struct mem_cgroup_threshold entries[] __counted_by(size); 147 }; 148 149 struct mem_cgroup_thresholds { 150 /* Primary thresholds array */ 151 struct mem_cgroup_threshold_ary *primary; 152 /* 153 * Spare threshold array. 154 * This is needed to make mem_cgroup_unregister_event() "never fail". 155 * It must be able to store at least primary->size - 1 entries. 156 */ 157 struct mem_cgroup_threshold_ary *spare; 158 }; 159 160 /* 161 * Remember four most recent foreign writebacks with dirty pages in this 162 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 163 * one in a given round, we're likely to catch it later if it keeps 164 * foreign-dirtying, so a fairly low count should be enough. 165 * 166 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 167 */ 168 #define MEMCG_CGWB_FRN_CNT 4 169 170 struct memcg_cgwb_frn { 171 u64 bdi_id; /* bdi->id of the foreign inode */ 172 int memcg_id; /* memcg->css.id of foreign inode */ 173 u64 at; /* jiffies_64 at the time of dirtying */ 174 struct wb_completion done; /* tracks in-flight foreign writebacks */ 175 }; 176 177 /* 178 * Bucket for arbitrarily byte-sized objects charged to a memory 179 * cgroup. The bucket can be reparented in one piece when the cgroup 180 * is destroyed, without having to round up the individual references 181 * of all live memory objects in the wild. 182 */ 183 struct obj_cgroup { 184 struct percpu_ref refcnt; 185 struct mem_cgroup *memcg; 186 atomic_t nr_charged_bytes; 187 union { 188 struct list_head list; /* protected by objcg_lock */ 189 struct rcu_head rcu; 190 }; 191 }; 192 193 /* 194 * The memory controller data structure. The memory controller controls both 195 * page cache and RSS per cgroup. We would eventually like to provide 196 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 197 * to help the administrator determine what knobs to tune. 198 */ 199 struct mem_cgroup { 200 struct cgroup_subsys_state css; 201 202 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 203 struct mem_cgroup_id id; 204 205 /* Accounted resources */ 206 struct page_counter memory; /* Both v1 & v2 */ 207 208 union { 209 struct page_counter swap; /* v2 only */ 210 struct page_counter memsw; /* v1 only */ 211 }; 212 213 /* Legacy consumer-oriented counters */ 214 struct page_counter kmem; /* v1 only */ 215 struct page_counter tcpmem; /* v1 only */ 216 217 /* Range enforcement for interrupt charges */ 218 struct work_struct high_work; 219 220 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 221 unsigned long zswap_max; 222 #endif 223 224 unsigned long soft_limit; 225 226 /* vmpressure notifications */ 227 struct vmpressure vmpressure; 228 229 /* 230 * Should the OOM killer kill all belonging tasks, had it kill one? 231 */ 232 bool oom_group; 233 234 /* protected by memcg_oom_lock */ 235 bool oom_lock; 236 int under_oom; 237 238 int swappiness; 239 /* OOM-Killer disable */ 240 int oom_kill_disable; 241 242 /* memory.events and memory.events.local */ 243 struct cgroup_file events_file; 244 struct cgroup_file events_local_file; 245 246 /* handle for "memory.swap.events" */ 247 struct cgroup_file swap_events_file; 248 249 /* protect arrays of thresholds */ 250 struct mutex thresholds_lock; 251 252 /* thresholds for memory usage. RCU-protected */ 253 struct mem_cgroup_thresholds thresholds; 254 255 /* thresholds for mem+swap usage. RCU-protected */ 256 struct mem_cgroup_thresholds memsw_thresholds; 257 258 /* For oom notifier event fd */ 259 struct list_head oom_notify; 260 261 /* 262 * Should we move charges of a task when a task is moved into this 263 * mem_cgroup ? And what type of charges should we move ? 264 */ 265 unsigned long move_charge_at_immigrate; 266 /* taken only while moving_account > 0 */ 267 spinlock_t move_lock; 268 unsigned long move_lock_flags; 269 270 CACHELINE_PADDING(_pad1_); 271 272 /* memory.stat */ 273 struct memcg_vmstats *vmstats; 274 275 /* memory.events */ 276 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 277 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 278 279 /* 280 * Hint of reclaim pressure for socket memroy management. Note 281 * that this indicator should NOT be used in legacy cgroup mode 282 * where socket memory is accounted/charged separately. 283 */ 284 unsigned long socket_pressure; 285 286 /* Legacy tcp memory accounting */ 287 bool tcpmem_active; 288 int tcpmem_pressure; 289 290 #ifdef CONFIG_MEMCG_KMEM 291 int kmemcg_id; 292 struct obj_cgroup __rcu *objcg; 293 /* list of inherited objcgs, protected by objcg_lock */ 294 struct list_head objcg_list; 295 #endif 296 297 CACHELINE_PADDING(_pad2_); 298 299 /* 300 * set > 0 if pages under this cgroup are moving to other cgroup. 301 */ 302 atomic_t moving_account; 303 struct task_struct *move_lock_task; 304 305 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 306 307 #ifdef CONFIG_CGROUP_WRITEBACK 308 struct list_head cgwb_list; 309 struct wb_domain cgwb_domain; 310 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 311 #endif 312 313 /* List of events which userspace want to receive */ 314 struct list_head event_list; 315 spinlock_t event_list_lock; 316 317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 struct deferred_split deferred_split_queue; 319 #endif 320 321 #ifdef CONFIG_LRU_GEN 322 /* per-memcg mm_struct list */ 323 struct lru_gen_mm_list mm_list; 324 #endif 325 326 struct mem_cgroup_per_node *nodeinfo[]; 327 }; 328 329 /* 330 * size of first charge trial. 331 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 332 * workload. 333 */ 334 #define MEMCG_CHARGE_BATCH 64U 335 336 extern struct mem_cgroup *root_mem_cgroup; 337 338 enum page_memcg_data_flags { 339 /* page->memcg_data is a pointer to an objcgs vector */ 340 MEMCG_DATA_OBJCGS = (1UL << 0), 341 /* page has been accounted as a non-slab kernel page */ 342 MEMCG_DATA_KMEM = (1UL << 1), 343 /* the next bit after the last actual flag */ 344 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 345 }; 346 347 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 348 349 static inline bool folio_memcg_kmem(struct folio *folio); 350 351 /* 352 * After the initialization objcg->memcg is always pointing at 353 * a valid memcg, but can be atomically swapped to the parent memcg. 354 * 355 * The caller must ensure that the returned memcg won't be released: 356 * e.g. acquire the rcu_read_lock or css_set_lock. 357 */ 358 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 359 { 360 return READ_ONCE(objcg->memcg); 361 } 362 363 /* 364 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 365 * @folio: Pointer to the folio. 366 * 367 * Returns a pointer to the memory cgroup associated with the folio, 368 * or NULL. This function assumes that the folio is known to have a 369 * proper memory cgroup pointer. It's not safe to call this function 370 * against some type of folios, e.g. slab folios or ex-slab folios or 371 * kmem folios. 372 */ 373 static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 374 { 375 unsigned long memcg_data = folio->memcg_data; 376 377 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 378 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 379 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 380 381 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 382 } 383 384 /* 385 * __folio_objcg - get the object cgroup associated with a kmem folio. 386 * @folio: Pointer to the folio. 387 * 388 * Returns a pointer to the object cgroup associated with the folio, 389 * or NULL. This function assumes that the folio is known to have a 390 * proper object cgroup pointer. It's not safe to call this function 391 * against some type of folios, e.g. slab folios or ex-slab folios or 392 * LRU folios. 393 */ 394 static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 395 { 396 unsigned long memcg_data = folio->memcg_data; 397 398 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 399 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 400 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 401 402 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 403 } 404 405 /* 406 * folio_memcg - Get the memory cgroup associated with a folio. 407 * @folio: Pointer to the folio. 408 * 409 * Returns a pointer to the memory cgroup associated with the folio, 410 * or NULL. This function assumes that the folio is known to have a 411 * proper memory cgroup pointer. It's not safe to call this function 412 * against some type of folios, e.g. slab folios or ex-slab folios. 413 * 414 * For a non-kmem folio any of the following ensures folio and memcg binding 415 * stability: 416 * 417 * - the folio lock 418 * - LRU isolation 419 * - folio_memcg_lock() 420 * - exclusive reference 421 * - mem_cgroup_trylock_pages() 422 * 423 * For a kmem folio a caller should hold an rcu read lock to protect memcg 424 * associated with a kmem folio from being released. 425 */ 426 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 427 { 428 if (folio_memcg_kmem(folio)) 429 return obj_cgroup_memcg(__folio_objcg(folio)); 430 return __folio_memcg(folio); 431 } 432 433 static inline struct mem_cgroup *page_memcg(struct page *page) 434 { 435 return folio_memcg(page_folio(page)); 436 } 437 438 /** 439 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 440 * @folio: Pointer to the folio. 441 * 442 * This function assumes that the folio is known to have a 443 * proper memory cgroup pointer. It's not safe to call this function 444 * against some type of folios, e.g. slab folios or ex-slab folios. 445 * 446 * Return: A pointer to the memory cgroup associated with the folio, 447 * or NULL. 448 */ 449 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 450 { 451 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 452 453 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 454 WARN_ON_ONCE(!rcu_read_lock_held()); 455 456 if (memcg_data & MEMCG_DATA_KMEM) { 457 struct obj_cgroup *objcg; 458 459 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 460 return obj_cgroup_memcg(objcg); 461 } 462 463 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 464 } 465 466 /* 467 * folio_memcg_check - Get the memory cgroup associated with a folio. 468 * @folio: Pointer to the folio. 469 * 470 * Returns a pointer to the memory cgroup associated with the folio, 471 * or NULL. This function unlike folio_memcg() can take any folio 472 * as an argument. It has to be used in cases when it's not known if a folio 473 * has an associated memory cgroup pointer or an object cgroups vector or 474 * an object cgroup. 475 * 476 * For a non-kmem folio any of the following ensures folio and memcg binding 477 * stability: 478 * 479 * - the folio lock 480 * - LRU isolation 481 * - lock_folio_memcg() 482 * - exclusive reference 483 * - mem_cgroup_trylock_pages() 484 * 485 * For a kmem folio a caller should hold an rcu read lock to protect memcg 486 * associated with a kmem folio from being released. 487 */ 488 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 489 { 490 /* 491 * Because folio->memcg_data might be changed asynchronously 492 * for slabs, READ_ONCE() should be used here. 493 */ 494 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 495 496 if (memcg_data & MEMCG_DATA_OBJCGS) 497 return NULL; 498 499 if (memcg_data & MEMCG_DATA_KMEM) { 500 struct obj_cgroup *objcg; 501 502 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 503 return obj_cgroup_memcg(objcg); 504 } 505 506 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 507 } 508 509 static inline struct mem_cgroup *page_memcg_check(struct page *page) 510 { 511 if (PageTail(page)) 512 return NULL; 513 return folio_memcg_check((struct folio *)page); 514 } 515 516 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 517 { 518 struct mem_cgroup *memcg; 519 520 rcu_read_lock(); 521 retry: 522 memcg = obj_cgroup_memcg(objcg); 523 if (unlikely(!css_tryget(&memcg->css))) 524 goto retry; 525 rcu_read_unlock(); 526 527 return memcg; 528 } 529 530 #ifdef CONFIG_MEMCG_KMEM 531 /* 532 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 533 * @folio: Pointer to the folio. 534 * 535 * Checks if the folio has MemcgKmem flag set. The caller must ensure 536 * that the folio has an associated memory cgroup. It's not safe to call 537 * this function against some types of folios, e.g. slab folios. 538 */ 539 static inline bool folio_memcg_kmem(struct folio *folio) 540 { 541 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 542 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio); 543 return folio->memcg_data & MEMCG_DATA_KMEM; 544 } 545 546 547 #else 548 static inline bool folio_memcg_kmem(struct folio *folio) 549 { 550 return false; 551 } 552 553 #endif 554 555 static inline bool PageMemcgKmem(struct page *page) 556 { 557 return folio_memcg_kmem(page_folio(page)); 558 } 559 560 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 561 { 562 return (memcg == root_mem_cgroup); 563 } 564 565 static inline bool mem_cgroup_disabled(void) 566 { 567 return !cgroup_subsys_enabled(memory_cgrp_subsys); 568 } 569 570 static inline void mem_cgroup_protection(struct mem_cgroup *root, 571 struct mem_cgroup *memcg, 572 unsigned long *min, 573 unsigned long *low) 574 { 575 *min = *low = 0; 576 577 if (mem_cgroup_disabled()) 578 return; 579 580 /* 581 * There is no reclaim protection applied to a targeted reclaim. 582 * We are special casing this specific case here because 583 * mem_cgroup_calculate_protection is not robust enough to keep 584 * the protection invariant for calculated effective values for 585 * parallel reclaimers with different reclaim target. This is 586 * especially a problem for tail memcgs (as they have pages on LRU) 587 * which would want to have effective values 0 for targeted reclaim 588 * but a different value for external reclaim. 589 * 590 * Example 591 * Let's have global and A's reclaim in parallel: 592 * | 593 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 594 * |\ 595 * | C (low = 1G, usage = 2.5G) 596 * B (low = 1G, usage = 0.5G) 597 * 598 * For the global reclaim 599 * A.elow = A.low 600 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 601 * C.elow = min(C.usage, C.low) 602 * 603 * With the effective values resetting we have A reclaim 604 * A.elow = 0 605 * B.elow = B.low 606 * C.elow = C.low 607 * 608 * If the global reclaim races with A's reclaim then 609 * B.elow = C.elow = 0 because children_low_usage > A.elow) 610 * is possible and reclaiming B would be violating the protection. 611 * 612 */ 613 if (root == memcg) 614 return; 615 616 *min = READ_ONCE(memcg->memory.emin); 617 *low = READ_ONCE(memcg->memory.elow); 618 } 619 620 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 621 struct mem_cgroup *memcg); 622 623 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 624 struct mem_cgroup *memcg) 625 { 626 /* 627 * The root memcg doesn't account charges, and doesn't support 628 * protection. The target memcg's protection is ignored, see 629 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 630 */ 631 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 632 memcg == target; 633 } 634 635 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 636 struct mem_cgroup *memcg) 637 { 638 if (mem_cgroup_unprotected(target, memcg)) 639 return false; 640 641 return READ_ONCE(memcg->memory.elow) >= 642 page_counter_read(&memcg->memory); 643 } 644 645 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 646 struct mem_cgroup *memcg) 647 { 648 if (mem_cgroup_unprotected(target, memcg)) 649 return false; 650 651 return READ_ONCE(memcg->memory.emin) >= 652 page_counter_read(&memcg->memory); 653 } 654 655 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg); 656 657 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 658 659 /** 660 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 661 * @folio: Folio to charge. 662 * @mm: mm context of the allocating task. 663 * @gfp: Reclaim mode. 664 * 665 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 666 * pages according to @gfp if necessary. If @mm is NULL, try to 667 * charge to the active memcg. 668 * 669 * Do not use this for folios allocated for swapin. 670 * 671 * Return: 0 on success. Otherwise, an error code is returned. 672 */ 673 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 674 gfp_t gfp) 675 { 676 if (mem_cgroup_disabled()) 677 return 0; 678 return __mem_cgroup_charge(folio, mm, gfp); 679 } 680 681 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 682 long nr_pages); 683 684 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 685 gfp_t gfp, swp_entry_t entry); 686 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 687 688 void __mem_cgroup_uncharge(struct folio *folio); 689 690 /** 691 * mem_cgroup_uncharge - Uncharge a folio. 692 * @folio: Folio to uncharge. 693 * 694 * Uncharge a folio previously charged with mem_cgroup_charge(). 695 */ 696 static inline void mem_cgroup_uncharge(struct folio *folio) 697 { 698 if (mem_cgroup_disabled()) 699 return; 700 __mem_cgroup_uncharge(folio); 701 } 702 703 void __mem_cgroup_uncharge_list(struct list_head *page_list); 704 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 705 { 706 if (mem_cgroup_disabled()) 707 return; 708 __mem_cgroup_uncharge_list(page_list); 709 } 710 711 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages); 712 713 void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 714 715 void mem_cgroup_migrate(struct folio *old, struct folio *new); 716 717 /** 718 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 719 * @memcg: memcg of the wanted lruvec 720 * @pgdat: pglist_data 721 * 722 * Returns the lru list vector holding pages for a given @memcg & 723 * @pgdat combination. This can be the node lruvec, if the memory 724 * controller is disabled. 725 */ 726 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 727 struct pglist_data *pgdat) 728 { 729 struct mem_cgroup_per_node *mz; 730 struct lruvec *lruvec; 731 732 if (mem_cgroup_disabled()) { 733 lruvec = &pgdat->__lruvec; 734 goto out; 735 } 736 737 if (!memcg) 738 memcg = root_mem_cgroup; 739 740 mz = memcg->nodeinfo[pgdat->node_id]; 741 lruvec = &mz->lruvec; 742 out: 743 /* 744 * Since a node can be onlined after the mem_cgroup was created, 745 * we have to be prepared to initialize lruvec->pgdat here; 746 * and if offlined then reonlined, we need to reinitialize it. 747 */ 748 if (unlikely(lruvec->pgdat != pgdat)) 749 lruvec->pgdat = pgdat; 750 return lruvec; 751 } 752 753 /** 754 * folio_lruvec - return lruvec for isolating/putting an LRU folio 755 * @folio: Pointer to the folio. 756 * 757 * This function relies on folio->mem_cgroup being stable. 758 */ 759 static inline struct lruvec *folio_lruvec(struct folio *folio) 760 { 761 struct mem_cgroup *memcg = folio_memcg(folio); 762 763 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 764 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 765 } 766 767 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 768 769 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 770 771 struct mem_cgroup *get_mem_cgroup_from_current(void); 772 773 struct lruvec *folio_lruvec_lock(struct folio *folio); 774 struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 775 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 776 unsigned long *flags); 777 778 #ifdef CONFIG_DEBUG_VM 779 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 780 #else 781 static inline 782 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 783 { 784 } 785 #endif 786 787 static inline 788 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 789 return css ? container_of(css, struct mem_cgroup, css) : NULL; 790 } 791 792 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 793 { 794 return percpu_ref_tryget(&objcg->refcnt); 795 } 796 797 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 798 { 799 percpu_ref_get(&objcg->refcnt); 800 } 801 802 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 803 unsigned long nr) 804 { 805 percpu_ref_get_many(&objcg->refcnt, nr); 806 } 807 808 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 809 { 810 percpu_ref_put(&objcg->refcnt); 811 } 812 813 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 814 { 815 return !memcg || css_tryget(&memcg->css); 816 } 817 818 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 819 { 820 if (memcg) 821 css_put(&memcg->css); 822 } 823 824 #define mem_cgroup_from_counter(counter, member) \ 825 container_of(counter, struct mem_cgroup, member) 826 827 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 828 struct mem_cgroup *, 829 struct mem_cgroup_reclaim_cookie *); 830 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 831 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 832 int (*)(struct task_struct *, void *), void *arg); 833 834 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 835 { 836 if (mem_cgroup_disabled()) 837 return 0; 838 839 return memcg->id.id; 840 } 841 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 842 843 #ifdef CONFIG_SHRINKER_DEBUG 844 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 845 { 846 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 847 } 848 849 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 850 #endif 851 852 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 853 { 854 return mem_cgroup_from_css(seq_css(m)); 855 } 856 857 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 858 { 859 struct mem_cgroup_per_node *mz; 860 861 if (mem_cgroup_disabled()) 862 return NULL; 863 864 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 865 return mz->memcg; 866 } 867 868 /** 869 * parent_mem_cgroup - find the accounting parent of a memcg 870 * @memcg: memcg whose parent to find 871 * 872 * Returns the parent memcg, or NULL if this is the root. 873 */ 874 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 875 { 876 return mem_cgroup_from_css(memcg->css.parent); 877 } 878 879 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 880 struct mem_cgroup *root) 881 { 882 if (root == memcg) 883 return true; 884 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 885 } 886 887 static inline bool mm_match_cgroup(struct mm_struct *mm, 888 struct mem_cgroup *memcg) 889 { 890 struct mem_cgroup *task_memcg; 891 bool match = false; 892 893 rcu_read_lock(); 894 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 895 if (task_memcg) 896 match = mem_cgroup_is_descendant(task_memcg, memcg); 897 rcu_read_unlock(); 898 return match; 899 } 900 901 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 902 ino_t page_cgroup_ino(struct page *page); 903 904 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 905 { 906 if (mem_cgroup_disabled()) 907 return true; 908 return !!(memcg->css.flags & CSS_ONLINE); 909 } 910 911 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 912 int zid, int nr_pages); 913 914 static inline 915 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 916 enum lru_list lru, int zone_idx) 917 { 918 struct mem_cgroup_per_node *mz; 919 920 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 921 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 922 } 923 924 void mem_cgroup_handle_over_high(gfp_t gfp_mask); 925 926 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 927 928 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 929 930 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 931 struct task_struct *p); 932 933 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 934 935 static inline void mem_cgroup_enter_user_fault(void) 936 { 937 WARN_ON(current->in_user_fault); 938 current->in_user_fault = 1; 939 } 940 941 static inline void mem_cgroup_exit_user_fault(void) 942 { 943 WARN_ON(!current->in_user_fault); 944 current->in_user_fault = 0; 945 } 946 947 static inline bool task_in_memcg_oom(struct task_struct *p) 948 { 949 return p->memcg_in_oom; 950 } 951 952 bool mem_cgroup_oom_synchronize(bool wait); 953 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 954 struct mem_cgroup *oom_domain); 955 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 956 957 void folio_memcg_lock(struct folio *folio); 958 void folio_memcg_unlock(struct folio *folio); 959 960 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 961 962 /* try to stablize folio_memcg() for all the pages in a memcg */ 963 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 964 { 965 rcu_read_lock(); 966 967 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 968 return true; 969 970 rcu_read_unlock(); 971 return false; 972 } 973 974 static inline void mem_cgroup_unlock_pages(void) 975 { 976 rcu_read_unlock(); 977 } 978 979 /* idx can be of type enum memcg_stat_item or node_stat_item */ 980 static inline void mod_memcg_state(struct mem_cgroup *memcg, 981 int idx, int val) 982 { 983 unsigned long flags; 984 985 local_irq_save(flags); 986 __mod_memcg_state(memcg, idx, val); 987 local_irq_restore(flags); 988 } 989 990 static inline void mod_memcg_page_state(struct page *page, 991 int idx, int val) 992 { 993 struct mem_cgroup *memcg; 994 995 if (mem_cgroup_disabled()) 996 return; 997 998 rcu_read_lock(); 999 memcg = page_memcg(page); 1000 if (memcg) 1001 mod_memcg_state(memcg, idx, val); 1002 rcu_read_unlock(); 1003 } 1004 1005 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 1006 1007 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1008 enum node_stat_item idx) 1009 { 1010 struct mem_cgroup_per_node *pn; 1011 long x; 1012 1013 if (mem_cgroup_disabled()) 1014 return node_page_state(lruvec_pgdat(lruvec), idx); 1015 1016 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1017 x = READ_ONCE(pn->lruvec_stats.state[idx]); 1018 #ifdef CONFIG_SMP 1019 if (x < 0) 1020 x = 0; 1021 #endif 1022 return x; 1023 } 1024 1025 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1026 enum node_stat_item idx) 1027 { 1028 struct mem_cgroup_per_node *pn; 1029 long x = 0; 1030 1031 if (mem_cgroup_disabled()) 1032 return node_page_state(lruvec_pgdat(lruvec), idx); 1033 1034 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1035 x = READ_ONCE(pn->lruvec_stats.state_local[idx]); 1036 #ifdef CONFIG_SMP 1037 if (x < 0) 1038 x = 0; 1039 #endif 1040 return x; 1041 } 1042 1043 void mem_cgroup_flush_stats(void); 1044 void mem_cgroup_flush_stats_ratelimited(void); 1045 1046 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1047 int val); 1048 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1049 1050 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1051 int val) 1052 { 1053 unsigned long flags; 1054 1055 local_irq_save(flags); 1056 __mod_lruvec_kmem_state(p, idx, val); 1057 local_irq_restore(flags); 1058 } 1059 1060 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1061 enum node_stat_item idx, int val) 1062 { 1063 unsigned long flags; 1064 1065 local_irq_save(flags); 1066 __mod_memcg_lruvec_state(lruvec, idx, val); 1067 local_irq_restore(flags); 1068 } 1069 1070 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1071 unsigned long count); 1072 1073 static inline void count_memcg_events(struct mem_cgroup *memcg, 1074 enum vm_event_item idx, 1075 unsigned long count) 1076 { 1077 unsigned long flags; 1078 1079 local_irq_save(flags); 1080 __count_memcg_events(memcg, idx, count); 1081 local_irq_restore(flags); 1082 } 1083 1084 static inline void count_memcg_page_event(struct page *page, 1085 enum vm_event_item idx) 1086 { 1087 struct mem_cgroup *memcg = page_memcg(page); 1088 1089 if (memcg) 1090 count_memcg_events(memcg, idx, 1); 1091 } 1092 1093 static inline void count_memcg_folio_events(struct folio *folio, 1094 enum vm_event_item idx, unsigned long nr) 1095 { 1096 struct mem_cgroup *memcg = folio_memcg(folio); 1097 1098 if (memcg) 1099 count_memcg_events(memcg, idx, nr); 1100 } 1101 1102 static inline void count_memcg_event_mm(struct mm_struct *mm, 1103 enum vm_event_item idx) 1104 { 1105 struct mem_cgroup *memcg; 1106 1107 if (mem_cgroup_disabled()) 1108 return; 1109 1110 rcu_read_lock(); 1111 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1112 if (likely(memcg)) 1113 count_memcg_events(memcg, idx, 1); 1114 rcu_read_unlock(); 1115 } 1116 1117 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1118 enum memcg_memory_event event) 1119 { 1120 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1121 event == MEMCG_SWAP_FAIL; 1122 1123 atomic_long_inc(&memcg->memory_events_local[event]); 1124 if (!swap_event) 1125 cgroup_file_notify(&memcg->events_local_file); 1126 1127 do { 1128 atomic_long_inc(&memcg->memory_events[event]); 1129 if (swap_event) 1130 cgroup_file_notify(&memcg->swap_events_file); 1131 else 1132 cgroup_file_notify(&memcg->events_file); 1133 1134 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1135 break; 1136 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1137 break; 1138 } while ((memcg = parent_mem_cgroup(memcg)) && 1139 !mem_cgroup_is_root(memcg)); 1140 } 1141 1142 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1143 enum memcg_memory_event event) 1144 { 1145 struct mem_cgroup *memcg; 1146 1147 if (mem_cgroup_disabled()) 1148 return; 1149 1150 rcu_read_lock(); 1151 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1152 if (likely(memcg)) 1153 memcg_memory_event(memcg, event); 1154 rcu_read_unlock(); 1155 } 1156 1157 void split_page_memcg(struct page *head, unsigned int nr); 1158 1159 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1160 gfp_t gfp_mask, 1161 unsigned long *total_scanned); 1162 1163 #else /* CONFIG_MEMCG */ 1164 1165 #define MEM_CGROUP_ID_SHIFT 0 1166 1167 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1168 { 1169 return NULL; 1170 } 1171 1172 static inline struct mem_cgroup *page_memcg(struct page *page) 1173 { 1174 return NULL; 1175 } 1176 1177 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1178 { 1179 WARN_ON_ONCE(!rcu_read_lock_held()); 1180 return NULL; 1181 } 1182 1183 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1184 { 1185 return NULL; 1186 } 1187 1188 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1189 { 1190 return NULL; 1191 } 1192 1193 static inline bool folio_memcg_kmem(struct folio *folio) 1194 { 1195 return false; 1196 } 1197 1198 static inline bool PageMemcgKmem(struct page *page) 1199 { 1200 return false; 1201 } 1202 1203 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1204 { 1205 return true; 1206 } 1207 1208 static inline bool mem_cgroup_disabled(void) 1209 { 1210 return true; 1211 } 1212 1213 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1214 enum memcg_memory_event event) 1215 { 1216 } 1217 1218 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1219 enum memcg_memory_event event) 1220 { 1221 } 1222 1223 static inline void mem_cgroup_protection(struct mem_cgroup *root, 1224 struct mem_cgroup *memcg, 1225 unsigned long *min, 1226 unsigned long *low) 1227 { 1228 *min = *low = 0; 1229 } 1230 1231 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1232 struct mem_cgroup *memcg) 1233 { 1234 } 1235 1236 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1237 struct mem_cgroup *memcg) 1238 { 1239 return true; 1240 } 1241 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1242 struct mem_cgroup *memcg) 1243 { 1244 return false; 1245 } 1246 1247 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1248 struct mem_cgroup *memcg) 1249 { 1250 return false; 1251 } 1252 1253 static inline void mem_cgroup_commit_charge(struct folio *folio, 1254 struct mem_cgroup *memcg) 1255 { 1256 } 1257 1258 static inline int mem_cgroup_charge(struct folio *folio, 1259 struct mm_struct *mm, gfp_t gfp) 1260 { 1261 return 0; 1262 } 1263 1264 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, 1265 gfp_t gfp, long nr_pages) 1266 { 1267 return 0; 1268 } 1269 1270 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1271 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1272 { 1273 return 0; 1274 } 1275 1276 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1277 { 1278 } 1279 1280 static inline void mem_cgroup_uncharge(struct folio *folio) 1281 { 1282 } 1283 1284 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1285 { 1286 } 1287 1288 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 1289 unsigned int nr_pages) 1290 { 1291 } 1292 1293 static inline void mem_cgroup_replace_folio(struct folio *old, 1294 struct folio *new) 1295 { 1296 } 1297 1298 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1299 { 1300 } 1301 1302 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1303 struct pglist_data *pgdat) 1304 { 1305 return &pgdat->__lruvec; 1306 } 1307 1308 static inline struct lruvec *folio_lruvec(struct folio *folio) 1309 { 1310 struct pglist_data *pgdat = folio_pgdat(folio); 1311 return &pgdat->__lruvec; 1312 } 1313 1314 static inline 1315 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1316 { 1317 } 1318 1319 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1320 { 1321 return NULL; 1322 } 1323 1324 static inline bool mm_match_cgroup(struct mm_struct *mm, 1325 struct mem_cgroup *memcg) 1326 { 1327 return true; 1328 } 1329 1330 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1331 { 1332 return NULL; 1333 } 1334 1335 static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1336 { 1337 return NULL; 1338 } 1339 1340 static inline 1341 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1342 { 1343 return NULL; 1344 } 1345 1346 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1347 { 1348 } 1349 1350 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1351 { 1352 return true; 1353 } 1354 1355 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1356 { 1357 } 1358 1359 static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1360 { 1361 struct pglist_data *pgdat = folio_pgdat(folio); 1362 1363 spin_lock(&pgdat->__lruvec.lru_lock); 1364 return &pgdat->__lruvec; 1365 } 1366 1367 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1368 { 1369 struct pglist_data *pgdat = folio_pgdat(folio); 1370 1371 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1372 return &pgdat->__lruvec; 1373 } 1374 1375 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1376 unsigned long *flagsp) 1377 { 1378 struct pglist_data *pgdat = folio_pgdat(folio); 1379 1380 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1381 return &pgdat->__lruvec; 1382 } 1383 1384 static inline struct mem_cgroup * 1385 mem_cgroup_iter(struct mem_cgroup *root, 1386 struct mem_cgroup *prev, 1387 struct mem_cgroup_reclaim_cookie *reclaim) 1388 { 1389 return NULL; 1390 } 1391 1392 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1393 struct mem_cgroup *prev) 1394 { 1395 } 1396 1397 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1398 int (*fn)(struct task_struct *, void *), void *arg) 1399 { 1400 } 1401 1402 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1403 { 1404 return 0; 1405 } 1406 1407 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1408 { 1409 WARN_ON_ONCE(id); 1410 /* XXX: This should always return root_mem_cgroup */ 1411 return NULL; 1412 } 1413 1414 #ifdef CONFIG_SHRINKER_DEBUG 1415 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1416 { 1417 return 0; 1418 } 1419 1420 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1421 { 1422 return NULL; 1423 } 1424 #endif 1425 1426 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1427 { 1428 return NULL; 1429 } 1430 1431 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1432 { 1433 return NULL; 1434 } 1435 1436 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1437 { 1438 return true; 1439 } 1440 1441 static inline 1442 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1443 enum lru_list lru, int zone_idx) 1444 { 1445 return 0; 1446 } 1447 1448 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1449 { 1450 return 0; 1451 } 1452 1453 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1454 { 1455 return 0; 1456 } 1457 1458 static inline void 1459 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1460 { 1461 } 1462 1463 static inline void 1464 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1465 { 1466 } 1467 1468 static inline void folio_memcg_lock(struct folio *folio) 1469 { 1470 } 1471 1472 static inline void folio_memcg_unlock(struct folio *folio) 1473 { 1474 } 1475 1476 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1477 { 1478 /* to match folio_memcg_rcu() */ 1479 rcu_read_lock(); 1480 return true; 1481 } 1482 1483 static inline void mem_cgroup_unlock_pages(void) 1484 { 1485 rcu_read_unlock(); 1486 } 1487 1488 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1489 { 1490 } 1491 1492 static inline void mem_cgroup_enter_user_fault(void) 1493 { 1494 } 1495 1496 static inline void mem_cgroup_exit_user_fault(void) 1497 { 1498 } 1499 1500 static inline bool task_in_memcg_oom(struct task_struct *p) 1501 { 1502 return false; 1503 } 1504 1505 static inline bool mem_cgroup_oom_synchronize(bool wait) 1506 { 1507 return false; 1508 } 1509 1510 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1511 struct task_struct *victim, struct mem_cgroup *oom_domain) 1512 { 1513 return NULL; 1514 } 1515 1516 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1517 { 1518 } 1519 1520 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1521 int idx, 1522 int nr) 1523 { 1524 } 1525 1526 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1527 int idx, 1528 int nr) 1529 { 1530 } 1531 1532 static inline void mod_memcg_page_state(struct page *page, 1533 int idx, int val) 1534 { 1535 } 1536 1537 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1538 { 1539 return 0; 1540 } 1541 1542 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1543 enum node_stat_item idx) 1544 { 1545 return node_page_state(lruvec_pgdat(lruvec), idx); 1546 } 1547 1548 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1549 enum node_stat_item idx) 1550 { 1551 return node_page_state(lruvec_pgdat(lruvec), idx); 1552 } 1553 1554 static inline void mem_cgroup_flush_stats(void) 1555 { 1556 } 1557 1558 static inline void mem_cgroup_flush_stats_ratelimited(void) 1559 { 1560 } 1561 1562 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1563 enum node_stat_item idx, int val) 1564 { 1565 } 1566 1567 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1568 int val) 1569 { 1570 struct page *page = virt_to_head_page(p); 1571 1572 __mod_node_page_state(page_pgdat(page), idx, val); 1573 } 1574 1575 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1576 int val) 1577 { 1578 struct page *page = virt_to_head_page(p); 1579 1580 mod_node_page_state(page_pgdat(page), idx, val); 1581 } 1582 1583 static inline void count_memcg_events(struct mem_cgroup *memcg, 1584 enum vm_event_item idx, 1585 unsigned long count) 1586 { 1587 } 1588 1589 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1590 enum vm_event_item idx, 1591 unsigned long count) 1592 { 1593 } 1594 1595 static inline void count_memcg_page_event(struct page *page, 1596 int idx) 1597 { 1598 } 1599 1600 static inline void count_memcg_folio_events(struct folio *folio, 1601 enum vm_event_item idx, unsigned long nr) 1602 { 1603 } 1604 1605 static inline 1606 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1607 { 1608 } 1609 1610 static inline void split_page_memcg(struct page *head, unsigned int nr) 1611 { 1612 } 1613 1614 static inline 1615 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1616 gfp_t gfp_mask, 1617 unsigned long *total_scanned) 1618 { 1619 return 0; 1620 } 1621 #endif /* CONFIG_MEMCG */ 1622 1623 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1624 { 1625 __mod_lruvec_kmem_state(p, idx, 1); 1626 } 1627 1628 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1629 { 1630 __mod_lruvec_kmem_state(p, idx, -1); 1631 } 1632 1633 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1634 { 1635 struct mem_cgroup *memcg; 1636 1637 memcg = lruvec_memcg(lruvec); 1638 if (!memcg) 1639 return NULL; 1640 memcg = parent_mem_cgroup(memcg); 1641 if (!memcg) 1642 return NULL; 1643 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1644 } 1645 1646 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1647 { 1648 spin_unlock(&lruvec->lru_lock); 1649 } 1650 1651 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1652 { 1653 spin_unlock_irq(&lruvec->lru_lock); 1654 } 1655 1656 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1657 unsigned long flags) 1658 { 1659 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1660 } 1661 1662 /* Test requires a stable page->memcg binding, see page_memcg() */ 1663 static inline bool folio_matches_lruvec(struct folio *folio, 1664 struct lruvec *lruvec) 1665 { 1666 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1667 lruvec_memcg(lruvec) == folio_memcg(folio); 1668 } 1669 1670 /* Don't lock again iff page's lruvec locked */ 1671 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1672 struct lruvec *locked_lruvec) 1673 { 1674 if (locked_lruvec) { 1675 if (folio_matches_lruvec(folio, locked_lruvec)) 1676 return locked_lruvec; 1677 1678 unlock_page_lruvec_irq(locked_lruvec); 1679 } 1680 1681 return folio_lruvec_lock_irq(folio); 1682 } 1683 1684 /* Don't lock again iff page's lruvec locked */ 1685 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio, 1686 struct lruvec *locked_lruvec, unsigned long *flags) 1687 { 1688 if (locked_lruvec) { 1689 if (folio_matches_lruvec(folio, locked_lruvec)) 1690 return locked_lruvec; 1691 1692 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1693 } 1694 1695 return folio_lruvec_lock_irqsave(folio, flags); 1696 } 1697 1698 #ifdef CONFIG_CGROUP_WRITEBACK 1699 1700 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1701 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1702 unsigned long *pheadroom, unsigned long *pdirty, 1703 unsigned long *pwriteback); 1704 1705 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1706 struct bdi_writeback *wb); 1707 1708 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1709 struct bdi_writeback *wb) 1710 { 1711 struct mem_cgroup *memcg; 1712 1713 if (mem_cgroup_disabled()) 1714 return; 1715 1716 memcg = folio_memcg(folio); 1717 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1718 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1719 } 1720 1721 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1722 1723 #else /* CONFIG_CGROUP_WRITEBACK */ 1724 1725 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1726 { 1727 return NULL; 1728 } 1729 1730 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1731 unsigned long *pfilepages, 1732 unsigned long *pheadroom, 1733 unsigned long *pdirty, 1734 unsigned long *pwriteback) 1735 { 1736 } 1737 1738 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1739 struct bdi_writeback *wb) 1740 { 1741 } 1742 1743 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1744 { 1745 } 1746 1747 #endif /* CONFIG_CGROUP_WRITEBACK */ 1748 1749 struct sock; 1750 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1751 gfp_t gfp_mask); 1752 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1753 #ifdef CONFIG_MEMCG 1754 extern struct static_key_false memcg_sockets_enabled_key; 1755 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1756 void mem_cgroup_sk_alloc(struct sock *sk); 1757 void mem_cgroup_sk_free(struct sock *sk); 1758 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1759 { 1760 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1761 return !!memcg->tcpmem_pressure; 1762 do { 1763 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1764 return true; 1765 } while ((memcg = parent_mem_cgroup(memcg))); 1766 return false; 1767 } 1768 1769 int alloc_shrinker_info(struct mem_cgroup *memcg); 1770 void free_shrinker_info(struct mem_cgroup *memcg); 1771 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1772 void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1773 #else 1774 #define mem_cgroup_sockets_enabled 0 1775 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1776 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1777 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1778 { 1779 return false; 1780 } 1781 1782 static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1783 int nid, int shrinker_id) 1784 { 1785 } 1786 #endif 1787 1788 #ifdef CONFIG_MEMCG_KMEM 1789 bool mem_cgroup_kmem_disabled(void); 1790 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1791 void __memcg_kmem_uncharge_page(struct page *page, int order); 1792 1793 struct obj_cgroup *get_obj_cgroup_from_current(void); 1794 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1795 1796 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1797 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1798 1799 extern struct static_key_false memcg_bpf_enabled_key; 1800 static inline bool memcg_bpf_enabled(void) 1801 { 1802 return static_branch_likely(&memcg_bpf_enabled_key); 1803 } 1804 1805 extern struct static_key_false memcg_kmem_online_key; 1806 1807 static inline bool memcg_kmem_online(void) 1808 { 1809 return static_branch_likely(&memcg_kmem_online_key); 1810 } 1811 1812 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1813 int order) 1814 { 1815 if (memcg_kmem_online()) 1816 return __memcg_kmem_charge_page(page, gfp, order); 1817 return 0; 1818 } 1819 1820 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1821 { 1822 if (memcg_kmem_online()) 1823 __memcg_kmem_uncharge_page(page, order); 1824 } 1825 1826 /* 1827 * A helper for accessing memcg's kmem_id, used for getting 1828 * corresponding LRU lists. 1829 */ 1830 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1831 { 1832 return memcg ? memcg->kmemcg_id : -1; 1833 } 1834 1835 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1836 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1837 1838 static inline void count_objcg_event(struct obj_cgroup *objcg, 1839 enum vm_event_item idx) 1840 { 1841 struct mem_cgroup *memcg; 1842 1843 if (!memcg_kmem_online()) 1844 return; 1845 1846 rcu_read_lock(); 1847 memcg = obj_cgroup_memcg(objcg); 1848 count_memcg_events(memcg, idx, 1); 1849 rcu_read_unlock(); 1850 } 1851 1852 #else 1853 static inline bool mem_cgroup_kmem_disabled(void) 1854 { 1855 return true; 1856 } 1857 1858 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1859 int order) 1860 { 1861 return 0; 1862 } 1863 1864 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1865 { 1866 } 1867 1868 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1869 int order) 1870 { 1871 return 0; 1872 } 1873 1874 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1875 { 1876 } 1877 1878 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1879 { 1880 return NULL; 1881 } 1882 1883 static inline bool memcg_bpf_enabled(void) 1884 { 1885 return false; 1886 } 1887 1888 static inline bool memcg_kmem_online(void) 1889 { 1890 return false; 1891 } 1892 1893 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1894 { 1895 return -1; 1896 } 1897 1898 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1899 { 1900 return NULL; 1901 } 1902 1903 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1904 { 1905 return NULL; 1906 } 1907 1908 static inline void count_objcg_event(struct obj_cgroup *objcg, 1909 enum vm_event_item idx) 1910 { 1911 } 1912 1913 #endif /* CONFIG_MEMCG_KMEM */ 1914 1915 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1916 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1917 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1918 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1919 #else 1920 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1921 { 1922 return true; 1923 } 1924 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1925 size_t size) 1926 { 1927 } 1928 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1929 size_t size) 1930 { 1931 } 1932 #endif 1933 1934 #endif /* _LINUX_MEMCONTROL_H */ 1935