1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_MAPLE_TREE_H 3 #define _LINUX_MAPLE_TREE_H 4 /* 5 * Maple Tree - An RCU-safe adaptive tree for storing ranges 6 * Copyright (c) 2018-2022 Oracle 7 * Authors: Liam R. Howlett <[email protected]> 8 * Matthew Wilcox <[email protected]> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/rcupdate.h> 13 #include <linux/spinlock.h> 14 /* #define CONFIG_MAPLE_RCU_DISABLED */ 15 16 /* 17 * Allocated nodes are mutable until they have been inserted into the tree, 18 * at which time they cannot change their type until they have been removed 19 * from the tree and an RCU grace period has passed. 20 * 21 * Removed nodes have their ->parent set to point to themselves. RCU readers 22 * check ->parent before relying on the value that they loaded from the 23 * slots array. This lets us reuse the slots array for the RCU head. 24 * 25 * Nodes in the tree point to their parent unless bit 0 is set. 26 */ 27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) 28 /* 64bit sizes */ 29 #define MAPLE_NODE_SLOTS 31 /* 256 bytes including ->parent */ 30 #define MAPLE_RANGE64_SLOTS 16 /* 256 bytes */ 31 #define MAPLE_ARANGE64_SLOTS 10 /* 240 bytes */ 32 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 1) 33 #else 34 /* 32bit sizes */ 35 #define MAPLE_NODE_SLOTS 63 /* 256 bytes including ->parent */ 36 #define MAPLE_RANGE64_SLOTS 32 /* 256 bytes */ 37 #define MAPLE_ARANGE64_SLOTS 21 /* 240 bytes */ 38 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 2) 39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */ 40 41 #define MAPLE_NODE_MASK 255UL 42 43 /* 44 * The node->parent of the root node has bit 0 set and the rest of the pointer 45 * is a pointer to the tree itself. No more bits are available in this pointer 46 * (on m68k, the data structure may only be 2-byte aligned). 47 * 48 * Internal non-root nodes can only have maple_range_* nodes as parents. The 49 * parent pointer is 256B aligned like all other tree nodes. When storing a 32 50 * or 64 bit values, the offset can fit into 4 bits. The 16 bit values need an 51 * extra bit to store the offset. This extra bit comes from a reuse of the last 52 * bit in the node type. This is possible by using bit 1 to indicate if bit 2 53 * is part of the type or the slot. 54 * 55 * Once the type is decided, the decision of an allocation range type or a range 56 * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE 57 * flag. 58 * 59 * Node types: 60 * 0x??1 = Root 61 * 0x?00 = 16 bit nodes 62 * 0x010 = 32 bit nodes 63 * 0x110 = 64 bit nodes 64 * 65 * Slot size and location in the parent pointer: 66 * type : slot location 67 * 0x??1 : Root 68 * 0x?00 : 16 bit values, type in 0-1, slot in 2-6 69 * 0x010 : 32 bit values, type in 0-2, slot in 3-6 70 * 0x110 : 64 bit values, type in 0-2, slot in 3-6 71 */ 72 73 /* 74 * This metadata is used to optimize the gap updating code and in reverse 75 * searching for gaps or any other code that needs to find the end of the data. 76 */ 77 struct maple_metadata { 78 unsigned char end; 79 unsigned char gap; 80 }; 81 82 /* 83 * Leaf nodes do not store pointers to nodes, they store user data. Users may 84 * store almost any bit pattern. As noted above, the optimisation of storing an 85 * entry at 0 in the root pointer cannot be done for data which have the bottom 86 * two bits set to '10'. We also reserve values with the bottom two bits set to 87 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use. Some APIs 88 * return errnos as a negative errno shifted right by two bits and the bottom 89 * two bits set to '10', and while choosing to store these values in the array 90 * is not an error, it may lead to confusion if you're testing for an error with 91 * mas_is_err(). 92 * 93 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits 94 * 3-6), bit 2 is reserved. That leaves bits 0-1 unused for now. 95 * 96 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 97 * indicate that the tree is specifying ranges, Pivots may appear in the 98 * subtree with an entry attached to the value whereas keys are unique to a 99 * specific position of a B-tree. Pivot values are inclusive of the slot with 100 * the same index. 101 */ 102 103 struct maple_range_64 { 104 struct maple_pnode *parent; 105 unsigned long pivot[MAPLE_RANGE64_SLOTS - 1]; 106 union { 107 void __rcu *slot[MAPLE_RANGE64_SLOTS]; 108 struct { 109 void __rcu *pad[MAPLE_RANGE64_SLOTS - 1]; 110 struct maple_metadata meta; 111 }; 112 }; 113 }; 114 115 /* 116 * At tree creation time, the user can specify that they're willing to trade off 117 * storing fewer entries in a tree in return for storing more information in 118 * each node. 119 * 120 * The maple tree supports recording the largest range of NULL entries available 121 * in this node, also called gaps. This optimises the tree for allocating a 122 * range. 123 */ 124 struct maple_arange_64 { 125 struct maple_pnode *parent; 126 unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1]; 127 void __rcu *slot[MAPLE_ARANGE64_SLOTS]; 128 unsigned long gap[MAPLE_ARANGE64_SLOTS]; 129 struct maple_metadata meta; 130 }; 131 132 struct maple_alloc { 133 unsigned long total; 134 unsigned char node_count; 135 unsigned int request_count; 136 struct maple_alloc *slot[MAPLE_ALLOC_SLOTS]; 137 }; 138 139 struct maple_topiary { 140 struct maple_pnode *parent; 141 struct maple_enode *next; /* Overlaps the pivot */ 142 }; 143 144 enum maple_type { 145 maple_dense, 146 maple_leaf_64, 147 maple_range_64, 148 maple_arange_64, 149 }; 150 151 152 /** 153 * DOC: Maple tree flags 154 * 155 * * MT_FLAGS_ALLOC_RANGE - Track gaps in this tree 156 * * MT_FLAGS_USE_RCU - Operate in RCU mode 157 * * MT_FLAGS_HEIGHT_OFFSET - The position of the tree height in the flags 158 * * MT_FLAGS_HEIGHT_MASK - The mask for the maple tree height value 159 * * MT_FLAGS_LOCK_MASK - How the mt_lock is used 160 * * MT_FLAGS_LOCK_IRQ - Acquired irq-safe 161 * * MT_FLAGS_LOCK_BH - Acquired bh-safe 162 * * MT_FLAGS_LOCK_EXTERN - mt_lock is not used 163 * 164 * MAPLE_HEIGHT_MAX The largest height that can be stored 165 */ 166 #define MT_FLAGS_ALLOC_RANGE 0x01 167 #define MT_FLAGS_USE_RCU 0x02 168 #define MT_FLAGS_HEIGHT_OFFSET 0x02 169 #define MT_FLAGS_HEIGHT_MASK 0x7C 170 #define MT_FLAGS_LOCK_MASK 0x300 171 #define MT_FLAGS_LOCK_IRQ 0x100 172 #define MT_FLAGS_LOCK_BH 0x200 173 #define MT_FLAGS_LOCK_EXTERN 0x300 174 175 #define MAPLE_HEIGHT_MAX 31 176 177 178 #define MAPLE_NODE_TYPE_MASK 0x0F 179 #define MAPLE_NODE_TYPE_SHIFT 0x03 180 181 #define MAPLE_RESERVED_RANGE 4096 182 183 #ifdef CONFIG_LOCKDEP 184 typedef struct lockdep_map *lockdep_map_p; 185 #define mt_lock_is_held(mt) \ 186 (!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock)) 187 188 #define mt_write_lock_is_held(mt) \ 189 (!(mt)->ma_external_lock || \ 190 lock_is_held_type((mt)->ma_external_lock, 0)) 191 192 #define mt_set_external_lock(mt, lock) \ 193 (mt)->ma_external_lock = &(lock)->dep_map 194 195 #define mt_on_stack(mt) (mt).ma_external_lock = NULL 196 #else 197 typedef struct { /* nothing */ } lockdep_map_p; 198 #define mt_lock_is_held(mt) 1 199 #define mt_write_lock_is_held(mt) 1 200 #define mt_set_external_lock(mt, lock) do { } while (0) 201 #define mt_on_stack(mt) do { } while (0) 202 #endif 203 204 /* 205 * If the tree contains a single entry at index 0, it is usually stored in 206 * tree->ma_root. To optimise for the page cache, an entry which ends in '00', 207 * '01' or '11' is stored in the root, but an entry which ends in '10' will be 208 * stored in a node. Bits 3-6 are used to store enum maple_type. 209 * 210 * The flags are used both to store some immutable information about this tree 211 * (set at tree creation time) and dynamic information set under the spinlock. 212 * 213 * Another use of flags are to indicate global states of the tree. This is the 214 * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in 215 * RCU mode. This mode was added to allow the tree to reuse nodes instead of 216 * re-allocating and RCU freeing nodes when there is a single user. 217 */ 218 struct maple_tree { 219 union { 220 spinlock_t ma_lock; 221 lockdep_map_p ma_external_lock; 222 }; 223 unsigned int ma_flags; 224 void __rcu *ma_root; 225 }; 226 227 /** 228 * MTREE_INIT() - Initialize a maple tree 229 * @name: The maple tree name 230 * @__flags: The maple tree flags 231 * 232 */ 233 #define MTREE_INIT(name, __flags) { \ 234 .ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock), \ 235 .ma_flags = __flags, \ 236 .ma_root = NULL, \ 237 } 238 239 /** 240 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock. 241 * @name: The tree name 242 * @__flags: The maple tree flags 243 * @__lock: The external lock 244 */ 245 #ifdef CONFIG_LOCKDEP 246 #define MTREE_INIT_EXT(name, __flags, __lock) { \ 247 .ma_external_lock = &(__lock).dep_map, \ 248 .ma_flags = (__flags), \ 249 .ma_root = NULL, \ 250 } 251 #else 252 #define MTREE_INIT_EXT(name, __flags, __lock) MTREE_INIT(name, __flags) 253 #endif 254 255 #define DEFINE_MTREE(name) \ 256 struct maple_tree name = MTREE_INIT(name, 0) 257 258 #define mtree_lock(mt) spin_lock((&(mt)->ma_lock)) 259 #define mtree_lock_nested(mas, subclass) \ 260 spin_lock_nested((&(mt)->ma_lock), subclass) 261 #define mtree_unlock(mt) spin_unlock((&(mt)->ma_lock)) 262 263 /* 264 * The Maple Tree squeezes various bits in at various points which aren't 265 * necessarily obvious. Usually, this is done by observing that pointers are 266 * N-byte aligned and thus the bottom log_2(N) bits are available for use. We 267 * don't use the high bits of pointers to store additional information because 268 * we don't know what bits are unused on any given architecture. 269 * 270 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8 271 * low bits for our own purposes. Nodes are currently of 4 types: 272 * 1. Single pointer (Range is 0-0) 273 * 2. Non-leaf Allocation Range nodes 274 * 3. Non-leaf Range nodes 275 * 4. Leaf Range nodes All nodes consist of a number of node slots, 276 * pivots, and a parent pointer. 277 */ 278 279 struct maple_node { 280 union { 281 struct { 282 struct maple_pnode *parent; 283 void __rcu *slot[MAPLE_NODE_SLOTS]; 284 }; 285 struct { 286 void *pad; 287 struct rcu_head rcu; 288 struct maple_enode *piv_parent; 289 unsigned char parent_slot; 290 enum maple_type type; 291 unsigned char slot_len; 292 unsigned int ma_flags; 293 }; 294 struct maple_range_64 mr64; 295 struct maple_arange_64 ma64; 296 struct maple_alloc alloc; 297 }; 298 }; 299 300 /* 301 * More complicated stores can cause two nodes to become one or three and 302 * potentially alter the height of the tree. Either half of the tree may need 303 * to be rebalanced against the other. The ma_topiary struct is used to track 304 * which nodes have been 'cut' from the tree so that the change can be done 305 * safely at a later date. This is done to support RCU. 306 */ 307 struct ma_topiary { 308 struct maple_enode *head; 309 struct maple_enode *tail; 310 struct maple_tree *mtree; 311 }; 312 313 void *mtree_load(struct maple_tree *mt, unsigned long index); 314 315 int mtree_insert(struct maple_tree *mt, unsigned long index, 316 void *entry, gfp_t gfp); 317 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 318 unsigned long last, void *entry, gfp_t gfp); 319 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 320 void *entry, unsigned long size, unsigned long min, 321 unsigned long max, gfp_t gfp); 322 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 323 void *entry, unsigned long size, unsigned long min, 324 unsigned long max, gfp_t gfp); 325 326 int mtree_store_range(struct maple_tree *mt, unsigned long first, 327 unsigned long last, void *entry, gfp_t gfp); 328 int mtree_store(struct maple_tree *mt, unsigned long index, 329 void *entry, gfp_t gfp); 330 void *mtree_erase(struct maple_tree *mt, unsigned long index); 331 332 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp); 333 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp); 334 335 void mtree_destroy(struct maple_tree *mt); 336 void __mt_destroy(struct maple_tree *mt); 337 338 /** 339 * mtree_empty() - Determine if a tree has any present entries. 340 * @mt: Maple Tree. 341 * 342 * Context: Any context. 343 * Return: %true if the tree contains only NULL pointers. 344 */ 345 static inline bool mtree_empty(const struct maple_tree *mt) 346 { 347 return mt->ma_root == NULL; 348 } 349 350 /* Advanced API */ 351 352 /* 353 * The maple state is defined in the struct ma_state and is used to keep track 354 * of information during operations, and even between operations when using the 355 * advanced API. 356 * 357 * If state->node has bit 0 set then it references a tree location which is not 358 * a node (eg the root). If bit 1 is set, the rest of the bits are a negative 359 * errno. Bit 2 (the 'unallocated slots' bit) is clear. Bits 3-6 indicate the 360 * node type. 361 * 362 * state->alloc either has a request number of nodes or an allocated node. If 363 * stat->alloc has a requested number of nodes, the first bit will be set (0x1) 364 * and the remaining bits are the value. If state->alloc is a node, then the 365 * node will be of type maple_alloc. maple_alloc has MAPLE_NODE_SLOTS - 1 for 366 * storing more allocated nodes, a total number of nodes allocated, and the 367 * node_count in this node. node_count is the number of allocated nodes in this 368 * node. The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further 369 * nodes into state->alloc->slot[0]'s node. Nodes are taken from state->alloc 370 * by removing a node from the state->alloc node until state->alloc->node_count 371 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted 372 * to state->alloc. Nodes are pushed onto state->alloc by putting the current 373 * state->alloc into the pushed node's slot[0]. 374 * 375 * The state also contains the implied min/max of the state->node, the depth of 376 * this search, and the offset. The implied min/max are either from the parent 377 * node or are 0-oo for the root node. The depth is incremented or decremented 378 * every time a node is walked down or up. The offset is the slot/pivot of 379 * interest in the node - either for reading or writing. 380 * 381 * When returning a value the maple state index and last respectively contain 382 * the start and end of the range for the entry. Ranges are inclusive in the 383 * Maple Tree. 384 */ 385 struct ma_state { 386 struct maple_tree *tree; /* The tree we're operating in */ 387 unsigned long index; /* The index we're operating on - range start */ 388 unsigned long last; /* The last index we're operating on - range end */ 389 struct maple_enode *node; /* The node containing this entry */ 390 unsigned long min; /* The minimum index of this node - implied pivot min */ 391 unsigned long max; /* The maximum index of this node - implied pivot max */ 392 struct maple_alloc *alloc; /* Allocated nodes for this operation */ 393 unsigned char depth; /* depth of tree descent during write */ 394 unsigned char offset; 395 unsigned char mas_flags; 396 }; 397 398 struct ma_wr_state { 399 struct ma_state *mas; 400 struct maple_node *node; /* Decoded mas->node */ 401 unsigned long r_min; /* range min */ 402 unsigned long r_max; /* range max */ 403 enum maple_type type; /* mas->node type */ 404 unsigned char offset_end; /* The offset where the write ends */ 405 unsigned char node_end; /* mas->node end */ 406 unsigned long *pivots; /* mas->node->pivots pointer */ 407 unsigned long end_piv; /* The pivot at the offset end */ 408 void __rcu **slots; /* mas->node->slots pointer */ 409 void *entry; /* The entry to write */ 410 void *content; /* The existing entry that is being overwritten */ 411 }; 412 413 #define mas_lock(mas) spin_lock(&((mas)->tree->ma_lock)) 414 #define mas_lock_nested(mas, subclass) \ 415 spin_lock_nested(&((mas)->tree->ma_lock), subclass) 416 #define mas_unlock(mas) spin_unlock(&((mas)->tree->ma_lock)) 417 418 419 /* 420 * Special values for ma_state.node. 421 * MAS_START means we have not searched the tree. 422 * MAS_ROOT means we have searched the tree and the entry we found lives in 423 * the root of the tree (ie it has index 0, length 1 and is the only entry in 424 * the tree). 425 * MAS_NONE means we have searched the tree and there is no node in the 426 * tree for this entry. For example, we searched for index 1 in an empty 427 * tree. Or we have a tree which points to a full leaf node and we 428 * searched for an entry which is larger than can be contained in that 429 * leaf node. 430 * MA_ERROR represents an errno. After dropping the lock and attempting 431 * to resolve the error, the walk would have to be restarted from the 432 * top of the tree as the tree may have been modified. 433 */ 434 #define MAS_START ((struct maple_enode *)1UL) 435 #define MAS_ROOT ((struct maple_enode *)5UL) 436 #define MAS_NONE ((struct maple_enode *)9UL) 437 #define MAS_PAUSE ((struct maple_enode *)17UL) 438 #define MAS_OVERFLOW ((struct maple_enode *)33UL) 439 #define MAS_UNDERFLOW ((struct maple_enode *)65UL) 440 #define MA_ERROR(err) \ 441 ((struct maple_enode *)(((unsigned long)err << 2) | 2UL)) 442 443 #define MA_STATE(name, mt, first, end) \ 444 struct ma_state name = { \ 445 .tree = mt, \ 446 .index = first, \ 447 .last = end, \ 448 .node = MAS_START, \ 449 .min = 0, \ 450 .max = ULONG_MAX, \ 451 .alloc = NULL, \ 452 .mas_flags = 0, \ 453 } 454 455 #define MA_WR_STATE(name, ma_state, wr_entry) \ 456 struct ma_wr_state name = { \ 457 .mas = ma_state, \ 458 .content = NULL, \ 459 .entry = wr_entry, \ 460 } 461 462 #define MA_TOPIARY(name, tree) \ 463 struct ma_topiary name = { \ 464 .head = NULL, \ 465 .tail = NULL, \ 466 .mtree = tree, \ 467 } 468 469 void *mas_walk(struct ma_state *mas); 470 void *mas_store(struct ma_state *mas, void *entry); 471 void *mas_erase(struct ma_state *mas); 472 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp); 473 void mas_store_prealloc(struct ma_state *mas, void *entry); 474 void *mas_find(struct ma_state *mas, unsigned long max); 475 void *mas_find_range(struct ma_state *mas, unsigned long max); 476 void *mas_find_rev(struct ma_state *mas, unsigned long min); 477 void *mas_find_range_rev(struct ma_state *mas, unsigned long max); 478 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp); 479 bool mas_is_err(struct ma_state *mas); 480 481 bool mas_nomem(struct ma_state *mas, gfp_t gfp); 482 void mas_pause(struct ma_state *mas); 483 void maple_tree_init(void); 484 void mas_destroy(struct ma_state *mas); 485 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries); 486 487 void *mas_prev(struct ma_state *mas, unsigned long min); 488 void *mas_prev_range(struct ma_state *mas, unsigned long max); 489 void *mas_next(struct ma_state *mas, unsigned long max); 490 void *mas_next_range(struct ma_state *mas, unsigned long max); 491 492 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max, 493 unsigned long size); 494 /* 495 * This finds an empty area from the highest address to the lowest. 496 * AKA "Topdown" version, 497 */ 498 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 499 unsigned long max, unsigned long size); 500 501 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree, 502 unsigned long addr) 503 { 504 memset(mas, 0, sizeof(struct ma_state)); 505 mas->tree = tree; 506 mas->index = mas->last = addr; 507 mas->max = ULONG_MAX; 508 mas->node = MAS_START; 509 } 510 511 /* Checks if a mas has not found anything */ 512 static inline bool mas_is_none(const struct ma_state *mas) 513 { 514 return mas->node == MAS_NONE; 515 } 516 517 /* Checks if a mas has been paused */ 518 static inline bool mas_is_paused(const struct ma_state *mas) 519 { 520 return mas->node == MAS_PAUSE; 521 } 522 523 /* Check if the mas is pointing to a node or not */ 524 static inline bool mas_is_active(struct ma_state *mas) 525 { 526 if ((unsigned long)mas->node >= MAPLE_RESERVED_RANGE) 527 return true; 528 529 return false; 530 } 531 532 /** 533 * mas_reset() - Reset a Maple Tree operation state. 534 * @mas: Maple Tree operation state. 535 * 536 * Resets the error or walk state of the @mas so future walks of the 537 * array will start from the root. Use this if you have dropped the 538 * lock and want to reuse the ma_state. 539 * 540 * Context: Any context. 541 */ 542 static inline void mas_reset(struct ma_state *mas) 543 { 544 mas->node = MAS_START; 545 } 546 547 /** 548 * mas_for_each() - Iterate over a range of the maple tree. 549 * @__mas: Maple Tree operation state (maple_state) 550 * @__entry: Entry retrieved from the tree 551 * @__max: maximum index to retrieve from the tree 552 * 553 * When returned, mas->index and mas->last will hold the entire range for the 554 * entry. 555 * 556 * Note: may return the zero entry. 557 */ 558 #define mas_for_each(__mas, __entry, __max) \ 559 while (((__entry) = mas_find((__mas), (__max))) != NULL) 560 /** 561 * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the 562 * current location. 563 * @mas: Maple Tree operation state. 564 * @start: New start of range in the Maple Tree. 565 * @last: New end of range in the Maple Tree. 566 * 567 * set the internal maple state values to a sub-range. 568 * Please use mas_set_range() if you do not know where you are in the tree. 569 */ 570 static inline void __mas_set_range(struct ma_state *mas, unsigned long start, 571 unsigned long last) 572 { 573 mas->index = start; 574 mas->last = last; 575 } 576 577 /** 578 * mas_set_range() - Set up Maple Tree operation state for a different index. 579 * @mas: Maple Tree operation state. 580 * @start: New start of range in the Maple Tree. 581 * @last: New end of range in the Maple Tree. 582 * 583 * Move the operation state to refer to a different range. This will 584 * have the effect of starting a walk from the top; see mas_next() 585 * to move to an adjacent index. 586 */ 587 static inline 588 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last) 589 { 590 __mas_set_range(mas, start, last); 591 mas->node = MAS_START; 592 } 593 594 /** 595 * mas_set() - Set up Maple Tree operation state for a different index. 596 * @mas: Maple Tree operation state. 597 * @index: New index into the Maple Tree. 598 * 599 * Move the operation state to refer to a different index. This will 600 * have the effect of starting a walk from the top; see mas_next() 601 * to move to an adjacent index. 602 */ 603 static inline void mas_set(struct ma_state *mas, unsigned long index) 604 { 605 606 mas_set_range(mas, index, index); 607 } 608 609 static inline bool mt_external_lock(const struct maple_tree *mt) 610 { 611 return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN; 612 } 613 614 /** 615 * mt_init_flags() - Initialise an empty maple tree with flags. 616 * @mt: Maple Tree 617 * @flags: maple tree flags. 618 * 619 * If you need to initialise a Maple Tree with special flags (eg, an 620 * allocation tree), use this function. 621 * 622 * Context: Any context. 623 */ 624 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags) 625 { 626 mt->ma_flags = flags; 627 if (!mt_external_lock(mt)) 628 spin_lock_init(&mt->ma_lock); 629 rcu_assign_pointer(mt->ma_root, NULL); 630 } 631 632 /** 633 * mt_init() - Initialise an empty maple tree. 634 * @mt: Maple Tree 635 * 636 * An empty Maple Tree. 637 * 638 * Context: Any context. 639 */ 640 static inline void mt_init(struct maple_tree *mt) 641 { 642 mt_init_flags(mt, 0); 643 } 644 645 static inline bool mt_in_rcu(struct maple_tree *mt) 646 { 647 #ifdef CONFIG_MAPLE_RCU_DISABLED 648 return false; 649 #endif 650 return mt->ma_flags & MT_FLAGS_USE_RCU; 651 } 652 653 /** 654 * mt_clear_in_rcu() - Switch the tree to non-RCU mode. 655 * @mt: The Maple Tree 656 */ 657 static inline void mt_clear_in_rcu(struct maple_tree *mt) 658 { 659 if (!mt_in_rcu(mt)) 660 return; 661 662 if (mt_external_lock(mt)) { 663 WARN_ON(!mt_lock_is_held(mt)); 664 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 665 } else { 666 mtree_lock(mt); 667 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 668 mtree_unlock(mt); 669 } 670 } 671 672 /** 673 * mt_set_in_rcu() - Switch the tree to RCU safe mode. 674 * @mt: The Maple Tree 675 */ 676 static inline void mt_set_in_rcu(struct maple_tree *mt) 677 { 678 if (mt_in_rcu(mt)) 679 return; 680 681 if (mt_external_lock(mt)) { 682 WARN_ON(!mt_lock_is_held(mt)); 683 mt->ma_flags |= MT_FLAGS_USE_RCU; 684 } else { 685 mtree_lock(mt); 686 mt->ma_flags |= MT_FLAGS_USE_RCU; 687 mtree_unlock(mt); 688 } 689 } 690 691 static inline unsigned int mt_height(const struct maple_tree *mt) 692 { 693 return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET; 694 } 695 696 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max); 697 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 698 unsigned long max); 699 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min); 700 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max); 701 702 /** 703 * mt_for_each - Iterate over each entry starting at index until max. 704 * @__tree: The Maple Tree 705 * @__entry: The current entry 706 * @__index: The index to start the search from. Subsequently used as iterator. 707 * @__max: The maximum limit for @index 708 * 709 * This iterator skips all entries, which resolve to a NULL pointer, 710 * e.g. entries which has been reserved with XA_ZERO_ENTRY. 711 */ 712 #define mt_for_each(__tree, __entry, __index, __max) \ 713 for (__entry = mt_find(__tree, &(__index), __max); \ 714 __entry; __entry = mt_find_after(__tree, &(__index), __max)) 715 716 717 #ifdef CONFIG_DEBUG_MAPLE_TREE 718 enum mt_dump_format { 719 mt_dump_dec, 720 mt_dump_hex, 721 }; 722 723 extern atomic_t maple_tree_tests_run; 724 extern atomic_t maple_tree_tests_passed; 725 726 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format); 727 void mas_dump(const struct ma_state *mas); 728 void mas_wr_dump(const struct ma_wr_state *wr_mas); 729 void mt_validate(struct maple_tree *mt); 730 void mt_cache_shrink(void); 731 #define MT_BUG_ON(__tree, __x) do { \ 732 atomic_inc(&maple_tree_tests_run); \ 733 if (__x) { \ 734 pr_info("BUG at %s:%d (%u)\n", \ 735 __func__, __LINE__, __x); \ 736 mt_dump(__tree, mt_dump_hex); \ 737 pr_info("Pass: %u Run:%u\n", \ 738 atomic_read(&maple_tree_tests_passed), \ 739 atomic_read(&maple_tree_tests_run)); \ 740 dump_stack(); \ 741 } else { \ 742 atomic_inc(&maple_tree_tests_passed); \ 743 } \ 744 } while (0) 745 746 #define MAS_BUG_ON(__mas, __x) do { \ 747 atomic_inc(&maple_tree_tests_run); \ 748 if (__x) { \ 749 pr_info("BUG at %s:%d (%u)\n", \ 750 __func__, __LINE__, __x); \ 751 mas_dump(__mas); \ 752 mt_dump((__mas)->tree, mt_dump_hex); \ 753 pr_info("Pass: %u Run:%u\n", \ 754 atomic_read(&maple_tree_tests_passed), \ 755 atomic_read(&maple_tree_tests_run)); \ 756 dump_stack(); \ 757 } else { \ 758 atomic_inc(&maple_tree_tests_passed); \ 759 } \ 760 } while (0) 761 762 #define MAS_WR_BUG_ON(__wrmas, __x) do { \ 763 atomic_inc(&maple_tree_tests_run); \ 764 if (__x) { \ 765 pr_info("BUG at %s:%d (%u)\n", \ 766 __func__, __LINE__, __x); \ 767 mas_wr_dump(__wrmas); \ 768 mas_dump((__wrmas)->mas); \ 769 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 770 pr_info("Pass: %u Run:%u\n", \ 771 atomic_read(&maple_tree_tests_passed), \ 772 atomic_read(&maple_tree_tests_run)); \ 773 dump_stack(); \ 774 } else { \ 775 atomic_inc(&maple_tree_tests_passed); \ 776 } \ 777 } while (0) 778 779 #define MT_WARN_ON(__tree, __x) ({ \ 780 int ret = !!(__x); \ 781 atomic_inc(&maple_tree_tests_run); \ 782 if (ret) { \ 783 pr_info("WARN at %s:%d (%u)\n", \ 784 __func__, __LINE__, __x); \ 785 mt_dump(__tree, mt_dump_hex); \ 786 pr_info("Pass: %u Run:%u\n", \ 787 atomic_read(&maple_tree_tests_passed), \ 788 atomic_read(&maple_tree_tests_run)); \ 789 dump_stack(); \ 790 } else { \ 791 atomic_inc(&maple_tree_tests_passed); \ 792 } \ 793 unlikely(ret); \ 794 }) 795 796 #define MAS_WARN_ON(__mas, __x) ({ \ 797 int ret = !!(__x); \ 798 atomic_inc(&maple_tree_tests_run); \ 799 if (ret) { \ 800 pr_info("WARN at %s:%d (%u)\n", \ 801 __func__, __LINE__, __x); \ 802 mas_dump(__mas); \ 803 mt_dump((__mas)->tree, mt_dump_hex); \ 804 pr_info("Pass: %u Run:%u\n", \ 805 atomic_read(&maple_tree_tests_passed), \ 806 atomic_read(&maple_tree_tests_run)); \ 807 dump_stack(); \ 808 } else { \ 809 atomic_inc(&maple_tree_tests_passed); \ 810 } \ 811 unlikely(ret); \ 812 }) 813 814 #define MAS_WR_WARN_ON(__wrmas, __x) ({ \ 815 int ret = !!(__x); \ 816 atomic_inc(&maple_tree_tests_run); \ 817 if (ret) { \ 818 pr_info("WARN at %s:%d (%u)\n", \ 819 __func__, __LINE__, __x); \ 820 mas_wr_dump(__wrmas); \ 821 mas_dump((__wrmas)->mas); \ 822 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 823 pr_info("Pass: %u Run:%u\n", \ 824 atomic_read(&maple_tree_tests_passed), \ 825 atomic_read(&maple_tree_tests_run)); \ 826 dump_stack(); \ 827 } else { \ 828 atomic_inc(&maple_tree_tests_passed); \ 829 } \ 830 unlikely(ret); \ 831 }) 832 #else 833 #define MT_BUG_ON(__tree, __x) BUG_ON(__x) 834 #define MAS_BUG_ON(__mas, __x) BUG_ON(__x) 835 #define MAS_WR_BUG_ON(__mas, __x) BUG_ON(__x) 836 #define MT_WARN_ON(__tree, __x) WARN_ON(__x) 837 #define MAS_WARN_ON(__mas, __x) WARN_ON(__x) 838 #define MAS_WR_WARN_ON(__mas, __x) WARN_ON(__x) 839 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 840 841 #endif /*_LINUX_MAPLE_TREE_H */ 842