xref: /linux-6.15/include/linux/memcontrol.h (revision 0069455b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	unsigned int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 /*
73  * Per memcg event counter is incremented at every pagein/pageout. With THP,
74  * it will be incremented by the number of pages. This counter is used
75  * to trigger some periodic events. This is straightforward and better
76  * than using jiffies etc. to handle periodic memcg event.
77  */
78 enum mem_cgroup_events_target {
79 	MEM_CGROUP_TARGET_THRESH,
80 	MEM_CGROUP_TARGET_SOFTLIMIT,
81 	MEM_CGROUP_NTARGETS,
82 };
83 
84 struct memcg_vmstats_percpu;
85 struct memcg_vmstats;
86 
87 struct mem_cgroup_reclaim_iter {
88 	struct mem_cgroup *position;
89 	/* scan generation, increased every round-trip */
90 	unsigned int generation;
91 };
92 
93 struct lruvec_stats_percpu {
94 	/* Local (CPU and cgroup) state */
95 	long state[NR_VM_NODE_STAT_ITEMS];
96 
97 	/* Delta calculation for lockless upward propagation */
98 	long state_prev[NR_VM_NODE_STAT_ITEMS];
99 };
100 
101 struct lruvec_stats {
102 	/* Aggregated (CPU and subtree) state */
103 	long state[NR_VM_NODE_STAT_ITEMS];
104 
105 	/* Non-hierarchical (CPU aggregated) state */
106 	long state_local[NR_VM_NODE_STAT_ITEMS];
107 
108 	/* Pending child counts during tree propagation */
109 	long state_pending[NR_VM_NODE_STAT_ITEMS];
110 };
111 
112 /*
113  * per-node information in memory controller.
114  */
115 struct mem_cgroup_per_node {
116 	struct lruvec		lruvec;
117 
118 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
119 	struct lruvec_stats			lruvec_stats;
120 
121 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
122 
123 	struct mem_cgroup_reclaim_iter	iter;
124 
125 	struct shrinker_info __rcu	*shrinker_info;
126 
127 	struct rb_node		tree_node;	/* RB tree node */
128 	unsigned long		usage_in_excess;/* Set to the value by which */
129 						/* the soft limit is exceeded*/
130 	bool			on_tree;
131 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
132 						/* use container_of	   */
133 };
134 
135 struct mem_cgroup_threshold {
136 	struct eventfd_ctx *eventfd;
137 	unsigned long threshold;
138 };
139 
140 /* For threshold */
141 struct mem_cgroup_threshold_ary {
142 	/* An array index points to threshold just below or equal to usage. */
143 	int current_threshold;
144 	/* Size of entries[] */
145 	unsigned int size;
146 	/* Array of thresholds */
147 	struct mem_cgroup_threshold entries[] __counted_by(size);
148 };
149 
150 struct mem_cgroup_thresholds {
151 	/* Primary thresholds array */
152 	struct mem_cgroup_threshold_ary *primary;
153 	/*
154 	 * Spare threshold array.
155 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
156 	 * It must be able to store at least primary->size - 1 entries.
157 	 */
158 	struct mem_cgroup_threshold_ary *spare;
159 };
160 
161 /*
162  * Remember four most recent foreign writebacks with dirty pages in this
163  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
164  * one in a given round, we're likely to catch it later if it keeps
165  * foreign-dirtying, so a fairly low count should be enough.
166  *
167  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
168  */
169 #define MEMCG_CGWB_FRN_CNT	4
170 
171 struct memcg_cgwb_frn {
172 	u64 bdi_id;			/* bdi->id of the foreign inode */
173 	int memcg_id;			/* memcg->css.id of foreign inode */
174 	u64 at;				/* jiffies_64 at the time of dirtying */
175 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
176 };
177 
178 /*
179  * Bucket for arbitrarily byte-sized objects charged to a memory
180  * cgroup. The bucket can be reparented in one piece when the cgroup
181  * is destroyed, without having to round up the individual references
182  * of all live memory objects in the wild.
183  */
184 struct obj_cgroup {
185 	struct percpu_ref refcnt;
186 	struct mem_cgroup *memcg;
187 	atomic_t nr_charged_bytes;
188 	union {
189 		struct list_head list; /* protected by objcg_lock */
190 		struct rcu_head rcu;
191 	};
192 };
193 
194 /*
195  * The memory controller data structure. The memory controller controls both
196  * page cache and RSS per cgroup. We would eventually like to provide
197  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
198  * to help the administrator determine what knobs to tune.
199  */
200 struct mem_cgroup {
201 	struct cgroup_subsys_state css;
202 
203 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
204 	struct mem_cgroup_id id;
205 
206 	/* Accounted resources */
207 	struct page_counter memory;		/* Both v1 & v2 */
208 
209 	union {
210 		struct page_counter swap;	/* v2 only */
211 		struct page_counter memsw;	/* v1 only */
212 	};
213 
214 	/* Legacy consumer-oriented counters */
215 	struct page_counter kmem;		/* v1 only */
216 	struct page_counter tcpmem;		/* v1 only */
217 
218 	/* Range enforcement for interrupt charges */
219 	struct work_struct high_work;
220 
221 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
222 	unsigned long zswap_max;
223 
224 	/*
225 	 * Prevent pages from this memcg from being written back from zswap to
226 	 * swap, and from being swapped out on zswap store failures.
227 	 */
228 	bool zswap_writeback;
229 #endif
230 
231 	unsigned long soft_limit;
232 
233 	/* vmpressure notifications */
234 	struct vmpressure vmpressure;
235 
236 	/*
237 	 * Should the OOM killer kill all belonging tasks, had it kill one?
238 	 */
239 	bool oom_group;
240 
241 	/* protected by memcg_oom_lock */
242 	bool		oom_lock;
243 	int		under_oom;
244 
245 	int	swappiness;
246 	/* OOM-Killer disable */
247 	int		oom_kill_disable;
248 
249 	/* memory.events and memory.events.local */
250 	struct cgroup_file events_file;
251 	struct cgroup_file events_local_file;
252 
253 	/* handle for "memory.swap.events" */
254 	struct cgroup_file swap_events_file;
255 
256 	/* protect arrays of thresholds */
257 	struct mutex thresholds_lock;
258 
259 	/* thresholds for memory usage. RCU-protected */
260 	struct mem_cgroup_thresholds thresholds;
261 
262 	/* thresholds for mem+swap usage. RCU-protected */
263 	struct mem_cgroup_thresholds memsw_thresholds;
264 
265 	/* For oom notifier event fd */
266 	struct list_head oom_notify;
267 
268 	/*
269 	 * Should we move charges of a task when a task is moved into this
270 	 * mem_cgroup ? And what type of charges should we move ?
271 	 */
272 	unsigned long move_charge_at_immigrate;
273 	/* taken only while moving_account > 0 */
274 	spinlock_t		move_lock;
275 	unsigned long		move_lock_flags;
276 
277 	CACHELINE_PADDING(_pad1_);
278 
279 	/* memory.stat */
280 	struct memcg_vmstats	*vmstats;
281 
282 	/* memory.events */
283 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
284 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
285 
286 	/*
287 	 * Hint of reclaim pressure for socket memroy management. Note
288 	 * that this indicator should NOT be used in legacy cgroup mode
289 	 * where socket memory is accounted/charged separately.
290 	 */
291 	unsigned long		socket_pressure;
292 
293 	/* Legacy tcp memory accounting */
294 	bool			tcpmem_active;
295 	int			tcpmem_pressure;
296 
297 #ifdef CONFIG_MEMCG_KMEM
298 	int kmemcg_id;
299 	/*
300 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
301 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
302 	 * to the original objcg until the end of live of memcg.
303 	 */
304 	struct obj_cgroup __rcu	*objcg;
305 	struct obj_cgroup	*orig_objcg;
306 	/* list of inherited objcgs, protected by objcg_lock */
307 	struct list_head objcg_list;
308 #endif
309 
310 	CACHELINE_PADDING(_pad2_);
311 
312 	/*
313 	 * set > 0 if pages under this cgroup are moving to other cgroup.
314 	 */
315 	atomic_t		moving_account;
316 	struct task_struct	*move_lock_task;
317 
318 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
319 
320 #ifdef CONFIG_CGROUP_WRITEBACK
321 	struct list_head cgwb_list;
322 	struct wb_domain cgwb_domain;
323 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
324 #endif
325 
326 	/* List of events which userspace want to receive */
327 	struct list_head event_list;
328 	spinlock_t event_list_lock;
329 
330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 	struct deferred_split deferred_split_queue;
332 #endif
333 
334 #ifdef CONFIG_LRU_GEN_WALKS_MMU
335 	/* per-memcg mm_struct list */
336 	struct lru_gen_mm_list mm_list;
337 #endif
338 
339 	struct mem_cgroup_per_node *nodeinfo[];
340 };
341 
342 /*
343  * size of first charge trial.
344  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
345  * workload.
346  */
347 #define MEMCG_CHARGE_BATCH 64U
348 
349 extern struct mem_cgroup *root_mem_cgroup;
350 
351 enum page_memcg_data_flags {
352 	/* page->memcg_data is a pointer to an objcgs vector */
353 	MEMCG_DATA_OBJCGS = (1UL << 0),
354 	/* page has been accounted as a non-slab kernel page */
355 	MEMCG_DATA_KMEM = (1UL << 1),
356 	/* the next bit after the last actual flag */
357 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
358 };
359 
360 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
361 
362 static inline bool folio_memcg_kmem(struct folio *folio);
363 
364 /*
365  * After the initialization objcg->memcg is always pointing at
366  * a valid memcg, but can be atomically swapped to the parent memcg.
367  *
368  * The caller must ensure that the returned memcg won't be released:
369  * e.g. acquire the rcu_read_lock or css_set_lock.
370  */
371 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
372 {
373 	return READ_ONCE(objcg->memcg);
374 }
375 
376 /*
377  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
378  * @folio: Pointer to the folio.
379  *
380  * Returns a pointer to the memory cgroup associated with the folio,
381  * or NULL. This function assumes that the folio is known to have a
382  * proper memory cgroup pointer. It's not safe to call this function
383  * against some type of folios, e.g. slab folios or ex-slab folios or
384  * kmem folios.
385  */
386 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
387 {
388 	unsigned long memcg_data = folio->memcg_data;
389 
390 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
391 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
392 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
393 
394 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
395 }
396 
397 /*
398  * __folio_objcg - get the object cgroup associated with a kmem folio.
399  * @folio: Pointer to the folio.
400  *
401  * Returns a pointer to the object cgroup associated with the folio,
402  * or NULL. This function assumes that the folio is known to have a
403  * proper object cgroup pointer. It's not safe to call this function
404  * against some type of folios, e.g. slab folios or ex-slab folios or
405  * LRU folios.
406  */
407 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
408 {
409 	unsigned long memcg_data = folio->memcg_data;
410 
411 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
412 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
413 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
414 
415 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
416 }
417 
418 /*
419  * folio_memcg - Get the memory cgroup associated with a folio.
420  * @folio: Pointer to the folio.
421  *
422  * Returns a pointer to the memory cgroup associated with the folio,
423  * or NULL. This function assumes that the folio is known to have a
424  * proper memory cgroup pointer. It's not safe to call this function
425  * against some type of folios, e.g. slab folios or ex-slab folios.
426  *
427  * For a non-kmem folio any of the following ensures folio and memcg binding
428  * stability:
429  *
430  * - the folio lock
431  * - LRU isolation
432  * - folio_memcg_lock()
433  * - exclusive reference
434  * - mem_cgroup_trylock_pages()
435  *
436  * For a kmem folio a caller should hold an rcu read lock to protect memcg
437  * associated with a kmem folio from being released.
438  */
439 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
440 {
441 	if (folio_memcg_kmem(folio))
442 		return obj_cgroup_memcg(__folio_objcg(folio));
443 	return __folio_memcg(folio);
444 }
445 
446 static inline struct mem_cgroup *page_memcg(struct page *page)
447 {
448 	return folio_memcg(page_folio(page));
449 }
450 
451 /**
452  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
453  * @folio: Pointer to the folio.
454  *
455  * This function assumes that the folio is known to have a
456  * proper memory cgroup pointer. It's not safe to call this function
457  * against some type of folios, e.g. slab folios or ex-slab folios.
458  *
459  * Return: A pointer to the memory cgroup associated with the folio,
460  * or NULL.
461  */
462 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
463 {
464 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
465 
466 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
467 	WARN_ON_ONCE(!rcu_read_lock_held());
468 
469 	if (memcg_data & MEMCG_DATA_KMEM) {
470 		struct obj_cgroup *objcg;
471 
472 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
473 		return obj_cgroup_memcg(objcg);
474 	}
475 
476 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
477 }
478 
479 /*
480  * folio_memcg_check - Get the memory cgroup associated with a folio.
481  * @folio: Pointer to the folio.
482  *
483  * Returns a pointer to the memory cgroup associated with the folio,
484  * or NULL. This function unlike folio_memcg() can take any folio
485  * as an argument. It has to be used in cases when it's not known if a folio
486  * has an associated memory cgroup pointer or an object cgroups vector or
487  * an object cgroup.
488  *
489  * For a non-kmem folio any of the following ensures folio and memcg binding
490  * stability:
491  *
492  * - the folio lock
493  * - LRU isolation
494  * - lock_folio_memcg()
495  * - exclusive reference
496  * - mem_cgroup_trylock_pages()
497  *
498  * For a kmem folio a caller should hold an rcu read lock to protect memcg
499  * associated with a kmem folio from being released.
500  */
501 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
502 {
503 	/*
504 	 * Because folio->memcg_data might be changed asynchronously
505 	 * for slabs, READ_ONCE() should be used here.
506 	 */
507 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
508 
509 	if (memcg_data & MEMCG_DATA_OBJCGS)
510 		return NULL;
511 
512 	if (memcg_data & MEMCG_DATA_KMEM) {
513 		struct obj_cgroup *objcg;
514 
515 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
516 		return obj_cgroup_memcg(objcg);
517 	}
518 
519 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
520 }
521 
522 static inline struct mem_cgroup *page_memcg_check(struct page *page)
523 {
524 	if (PageTail(page))
525 		return NULL;
526 	return folio_memcg_check((struct folio *)page);
527 }
528 
529 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
530 {
531 	struct mem_cgroup *memcg;
532 
533 	rcu_read_lock();
534 retry:
535 	memcg = obj_cgroup_memcg(objcg);
536 	if (unlikely(!css_tryget(&memcg->css)))
537 		goto retry;
538 	rcu_read_unlock();
539 
540 	return memcg;
541 }
542 
543 #ifdef CONFIG_MEMCG_KMEM
544 /*
545  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
546  * @folio: Pointer to the folio.
547  *
548  * Checks if the folio has MemcgKmem flag set. The caller must ensure
549  * that the folio has an associated memory cgroup. It's not safe to call
550  * this function against some types of folios, e.g. slab folios.
551  */
552 static inline bool folio_memcg_kmem(struct folio *folio)
553 {
554 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
555 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
556 	return folio->memcg_data & MEMCG_DATA_KMEM;
557 }
558 
559 
560 #else
561 static inline bool folio_memcg_kmem(struct folio *folio)
562 {
563 	return false;
564 }
565 
566 #endif
567 
568 static inline bool PageMemcgKmem(struct page *page)
569 {
570 	return folio_memcg_kmem(page_folio(page));
571 }
572 
573 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
574 {
575 	return (memcg == root_mem_cgroup);
576 }
577 
578 static inline bool mem_cgroup_disabled(void)
579 {
580 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
581 }
582 
583 static inline void mem_cgroup_protection(struct mem_cgroup *root,
584 					 struct mem_cgroup *memcg,
585 					 unsigned long *min,
586 					 unsigned long *low)
587 {
588 	*min = *low = 0;
589 
590 	if (mem_cgroup_disabled())
591 		return;
592 
593 	/*
594 	 * There is no reclaim protection applied to a targeted reclaim.
595 	 * We are special casing this specific case here because
596 	 * mem_cgroup_calculate_protection is not robust enough to keep
597 	 * the protection invariant for calculated effective values for
598 	 * parallel reclaimers with different reclaim target. This is
599 	 * especially a problem for tail memcgs (as they have pages on LRU)
600 	 * which would want to have effective values 0 for targeted reclaim
601 	 * but a different value for external reclaim.
602 	 *
603 	 * Example
604 	 * Let's have global and A's reclaim in parallel:
605 	 *  |
606 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
607 	 *  |\
608 	 *  | C (low = 1G, usage = 2.5G)
609 	 *  B (low = 1G, usage = 0.5G)
610 	 *
611 	 * For the global reclaim
612 	 * A.elow = A.low
613 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
614 	 * C.elow = min(C.usage, C.low)
615 	 *
616 	 * With the effective values resetting we have A reclaim
617 	 * A.elow = 0
618 	 * B.elow = B.low
619 	 * C.elow = C.low
620 	 *
621 	 * If the global reclaim races with A's reclaim then
622 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
623 	 * is possible and reclaiming B would be violating the protection.
624 	 *
625 	 */
626 	if (root == memcg)
627 		return;
628 
629 	*min = READ_ONCE(memcg->memory.emin);
630 	*low = READ_ONCE(memcg->memory.elow);
631 }
632 
633 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
634 				     struct mem_cgroup *memcg);
635 
636 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
637 					  struct mem_cgroup *memcg)
638 {
639 	/*
640 	 * The root memcg doesn't account charges, and doesn't support
641 	 * protection. The target memcg's protection is ignored, see
642 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
643 	 */
644 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
645 		memcg == target;
646 }
647 
648 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
649 					struct mem_cgroup *memcg)
650 {
651 	if (mem_cgroup_unprotected(target, memcg))
652 		return false;
653 
654 	return READ_ONCE(memcg->memory.elow) >=
655 		page_counter_read(&memcg->memory);
656 }
657 
658 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
659 					struct mem_cgroup *memcg)
660 {
661 	if (mem_cgroup_unprotected(target, memcg))
662 		return false;
663 
664 	return READ_ONCE(memcg->memory.emin) >=
665 		page_counter_read(&memcg->memory);
666 }
667 
668 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
669 
670 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
671 
672 /**
673  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
674  * @folio: Folio to charge.
675  * @mm: mm context of the allocating task.
676  * @gfp: Reclaim mode.
677  *
678  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
679  * pages according to @gfp if necessary.  If @mm is NULL, try to
680  * charge to the active memcg.
681  *
682  * Do not use this for folios allocated for swapin.
683  *
684  * Return: 0 on success. Otherwise, an error code is returned.
685  */
686 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
687 				    gfp_t gfp)
688 {
689 	if (mem_cgroup_disabled())
690 		return 0;
691 	return __mem_cgroup_charge(folio, mm, gfp);
692 }
693 
694 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
695 		long nr_pages);
696 
697 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
698 				  gfp_t gfp, swp_entry_t entry);
699 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
700 
701 void __mem_cgroup_uncharge(struct folio *folio);
702 
703 /**
704  * mem_cgroup_uncharge - Uncharge a folio.
705  * @folio: Folio to uncharge.
706  *
707  * Uncharge a folio previously charged with mem_cgroup_charge().
708  */
709 static inline void mem_cgroup_uncharge(struct folio *folio)
710 {
711 	if (mem_cgroup_disabled())
712 		return;
713 	__mem_cgroup_uncharge(folio);
714 }
715 
716 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
717 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
718 {
719 	if (mem_cgroup_disabled())
720 		return;
721 	__mem_cgroup_uncharge_folios(folios);
722 }
723 
724 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
725 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
726 void mem_cgroup_migrate(struct folio *old, struct folio *new);
727 
728 /**
729  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
730  * @memcg: memcg of the wanted lruvec
731  * @pgdat: pglist_data
732  *
733  * Returns the lru list vector holding pages for a given @memcg &
734  * @pgdat combination. This can be the node lruvec, if the memory
735  * controller is disabled.
736  */
737 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
738 					       struct pglist_data *pgdat)
739 {
740 	struct mem_cgroup_per_node *mz;
741 	struct lruvec *lruvec;
742 
743 	if (mem_cgroup_disabled()) {
744 		lruvec = &pgdat->__lruvec;
745 		goto out;
746 	}
747 
748 	if (!memcg)
749 		memcg = root_mem_cgroup;
750 
751 	mz = memcg->nodeinfo[pgdat->node_id];
752 	lruvec = &mz->lruvec;
753 out:
754 	/*
755 	 * Since a node can be onlined after the mem_cgroup was created,
756 	 * we have to be prepared to initialize lruvec->pgdat here;
757 	 * and if offlined then reonlined, we need to reinitialize it.
758 	 */
759 	if (unlikely(lruvec->pgdat != pgdat))
760 		lruvec->pgdat = pgdat;
761 	return lruvec;
762 }
763 
764 /**
765  * folio_lruvec - return lruvec for isolating/putting an LRU folio
766  * @folio: Pointer to the folio.
767  *
768  * This function relies on folio->mem_cgroup being stable.
769  */
770 static inline struct lruvec *folio_lruvec(struct folio *folio)
771 {
772 	struct mem_cgroup *memcg = folio_memcg(folio);
773 
774 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
775 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
776 }
777 
778 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
779 
780 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
781 
782 struct mem_cgroup *get_mem_cgroup_from_current(void);
783 
784 struct lruvec *folio_lruvec_lock(struct folio *folio);
785 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
786 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
787 						unsigned long *flags);
788 
789 #ifdef CONFIG_DEBUG_VM
790 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
791 #else
792 static inline
793 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
794 {
795 }
796 #endif
797 
798 static inline
799 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
800 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
801 }
802 
803 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
804 {
805 	return percpu_ref_tryget(&objcg->refcnt);
806 }
807 
808 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
809 {
810 	percpu_ref_get(&objcg->refcnt);
811 }
812 
813 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
814 				       unsigned long nr)
815 {
816 	percpu_ref_get_many(&objcg->refcnt, nr);
817 }
818 
819 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
820 {
821 	if (objcg)
822 		percpu_ref_put(&objcg->refcnt);
823 }
824 
825 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
826 {
827 	return !memcg || css_tryget(&memcg->css);
828 }
829 
830 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
831 {
832 	return !memcg || css_tryget_online(&memcg->css);
833 }
834 
835 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
836 {
837 	if (memcg)
838 		css_put(&memcg->css);
839 }
840 
841 #define mem_cgroup_from_counter(counter, member)	\
842 	container_of(counter, struct mem_cgroup, member)
843 
844 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
845 				   struct mem_cgroup *,
846 				   struct mem_cgroup_reclaim_cookie *);
847 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
848 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
849 			   int (*)(struct task_struct *, void *), void *arg);
850 
851 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
852 {
853 	if (mem_cgroup_disabled())
854 		return 0;
855 
856 	return memcg->id.id;
857 }
858 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
859 
860 #ifdef CONFIG_SHRINKER_DEBUG
861 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
862 {
863 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
864 }
865 
866 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
867 #endif
868 
869 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
870 {
871 	return mem_cgroup_from_css(seq_css(m));
872 }
873 
874 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
875 {
876 	struct mem_cgroup_per_node *mz;
877 
878 	if (mem_cgroup_disabled())
879 		return NULL;
880 
881 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
882 	return mz->memcg;
883 }
884 
885 /**
886  * parent_mem_cgroup - find the accounting parent of a memcg
887  * @memcg: memcg whose parent to find
888  *
889  * Returns the parent memcg, or NULL if this is the root.
890  */
891 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
892 {
893 	return mem_cgroup_from_css(memcg->css.parent);
894 }
895 
896 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
897 			      struct mem_cgroup *root)
898 {
899 	if (root == memcg)
900 		return true;
901 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
902 }
903 
904 static inline bool mm_match_cgroup(struct mm_struct *mm,
905 				   struct mem_cgroup *memcg)
906 {
907 	struct mem_cgroup *task_memcg;
908 	bool match = false;
909 
910 	rcu_read_lock();
911 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
912 	if (task_memcg)
913 		match = mem_cgroup_is_descendant(task_memcg, memcg);
914 	rcu_read_unlock();
915 	return match;
916 }
917 
918 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
919 ino_t page_cgroup_ino(struct page *page);
920 
921 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
922 {
923 	if (mem_cgroup_disabled())
924 		return true;
925 	return !!(memcg->css.flags & CSS_ONLINE);
926 }
927 
928 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
929 		int zid, int nr_pages);
930 
931 static inline
932 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
933 		enum lru_list lru, int zone_idx)
934 {
935 	struct mem_cgroup_per_node *mz;
936 
937 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
938 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
939 }
940 
941 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
942 
943 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
944 
945 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
946 
947 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
948 				struct task_struct *p);
949 
950 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
951 
952 static inline void mem_cgroup_enter_user_fault(void)
953 {
954 	WARN_ON(current->in_user_fault);
955 	current->in_user_fault = 1;
956 }
957 
958 static inline void mem_cgroup_exit_user_fault(void)
959 {
960 	WARN_ON(!current->in_user_fault);
961 	current->in_user_fault = 0;
962 }
963 
964 static inline bool task_in_memcg_oom(struct task_struct *p)
965 {
966 	return p->memcg_in_oom;
967 }
968 
969 bool mem_cgroup_oom_synchronize(bool wait);
970 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
971 					    struct mem_cgroup *oom_domain);
972 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
973 
974 void folio_memcg_lock(struct folio *folio);
975 void folio_memcg_unlock(struct folio *folio);
976 
977 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
978 
979 /* try to stablize folio_memcg() for all the pages in a memcg */
980 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
981 {
982 	rcu_read_lock();
983 
984 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
985 		return true;
986 
987 	rcu_read_unlock();
988 	return false;
989 }
990 
991 static inline void mem_cgroup_unlock_pages(void)
992 {
993 	rcu_read_unlock();
994 }
995 
996 /* idx can be of type enum memcg_stat_item or node_stat_item */
997 static inline void mod_memcg_state(struct mem_cgroup *memcg,
998 				   int idx, int val)
999 {
1000 	unsigned long flags;
1001 
1002 	local_irq_save(flags);
1003 	__mod_memcg_state(memcg, idx, val);
1004 	local_irq_restore(flags);
1005 }
1006 
1007 static inline void mod_memcg_page_state(struct page *page,
1008 					int idx, int val)
1009 {
1010 	struct mem_cgroup *memcg;
1011 
1012 	if (mem_cgroup_disabled())
1013 		return;
1014 
1015 	rcu_read_lock();
1016 	memcg = page_memcg(page);
1017 	if (memcg)
1018 		mod_memcg_state(memcg, idx, val);
1019 	rcu_read_unlock();
1020 }
1021 
1022 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1023 
1024 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1025 					      enum node_stat_item idx)
1026 {
1027 	struct mem_cgroup_per_node *pn;
1028 	long x;
1029 
1030 	if (mem_cgroup_disabled())
1031 		return node_page_state(lruvec_pgdat(lruvec), idx);
1032 
1033 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1034 	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1035 #ifdef CONFIG_SMP
1036 	if (x < 0)
1037 		x = 0;
1038 #endif
1039 	return x;
1040 }
1041 
1042 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1043 						    enum node_stat_item idx)
1044 {
1045 	struct mem_cgroup_per_node *pn;
1046 	long x = 0;
1047 
1048 	if (mem_cgroup_disabled())
1049 		return node_page_state(lruvec_pgdat(lruvec), idx);
1050 
1051 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1052 	x = READ_ONCE(pn->lruvec_stats.state_local[idx]);
1053 #ifdef CONFIG_SMP
1054 	if (x < 0)
1055 		x = 0;
1056 #endif
1057 	return x;
1058 }
1059 
1060 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
1061 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
1062 
1063 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1064 			      int val);
1065 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1066 
1067 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1068 					 int val)
1069 {
1070 	unsigned long flags;
1071 
1072 	local_irq_save(flags);
1073 	__mod_lruvec_kmem_state(p, idx, val);
1074 	local_irq_restore(flags);
1075 }
1076 
1077 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1078 					  enum node_stat_item idx, int val)
1079 {
1080 	unsigned long flags;
1081 
1082 	local_irq_save(flags);
1083 	__mod_memcg_lruvec_state(lruvec, idx, val);
1084 	local_irq_restore(flags);
1085 }
1086 
1087 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1088 			  unsigned long count);
1089 
1090 static inline void count_memcg_events(struct mem_cgroup *memcg,
1091 				      enum vm_event_item idx,
1092 				      unsigned long count)
1093 {
1094 	unsigned long flags;
1095 
1096 	local_irq_save(flags);
1097 	__count_memcg_events(memcg, idx, count);
1098 	local_irq_restore(flags);
1099 }
1100 
1101 static inline void count_memcg_folio_events(struct folio *folio,
1102 		enum vm_event_item idx, unsigned long nr)
1103 {
1104 	struct mem_cgroup *memcg = folio_memcg(folio);
1105 
1106 	if (memcg)
1107 		count_memcg_events(memcg, idx, nr);
1108 }
1109 
1110 static inline void count_memcg_event_mm(struct mm_struct *mm,
1111 					enum vm_event_item idx)
1112 {
1113 	struct mem_cgroup *memcg;
1114 
1115 	if (mem_cgroup_disabled())
1116 		return;
1117 
1118 	rcu_read_lock();
1119 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1120 	if (likely(memcg))
1121 		count_memcg_events(memcg, idx, 1);
1122 	rcu_read_unlock();
1123 }
1124 
1125 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1126 				      enum memcg_memory_event event)
1127 {
1128 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1129 			  event == MEMCG_SWAP_FAIL;
1130 
1131 	atomic_long_inc(&memcg->memory_events_local[event]);
1132 	if (!swap_event)
1133 		cgroup_file_notify(&memcg->events_local_file);
1134 
1135 	do {
1136 		atomic_long_inc(&memcg->memory_events[event]);
1137 		if (swap_event)
1138 			cgroup_file_notify(&memcg->swap_events_file);
1139 		else
1140 			cgroup_file_notify(&memcg->events_file);
1141 
1142 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1143 			break;
1144 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1145 			break;
1146 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1147 		 !mem_cgroup_is_root(memcg));
1148 }
1149 
1150 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1151 					 enum memcg_memory_event event)
1152 {
1153 	struct mem_cgroup *memcg;
1154 
1155 	if (mem_cgroup_disabled())
1156 		return;
1157 
1158 	rcu_read_lock();
1159 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1160 	if (likely(memcg))
1161 		memcg_memory_event(memcg, event);
1162 	rcu_read_unlock();
1163 }
1164 
1165 void split_page_memcg(struct page *head, int old_order, int new_order);
1166 
1167 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1168 						gfp_t gfp_mask,
1169 						unsigned long *total_scanned);
1170 
1171 #else /* CONFIG_MEMCG */
1172 
1173 #define MEM_CGROUP_ID_SHIFT	0
1174 
1175 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1176 {
1177 	return NULL;
1178 }
1179 
1180 static inline struct mem_cgroup *page_memcg(struct page *page)
1181 {
1182 	return NULL;
1183 }
1184 
1185 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1186 {
1187 	WARN_ON_ONCE(!rcu_read_lock_held());
1188 	return NULL;
1189 }
1190 
1191 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1192 {
1193 	return NULL;
1194 }
1195 
1196 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1197 {
1198 	return NULL;
1199 }
1200 
1201 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1202 {
1203 	return NULL;
1204 }
1205 
1206 static inline bool folio_memcg_kmem(struct folio *folio)
1207 {
1208 	return false;
1209 }
1210 
1211 static inline bool PageMemcgKmem(struct page *page)
1212 {
1213 	return false;
1214 }
1215 
1216 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1217 {
1218 	return true;
1219 }
1220 
1221 static inline bool mem_cgroup_disabled(void)
1222 {
1223 	return true;
1224 }
1225 
1226 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1227 				      enum memcg_memory_event event)
1228 {
1229 }
1230 
1231 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1232 					 enum memcg_memory_event event)
1233 {
1234 }
1235 
1236 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1237 					 struct mem_cgroup *memcg,
1238 					 unsigned long *min,
1239 					 unsigned long *low)
1240 {
1241 	*min = *low = 0;
1242 }
1243 
1244 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1245 						   struct mem_cgroup *memcg)
1246 {
1247 }
1248 
1249 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1250 					  struct mem_cgroup *memcg)
1251 {
1252 	return true;
1253 }
1254 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1255 					struct mem_cgroup *memcg)
1256 {
1257 	return false;
1258 }
1259 
1260 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1261 					struct mem_cgroup *memcg)
1262 {
1263 	return false;
1264 }
1265 
1266 static inline void mem_cgroup_commit_charge(struct folio *folio,
1267 		struct mem_cgroup *memcg)
1268 {
1269 }
1270 
1271 static inline int mem_cgroup_charge(struct folio *folio,
1272 		struct mm_struct *mm, gfp_t gfp)
1273 {
1274 	return 0;
1275 }
1276 
1277 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1278 		gfp_t gfp, long nr_pages)
1279 {
1280 	return 0;
1281 }
1282 
1283 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1284 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1285 {
1286 	return 0;
1287 }
1288 
1289 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1290 {
1291 }
1292 
1293 static inline void mem_cgroup_uncharge(struct folio *folio)
1294 {
1295 }
1296 
1297 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1298 {
1299 }
1300 
1301 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1302 		unsigned int nr_pages)
1303 {
1304 }
1305 
1306 static inline void mem_cgroup_replace_folio(struct folio *old,
1307 		struct folio *new)
1308 {
1309 }
1310 
1311 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1312 {
1313 }
1314 
1315 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1316 					       struct pglist_data *pgdat)
1317 {
1318 	return &pgdat->__lruvec;
1319 }
1320 
1321 static inline struct lruvec *folio_lruvec(struct folio *folio)
1322 {
1323 	struct pglist_data *pgdat = folio_pgdat(folio);
1324 	return &pgdat->__lruvec;
1325 }
1326 
1327 static inline
1328 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1329 {
1330 }
1331 
1332 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1333 {
1334 	return NULL;
1335 }
1336 
1337 static inline bool mm_match_cgroup(struct mm_struct *mm,
1338 		struct mem_cgroup *memcg)
1339 {
1340 	return true;
1341 }
1342 
1343 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1344 {
1345 	return NULL;
1346 }
1347 
1348 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1349 {
1350 	return NULL;
1351 }
1352 
1353 static inline
1354 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1355 {
1356 	return NULL;
1357 }
1358 
1359 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1360 {
1361 }
1362 
1363 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1364 {
1365 	return true;
1366 }
1367 
1368 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1369 {
1370 	return true;
1371 }
1372 
1373 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1374 {
1375 }
1376 
1377 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1378 {
1379 	struct pglist_data *pgdat = folio_pgdat(folio);
1380 
1381 	spin_lock(&pgdat->__lruvec.lru_lock);
1382 	return &pgdat->__lruvec;
1383 }
1384 
1385 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1386 {
1387 	struct pglist_data *pgdat = folio_pgdat(folio);
1388 
1389 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1390 	return &pgdat->__lruvec;
1391 }
1392 
1393 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1394 		unsigned long *flagsp)
1395 {
1396 	struct pglist_data *pgdat = folio_pgdat(folio);
1397 
1398 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1399 	return &pgdat->__lruvec;
1400 }
1401 
1402 static inline struct mem_cgroup *
1403 mem_cgroup_iter(struct mem_cgroup *root,
1404 		struct mem_cgroup *prev,
1405 		struct mem_cgroup_reclaim_cookie *reclaim)
1406 {
1407 	return NULL;
1408 }
1409 
1410 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1411 					 struct mem_cgroup *prev)
1412 {
1413 }
1414 
1415 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1416 		int (*fn)(struct task_struct *, void *), void *arg)
1417 {
1418 }
1419 
1420 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1421 {
1422 	return 0;
1423 }
1424 
1425 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1426 {
1427 	WARN_ON_ONCE(id);
1428 	/* XXX: This should always return root_mem_cgroup */
1429 	return NULL;
1430 }
1431 
1432 #ifdef CONFIG_SHRINKER_DEBUG
1433 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1434 {
1435 	return 0;
1436 }
1437 
1438 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1439 {
1440 	return NULL;
1441 }
1442 #endif
1443 
1444 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1445 {
1446 	return NULL;
1447 }
1448 
1449 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1450 {
1451 	return NULL;
1452 }
1453 
1454 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1455 {
1456 	return true;
1457 }
1458 
1459 static inline
1460 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1461 		enum lru_list lru, int zone_idx)
1462 {
1463 	return 0;
1464 }
1465 
1466 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1467 {
1468 	return 0;
1469 }
1470 
1471 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1472 {
1473 	return 0;
1474 }
1475 
1476 static inline void
1477 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1478 {
1479 }
1480 
1481 static inline void
1482 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1483 {
1484 }
1485 
1486 static inline void folio_memcg_lock(struct folio *folio)
1487 {
1488 }
1489 
1490 static inline void folio_memcg_unlock(struct folio *folio)
1491 {
1492 }
1493 
1494 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1495 {
1496 	/* to match folio_memcg_rcu() */
1497 	rcu_read_lock();
1498 	return true;
1499 }
1500 
1501 static inline void mem_cgroup_unlock_pages(void)
1502 {
1503 	rcu_read_unlock();
1504 }
1505 
1506 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1507 {
1508 }
1509 
1510 static inline void mem_cgroup_enter_user_fault(void)
1511 {
1512 }
1513 
1514 static inline void mem_cgroup_exit_user_fault(void)
1515 {
1516 }
1517 
1518 static inline bool task_in_memcg_oom(struct task_struct *p)
1519 {
1520 	return false;
1521 }
1522 
1523 static inline bool mem_cgroup_oom_synchronize(bool wait)
1524 {
1525 	return false;
1526 }
1527 
1528 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1529 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1530 {
1531 	return NULL;
1532 }
1533 
1534 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1535 {
1536 }
1537 
1538 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1539 				     int idx,
1540 				     int nr)
1541 {
1542 }
1543 
1544 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1545 				   int idx,
1546 				   int nr)
1547 {
1548 }
1549 
1550 static inline void mod_memcg_page_state(struct page *page,
1551 					int idx, int val)
1552 {
1553 }
1554 
1555 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1556 {
1557 	return 0;
1558 }
1559 
1560 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1561 					      enum node_stat_item idx)
1562 {
1563 	return node_page_state(lruvec_pgdat(lruvec), idx);
1564 }
1565 
1566 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1567 						    enum node_stat_item idx)
1568 {
1569 	return node_page_state(lruvec_pgdat(lruvec), idx);
1570 }
1571 
1572 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1573 {
1574 }
1575 
1576 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1577 {
1578 }
1579 
1580 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1581 					    enum node_stat_item idx, int val)
1582 {
1583 }
1584 
1585 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1586 					   int val)
1587 {
1588 	struct page *page = virt_to_head_page(p);
1589 
1590 	__mod_node_page_state(page_pgdat(page), idx, val);
1591 }
1592 
1593 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1594 					 int val)
1595 {
1596 	struct page *page = virt_to_head_page(p);
1597 
1598 	mod_node_page_state(page_pgdat(page), idx, val);
1599 }
1600 
1601 static inline void count_memcg_events(struct mem_cgroup *memcg,
1602 				      enum vm_event_item idx,
1603 				      unsigned long count)
1604 {
1605 }
1606 
1607 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1608 					enum vm_event_item idx,
1609 					unsigned long count)
1610 {
1611 }
1612 
1613 static inline void count_memcg_folio_events(struct folio *folio,
1614 		enum vm_event_item idx, unsigned long nr)
1615 {
1616 }
1617 
1618 static inline
1619 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1620 {
1621 }
1622 
1623 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1624 {
1625 }
1626 
1627 static inline
1628 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1629 					    gfp_t gfp_mask,
1630 					    unsigned long *total_scanned)
1631 {
1632 	return 0;
1633 }
1634 #endif /* CONFIG_MEMCG */
1635 
1636 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1637 {
1638 	__mod_lruvec_kmem_state(p, idx, 1);
1639 }
1640 
1641 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1642 {
1643 	__mod_lruvec_kmem_state(p, idx, -1);
1644 }
1645 
1646 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1647 {
1648 	struct mem_cgroup *memcg;
1649 
1650 	memcg = lruvec_memcg(lruvec);
1651 	if (!memcg)
1652 		return NULL;
1653 	memcg = parent_mem_cgroup(memcg);
1654 	if (!memcg)
1655 		return NULL;
1656 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1657 }
1658 
1659 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1660 {
1661 	spin_unlock(&lruvec->lru_lock);
1662 }
1663 
1664 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1665 {
1666 	spin_unlock_irq(&lruvec->lru_lock);
1667 }
1668 
1669 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1670 		unsigned long flags)
1671 {
1672 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1673 }
1674 
1675 /* Test requires a stable page->memcg binding, see page_memcg() */
1676 static inline bool folio_matches_lruvec(struct folio *folio,
1677 		struct lruvec *lruvec)
1678 {
1679 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1680 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1681 }
1682 
1683 /* Don't lock again iff page's lruvec locked */
1684 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1685 		struct lruvec *locked_lruvec)
1686 {
1687 	if (locked_lruvec) {
1688 		if (folio_matches_lruvec(folio, locked_lruvec))
1689 			return locked_lruvec;
1690 
1691 		unlock_page_lruvec_irq(locked_lruvec);
1692 	}
1693 
1694 	return folio_lruvec_lock_irq(folio);
1695 }
1696 
1697 /* Don't lock again iff folio's lruvec locked */
1698 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1699 		struct lruvec **lruvecp, unsigned long *flags)
1700 {
1701 	if (*lruvecp) {
1702 		if (folio_matches_lruvec(folio, *lruvecp))
1703 			return;
1704 
1705 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1706 	}
1707 
1708 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1709 }
1710 
1711 #ifdef CONFIG_CGROUP_WRITEBACK
1712 
1713 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1714 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1715 			 unsigned long *pheadroom, unsigned long *pdirty,
1716 			 unsigned long *pwriteback);
1717 
1718 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1719 					     struct bdi_writeback *wb);
1720 
1721 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1722 						  struct bdi_writeback *wb)
1723 {
1724 	struct mem_cgroup *memcg;
1725 
1726 	if (mem_cgroup_disabled())
1727 		return;
1728 
1729 	memcg = folio_memcg(folio);
1730 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1731 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1732 }
1733 
1734 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1735 
1736 #else	/* CONFIG_CGROUP_WRITEBACK */
1737 
1738 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1739 {
1740 	return NULL;
1741 }
1742 
1743 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1744 				       unsigned long *pfilepages,
1745 				       unsigned long *pheadroom,
1746 				       unsigned long *pdirty,
1747 				       unsigned long *pwriteback)
1748 {
1749 }
1750 
1751 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1752 						  struct bdi_writeback *wb)
1753 {
1754 }
1755 
1756 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1757 {
1758 }
1759 
1760 #endif	/* CONFIG_CGROUP_WRITEBACK */
1761 
1762 struct sock;
1763 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1764 			     gfp_t gfp_mask);
1765 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1766 #ifdef CONFIG_MEMCG
1767 extern struct static_key_false memcg_sockets_enabled_key;
1768 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1769 void mem_cgroup_sk_alloc(struct sock *sk);
1770 void mem_cgroup_sk_free(struct sock *sk);
1771 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1772 {
1773 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1774 		return !!memcg->tcpmem_pressure;
1775 	do {
1776 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1777 			return true;
1778 	} while ((memcg = parent_mem_cgroup(memcg)));
1779 	return false;
1780 }
1781 
1782 int alloc_shrinker_info(struct mem_cgroup *memcg);
1783 void free_shrinker_info(struct mem_cgroup *memcg);
1784 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1785 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1786 #else
1787 #define mem_cgroup_sockets_enabled 0
1788 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1789 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1790 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1791 {
1792 	return false;
1793 }
1794 
1795 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1796 				    int nid, int shrinker_id)
1797 {
1798 }
1799 #endif
1800 
1801 #ifdef CONFIG_MEMCG_KMEM
1802 bool mem_cgroup_kmem_disabled(void);
1803 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1804 void __memcg_kmem_uncharge_page(struct page *page, int order);
1805 
1806 /*
1807  * The returned objcg pointer is safe to use without additional
1808  * protection within a scope. The scope is defined either by
1809  * the current task (similar to the "current" global variable)
1810  * or by set_active_memcg() pair.
1811  * Please, use obj_cgroup_get() to get a reference if the pointer
1812  * needs to be used outside of the local scope.
1813  */
1814 struct obj_cgroup *current_obj_cgroup(void);
1815 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1816 
1817 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1818 {
1819 	struct obj_cgroup *objcg = current_obj_cgroup();
1820 
1821 	if (objcg)
1822 		obj_cgroup_get(objcg);
1823 
1824 	return objcg;
1825 }
1826 
1827 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1828 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1829 
1830 extern struct static_key_false memcg_bpf_enabled_key;
1831 static inline bool memcg_bpf_enabled(void)
1832 {
1833 	return static_branch_likely(&memcg_bpf_enabled_key);
1834 }
1835 
1836 extern struct static_key_false memcg_kmem_online_key;
1837 
1838 static inline bool memcg_kmem_online(void)
1839 {
1840 	return static_branch_likely(&memcg_kmem_online_key);
1841 }
1842 
1843 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1844 					 int order)
1845 {
1846 	if (memcg_kmem_online())
1847 		return __memcg_kmem_charge_page(page, gfp, order);
1848 	return 0;
1849 }
1850 
1851 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1852 {
1853 	if (memcg_kmem_online())
1854 		__memcg_kmem_uncharge_page(page, order);
1855 }
1856 
1857 /*
1858  * A helper for accessing memcg's kmem_id, used for getting
1859  * corresponding LRU lists.
1860  */
1861 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1862 {
1863 	return memcg ? memcg->kmemcg_id : -1;
1864 }
1865 
1866 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1867 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1868 
1869 static inline void count_objcg_event(struct obj_cgroup *objcg,
1870 				     enum vm_event_item idx)
1871 {
1872 	struct mem_cgroup *memcg;
1873 
1874 	if (!memcg_kmem_online())
1875 		return;
1876 
1877 	rcu_read_lock();
1878 	memcg = obj_cgroup_memcg(objcg);
1879 	count_memcg_events(memcg, idx, 1);
1880 	rcu_read_unlock();
1881 }
1882 
1883 #else
1884 static inline bool mem_cgroup_kmem_disabled(void)
1885 {
1886 	return true;
1887 }
1888 
1889 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1890 					 int order)
1891 {
1892 	return 0;
1893 }
1894 
1895 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1896 {
1897 }
1898 
1899 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1900 					   int order)
1901 {
1902 	return 0;
1903 }
1904 
1905 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1906 {
1907 }
1908 
1909 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1910 {
1911 	return NULL;
1912 }
1913 
1914 static inline bool memcg_bpf_enabled(void)
1915 {
1916 	return false;
1917 }
1918 
1919 static inline bool memcg_kmem_online(void)
1920 {
1921 	return false;
1922 }
1923 
1924 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1925 {
1926 	return -1;
1927 }
1928 
1929 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1930 {
1931 	return NULL;
1932 }
1933 
1934 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1935 {
1936 	return NULL;
1937 }
1938 
1939 static inline void count_objcg_event(struct obj_cgroup *objcg,
1940 				     enum vm_event_item idx)
1941 {
1942 }
1943 
1944 #endif /* CONFIG_MEMCG_KMEM */
1945 
1946 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1947 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1948 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1949 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1950 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1951 #else
1952 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1953 {
1954 	return true;
1955 }
1956 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1957 					   size_t size)
1958 {
1959 }
1960 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1961 					     size_t size)
1962 {
1963 }
1964 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1965 {
1966 	/* if zswap is disabled, do not block pages going to the swapping device */
1967 	return true;
1968 }
1969 #endif
1970 
1971 #endif /* _LINUX_MEMCONTROL_H */
1972