xref: /linux-6.15/include/linux/maple_tree.h (revision d695c30a)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
4 /*
5  * Maple Tree - An RCU-safe adaptive tree for storing ranges
6  * Copyright (c) 2018-2022 Oracle
7  * Authors:     Liam R. Howlett <[email protected]>
8  *              Matthew Wilcox <[email protected]>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
15 
16 /*
17  * Allocated nodes are mutable until they have been inserted into the tree,
18  * at which time they cannot change their type until they have been removed
19  * from the tree and an RCU grace period has passed.
20  *
21  * Removed nodes have their ->parent set to point to themselves.  RCU readers
22  * check ->parent before relying on the value that they loaded from the
23  * slots array.  This lets us reuse the slots array for the RCU head.
24  *
25  * Nodes in the tree point to their parent unless bit 0 is set.
26  */
27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
28 /* 64bit sizes */
29 #define MAPLE_NODE_SLOTS	31	/* 256 bytes including ->parent */
30 #define MAPLE_RANGE64_SLOTS	16	/* 256 bytes */
31 #define MAPLE_ARANGE64_SLOTS	10	/* 240 bytes */
32 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 1)
33 #else
34 /* 32bit sizes */
35 #define MAPLE_NODE_SLOTS	63	/* 256 bytes including ->parent */
36 #define MAPLE_RANGE64_SLOTS	32	/* 256 bytes */
37 #define MAPLE_ARANGE64_SLOTS	21	/* 240 bytes */
38 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 2)
39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
40 
41 #define MAPLE_NODE_MASK		255UL
42 
43 /*
44  * The node->parent of the root node has bit 0 set and the rest of the pointer
45  * is a pointer to the tree itself.  No more bits are available in this pointer
46  * (on m68k, the data structure may only be 2-byte aligned).
47  *
48  * Internal non-root nodes can only have maple_range_* nodes as parents.  The
49  * parent pointer is 256B aligned like all other tree nodes.  When storing a 32
50  * or 64 bit values, the offset can fit into 4 bits.  The 16 bit values need an
51  * extra bit to store the offset.  This extra bit comes from a reuse of the last
52  * bit in the node type.  This is possible by using bit 1 to indicate if bit 2
53  * is part of the type or the slot.
54  *
55  * Once the type is decided, the decision of an allocation range type or a range
56  * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE
57  * flag.
58  *
59  *  Node types:
60  *   0x??1 = Root
61  *   0x?00 = 16 bit nodes
62  *   0x010 = 32 bit nodes
63  *   0x110 = 64 bit nodes
64  *
65  *  Slot size and location in the parent pointer:
66  *   type  : slot location
67  *   0x??1 : Root
68  *   0x?00 : 16 bit values, type in 0-1, slot in 2-6
69  *   0x010 : 32 bit values, type in 0-2, slot in 3-6
70  *   0x110 : 64 bit values, type in 0-2, slot in 3-6
71  */
72 
73 /*
74  * This metadata is used to optimize the gap updating code and in reverse
75  * searching for gaps or any other code that needs to find the end of the data.
76  */
77 struct maple_metadata {
78 	unsigned char end;
79 	unsigned char gap;
80 };
81 
82 /*
83  * Leaf nodes do not store pointers to nodes, they store user data.  Users may
84  * store almost any bit pattern.  As noted above, the optimisation of storing an
85  * entry at 0 in the root pointer cannot be done for data which have the bottom
86  * two bits set to '10'.  We also reserve values with the bottom two bits set to
87  * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use.  Some APIs
88  * return errnos as a negative errno shifted right by two bits and the bottom
89  * two bits set to '10', and while choosing to store these values in the array
90  * is not an error, it may lead to confusion if you're testing for an error with
91  * mas_is_err().
92  *
93  * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
94  * 3-6), bit 2 is reserved.  That leaves bits 0-1 unused for now.
95  *
96  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
97  * indicate that the tree is specifying ranges,  Pivots may appear in the
98  * subtree with an entry attached to the value whereas keys are unique to a
99  * specific position of a B-tree.  Pivot values are inclusive of the slot with
100  * the same index.
101  */
102 
103 struct maple_range_64 {
104 	struct maple_pnode *parent;
105 	unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
106 	union {
107 		void __rcu *slot[MAPLE_RANGE64_SLOTS];
108 		struct {
109 			void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
110 			struct maple_metadata meta;
111 		};
112 	};
113 };
114 
115 /*
116  * At tree creation time, the user can specify that they're willing to trade off
117  * storing fewer entries in a tree in return for storing more information in
118  * each node.
119  *
120  * The maple tree supports recording the largest range of NULL entries available
121  * in this node, also called gaps.  This optimises the tree for allocating a
122  * range.
123  */
124 struct maple_arange_64 {
125 	struct maple_pnode *parent;
126 	unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
127 	void __rcu *slot[MAPLE_ARANGE64_SLOTS];
128 	unsigned long gap[MAPLE_ARANGE64_SLOTS];
129 	struct maple_metadata meta;
130 };
131 
132 struct maple_alloc {
133 	unsigned long total;
134 	unsigned char node_count;
135 	unsigned int request_count;
136 	struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
137 };
138 
139 struct maple_topiary {
140 	struct maple_pnode *parent;
141 	struct maple_enode *next; /* Overlaps the pivot */
142 };
143 
144 enum maple_type {
145 	maple_dense,
146 	maple_leaf_64,
147 	maple_range_64,
148 	maple_arange_64,
149 };
150 
151 
152 /**
153  * DOC: Maple tree flags
154  *
155  * * MT_FLAGS_ALLOC_RANGE	- Track gaps in this tree
156  * * MT_FLAGS_USE_RCU		- Operate in RCU mode
157  * * MT_FLAGS_HEIGHT_OFFSET	- The position of the tree height in the flags
158  * * MT_FLAGS_HEIGHT_MASK	- The mask for the maple tree height value
159  * * MT_FLAGS_LOCK_MASK		- How the mt_lock is used
160  * * MT_FLAGS_LOCK_IRQ		- Acquired irq-safe
161  * * MT_FLAGS_LOCK_BH		- Acquired bh-safe
162  * * MT_FLAGS_LOCK_EXTERN	- mt_lock is not used
163  *
164  * MAPLE_HEIGHT_MAX	The largest height that can be stored
165  */
166 #define MT_FLAGS_ALLOC_RANGE	0x01
167 #define MT_FLAGS_USE_RCU	0x02
168 #define MT_FLAGS_HEIGHT_OFFSET	0x02
169 #define MT_FLAGS_HEIGHT_MASK	0x7C
170 #define MT_FLAGS_LOCK_MASK	0x300
171 #define MT_FLAGS_LOCK_IRQ	0x100
172 #define MT_FLAGS_LOCK_BH	0x200
173 #define MT_FLAGS_LOCK_EXTERN	0x300
174 
175 #define MAPLE_HEIGHT_MAX	31
176 
177 
178 #define MAPLE_NODE_TYPE_MASK	0x0F
179 #define MAPLE_NODE_TYPE_SHIFT	0x03
180 
181 #define MAPLE_RESERVED_RANGE	4096
182 
183 #ifdef CONFIG_LOCKDEP
184 typedef struct lockdep_map *lockdep_map_p;
185 #define mt_lock_is_held(mt)	lock_is_held(mt->ma_external_lock)
186 #define mt_set_external_lock(mt, lock)					\
187 	(mt)->ma_external_lock = &(lock)->dep_map
188 #else
189 typedef struct { /* nothing */ } lockdep_map_p;
190 #define mt_lock_is_held(mt)	1
191 #define mt_set_external_lock(mt, lock)	do { } while (0)
192 #endif
193 
194 /*
195  * If the tree contains a single entry at index 0, it is usually stored in
196  * tree->ma_root.  To optimise for the page cache, an entry which ends in '00',
197  * '01' or '11' is stored in the root, but an entry which ends in '10' will be
198  * stored in a node.  Bits 3-6 are used to store enum maple_type.
199  *
200  * The flags are used both to store some immutable information about this tree
201  * (set at tree creation time) and dynamic information set under the spinlock.
202  *
203  * Another use of flags are to indicate global states of the tree.  This is the
204  * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
205  * RCU mode.  This mode was added to allow the tree to reuse nodes instead of
206  * re-allocating and RCU freeing nodes when there is a single user.
207  */
208 struct maple_tree {
209 	union {
210 		spinlock_t	ma_lock;
211 		lockdep_map_p	ma_external_lock;
212 	};
213 	void __rcu      *ma_root;
214 	unsigned int	ma_flags;
215 };
216 
217 /**
218  * MTREE_INIT() - Initialize a maple tree
219  * @name: The maple tree name
220  * @__flags: The maple tree flags
221  *
222  */
223 #define MTREE_INIT(name, __flags) {					\
224 	.ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock),		\
225 	.ma_flags = __flags,						\
226 	.ma_root = NULL,						\
227 }
228 
229 /**
230  * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
231  * @name: The tree name
232  * @__flags: The maple tree flags
233  * @__lock: The external lock
234  */
235 #ifdef CONFIG_LOCKDEP
236 #define MTREE_INIT_EXT(name, __flags, __lock) {				\
237 	.ma_external_lock = &(__lock).dep_map,				\
238 	.ma_flags = (__flags),						\
239 	.ma_root = NULL,						\
240 }
241 #else
242 #define MTREE_INIT_EXT(name, __flags, __lock)	MTREE_INIT(name, __flags)
243 #endif
244 
245 #define DEFINE_MTREE(name)						\
246 	struct maple_tree name = MTREE_INIT(name, 0)
247 
248 #define mtree_lock(mt)		spin_lock((&(mt)->ma_lock))
249 #define mtree_unlock(mt)	spin_unlock((&(mt)->ma_lock))
250 
251 /*
252  * The Maple Tree squeezes various bits in at various points which aren't
253  * necessarily obvious.  Usually, this is done by observing that pointers are
254  * N-byte aligned and thus the bottom log_2(N) bits are available for use.  We
255  * don't use the high bits of pointers to store additional information because
256  * we don't know what bits are unused on any given architecture.
257  *
258  * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
259  * low bits for our own purposes.  Nodes are currently of 4 types:
260  * 1. Single pointer (Range is 0-0)
261  * 2. Non-leaf Allocation Range nodes
262  * 3. Non-leaf Range nodes
263  * 4. Leaf Range nodes All nodes consist of a number of node slots,
264  *    pivots, and a parent pointer.
265  */
266 
267 struct maple_node {
268 	union {
269 		struct {
270 			struct maple_pnode *parent;
271 			void __rcu *slot[MAPLE_NODE_SLOTS];
272 		};
273 		struct {
274 			void *pad;
275 			struct rcu_head rcu;
276 			struct maple_enode *piv_parent;
277 			unsigned char parent_slot;
278 			enum maple_type type;
279 			unsigned char slot_len;
280 			unsigned int ma_flags;
281 		};
282 		struct maple_range_64 mr64;
283 		struct maple_arange_64 ma64;
284 		struct maple_alloc alloc;
285 	};
286 };
287 
288 /*
289  * More complicated stores can cause two nodes to become one or three and
290  * potentially alter the height of the tree.  Either half of the tree may need
291  * to be rebalanced against the other.  The ma_topiary struct is used to track
292  * which nodes have been 'cut' from the tree so that the change can be done
293  * safely at a later date.  This is done to support RCU.
294  */
295 struct ma_topiary {
296 	struct maple_enode *head;
297 	struct maple_enode *tail;
298 	struct maple_tree *mtree;
299 };
300 
301 void *mtree_load(struct maple_tree *mt, unsigned long index);
302 
303 int mtree_insert(struct maple_tree *mt, unsigned long index,
304 		void *entry, gfp_t gfp);
305 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
306 		unsigned long last, void *entry, gfp_t gfp);
307 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
308 		void *entry, unsigned long size, unsigned long min,
309 		unsigned long max, gfp_t gfp);
310 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
311 		void *entry, unsigned long size, unsigned long min,
312 		unsigned long max, gfp_t gfp);
313 
314 int mtree_store_range(struct maple_tree *mt, unsigned long first,
315 		      unsigned long last, void *entry, gfp_t gfp);
316 int mtree_store(struct maple_tree *mt, unsigned long index,
317 		void *entry, gfp_t gfp);
318 void *mtree_erase(struct maple_tree *mt, unsigned long index);
319 
320 void mtree_destroy(struct maple_tree *mt);
321 void __mt_destroy(struct maple_tree *mt);
322 
323 /**
324  * mtree_empty() - Determine if a tree has any present entries.
325  * @mt: Maple Tree.
326  *
327  * Context: Any context.
328  * Return: %true if the tree contains only NULL pointers.
329  */
330 static inline bool mtree_empty(const struct maple_tree *mt)
331 {
332 	return mt->ma_root == NULL;
333 }
334 
335 /* Advanced API */
336 
337 /*
338  * The maple state is defined in the struct ma_state and is used to keep track
339  * of information during operations, and even between operations when using the
340  * advanced API.
341  *
342  * If state->node has bit 0 set then it references a tree location which is not
343  * a node (eg the root).  If bit 1 is set, the rest of the bits are a negative
344  * errno.  Bit 2 (the 'unallocated slots' bit) is clear.  Bits 3-6 indicate the
345  * node type.
346  *
347  * state->alloc either has a request number of nodes or an allocated node.  If
348  * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
349  * and the remaining bits are the value.  If state->alloc is a node, then the
350  * node will be of type maple_alloc.  maple_alloc has MAPLE_NODE_SLOTS - 1 for
351  * storing more allocated nodes, a total number of nodes allocated, and the
352  * node_count in this node.  node_count is the number of allocated nodes in this
353  * node.  The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
354  * nodes into state->alloc->slot[0]'s node.  Nodes are taken from state->alloc
355  * by removing a node from the state->alloc node until state->alloc->node_count
356  * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
357  * to state->alloc.  Nodes are pushed onto state->alloc by putting the current
358  * state->alloc into the pushed node's slot[0].
359  *
360  * The state also contains the implied min/max of the state->node, the depth of
361  * this search, and the offset. The implied min/max are either from the parent
362  * node or are 0-oo for the root node.  The depth is incremented or decremented
363  * every time a node is walked down or up.  The offset is the slot/pivot of
364  * interest in the node - either for reading or writing.
365  *
366  * When returning a value the maple state index and last respectively contain
367  * the start and end of the range for the entry.  Ranges are inclusive in the
368  * Maple Tree.
369  */
370 struct ma_state {
371 	struct maple_tree *tree;	/* The tree we're operating in */
372 	unsigned long index;		/* The index we're operating on - range start */
373 	unsigned long last;		/* The last index we're operating on - range end */
374 	struct maple_enode *node;	/* The node containing this entry */
375 	unsigned long min;		/* The minimum index of this node - implied pivot min */
376 	unsigned long max;		/* The maximum index of this node - implied pivot max */
377 	struct maple_alloc *alloc;	/* Allocated nodes for this operation */
378 	unsigned char depth;		/* depth of tree descent during write */
379 	unsigned char offset;
380 	unsigned char mas_flags;
381 };
382 
383 struct ma_wr_state {
384 	struct ma_state *mas;
385 	struct maple_node *node;	/* Decoded mas->node */
386 	unsigned long r_min;		/* range min */
387 	unsigned long r_max;		/* range max */
388 	enum maple_type type;		/* mas->node type */
389 	unsigned char offset_end;	/* The offset where the write ends */
390 	unsigned char node_end;		/* mas->node end */
391 	unsigned long *pivots;		/* mas->node->pivots pointer */
392 	unsigned long end_piv;		/* The pivot at the offset end */
393 	void __rcu **slots;		/* mas->node->slots pointer */
394 	void *entry;			/* The entry to write */
395 	void *content;			/* The existing entry that is being overwritten */
396 };
397 
398 #define mas_lock(mas)           spin_lock(&((mas)->tree->ma_lock))
399 #define mas_unlock(mas)         spin_unlock(&((mas)->tree->ma_lock))
400 
401 
402 /*
403  * Special values for ma_state.node.
404  * MAS_START means we have not searched the tree.
405  * MAS_ROOT means we have searched the tree and the entry we found lives in
406  * the root of the tree (ie it has index 0, length 1 and is the only entry in
407  * the tree).
408  * MAS_NONE means we have searched the tree and there is no node in the
409  * tree for this entry.  For example, we searched for index 1 in an empty
410  * tree.  Or we have a tree which points to a full leaf node and we
411  * searched for an entry which is larger than can be contained in that
412  * leaf node.
413  * MA_ERROR represents an errno.  After dropping the lock and attempting
414  * to resolve the error, the walk would have to be restarted from the
415  * top of the tree as the tree may have been modified.
416  */
417 #define MAS_START	((struct maple_enode *)1UL)
418 #define MAS_ROOT	((struct maple_enode *)5UL)
419 #define MAS_NONE	((struct maple_enode *)9UL)
420 #define MAS_PAUSE	((struct maple_enode *)17UL)
421 #define MA_ERROR(err) \
422 		((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
423 
424 #define MA_STATE(name, mt, first, end)					\
425 	struct ma_state name = {					\
426 		.tree = mt,						\
427 		.index = first,						\
428 		.last = end,						\
429 		.node = MAS_START,					\
430 		.min = 0,						\
431 		.max = ULONG_MAX,					\
432 		.alloc = NULL,						\
433 		.mas_flags = 0,						\
434 	}
435 
436 #define MA_WR_STATE(name, ma_state, wr_entry)				\
437 	struct ma_wr_state name = {					\
438 		.mas = ma_state,					\
439 		.content = NULL,					\
440 		.entry = wr_entry,					\
441 	}
442 
443 #define MA_TOPIARY(name, tree)						\
444 	struct ma_topiary name = {					\
445 		.head = NULL,						\
446 		.tail = NULL,						\
447 		.mtree = tree,						\
448 	}
449 
450 void *mas_walk(struct ma_state *mas);
451 void *mas_store(struct ma_state *mas, void *entry);
452 void *mas_erase(struct ma_state *mas);
453 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
454 void mas_store_prealloc(struct ma_state *mas, void *entry);
455 void *mas_find(struct ma_state *mas, unsigned long max);
456 void *mas_find_range(struct ma_state *mas, unsigned long max);
457 void *mas_find_rev(struct ma_state *mas, unsigned long min);
458 void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
459 int mas_preallocate(struct ma_state *mas, gfp_t gfp);
460 bool mas_is_err(struct ma_state *mas);
461 
462 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
463 void mas_pause(struct ma_state *mas);
464 void maple_tree_init(void);
465 void mas_destroy(struct ma_state *mas);
466 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
467 
468 void *mas_prev(struct ma_state *mas, unsigned long min);
469 void *mas_prev_range(struct ma_state *mas, unsigned long max);
470 void *mas_next(struct ma_state *mas, unsigned long max);
471 void *mas_next_range(struct ma_state *mas, unsigned long max);
472 
473 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
474 		   unsigned long size);
475 /*
476  * This finds an empty area from the highest address to the lowest.
477  * AKA "Topdown" version,
478  */
479 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
480 		       unsigned long max, unsigned long size);
481 
482 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
483 			    unsigned long addr)
484 {
485 	memset(mas, 0, sizeof(struct ma_state));
486 	mas->tree = tree;
487 	mas->index = mas->last = addr;
488 	mas->max = ULONG_MAX;
489 	mas->node = MAS_START;
490 }
491 
492 /* Checks if a mas has not found anything */
493 static inline bool mas_is_none(const struct ma_state *mas)
494 {
495 	return mas->node == MAS_NONE;
496 }
497 
498 /* Checks if a mas has been paused */
499 static inline bool mas_is_paused(const struct ma_state *mas)
500 {
501 	return mas->node == MAS_PAUSE;
502 }
503 
504 /**
505  * mas_reset() - Reset a Maple Tree operation state.
506  * @mas: Maple Tree operation state.
507  *
508  * Resets the error or walk state of the @mas so future walks of the
509  * array will start from the root.  Use this if you have dropped the
510  * lock and want to reuse the ma_state.
511  *
512  * Context: Any context.
513  */
514 static inline void mas_reset(struct ma_state *mas)
515 {
516 	mas->node = MAS_START;
517 }
518 
519 /**
520  * mas_for_each() - Iterate over a range of the maple tree.
521  * @__mas: Maple Tree operation state (maple_state)
522  * @__entry: Entry retrieved from the tree
523  * @__max: maximum index to retrieve from the tree
524  *
525  * When returned, mas->index and mas->last will hold the entire range for the
526  * entry.
527  *
528  * Note: may return the zero entry.
529  */
530 #define mas_for_each(__mas, __entry, __max) \
531 	while (((__entry) = mas_find((__mas), (__max))) != NULL)
532 
533 /**
534  * mas_set_range() - Set up Maple Tree operation state for a different index.
535  * @mas: Maple Tree operation state.
536  * @start: New start of range in the Maple Tree.
537  * @last: New end of range in the Maple Tree.
538  *
539  * Move the operation state to refer to a different range.  This will
540  * have the effect of starting a walk from the top; see mas_next()
541  * to move to an adjacent index.
542  */
543 static inline
544 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
545 {
546 	       mas->index = start;
547 	       mas->last = last;
548 	       mas->node = MAS_START;
549 }
550 
551 /**
552  * mas_set() - Set up Maple Tree operation state for a different index.
553  * @mas: Maple Tree operation state.
554  * @index: New index into the Maple Tree.
555  *
556  * Move the operation state to refer to a different index.  This will
557  * have the effect of starting a walk from the top; see mas_next()
558  * to move to an adjacent index.
559  */
560 static inline void mas_set(struct ma_state *mas, unsigned long index)
561 {
562 
563 	mas_set_range(mas, index, index);
564 }
565 
566 static inline bool mt_external_lock(const struct maple_tree *mt)
567 {
568 	return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
569 }
570 
571 /**
572  * mt_init_flags() - Initialise an empty maple tree with flags.
573  * @mt: Maple Tree
574  * @flags: maple tree flags.
575  *
576  * If you need to initialise a Maple Tree with special flags (eg, an
577  * allocation tree), use this function.
578  *
579  * Context: Any context.
580  */
581 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
582 {
583 	mt->ma_flags = flags;
584 	if (!mt_external_lock(mt))
585 		spin_lock_init(&mt->ma_lock);
586 	rcu_assign_pointer(mt->ma_root, NULL);
587 }
588 
589 /**
590  * mt_init() - Initialise an empty maple tree.
591  * @mt: Maple Tree
592  *
593  * An empty Maple Tree.
594  *
595  * Context: Any context.
596  */
597 static inline void mt_init(struct maple_tree *mt)
598 {
599 	mt_init_flags(mt, 0);
600 }
601 
602 static inline bool mt_in_rcu(struct maple_tree *mt)
603 {
604 #ifdef CONFIG_MAPLE_RCU_DISABLED
605 	return false;
606 #endif
607 	return mt->ma_flags & MT_FLAGS_USE_RCU;
608 }
609 
610 /**
611  * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
612  * @mt: The Maple Tree
613  */
614 static inline void mt_clear_in_rcu(struct maple_tree *mt)
615 {
616 	if (!mt_in_rcu(mt))
617 		return;
618 
619 	if (mt_external_lock(mt)) {
620 		WARN_ON(!mt_lock_is_held(mt));
621 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
622 	} else {
623 		mtree_lock(mt);
624 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
625 		mtree_unlock(mt);
626 	}
627 }
628 
629 /**
630  * mt_set_in_rcu() - Switch the tree to RCU safe mode.
631  * @mt: The Maple Tree
632  */
633 static inline void mt_set_in_rcu(struct maple_tree *mt)
634 {
635 	if (mt_in_rcu(mt))
636 		return;
637 
638 	if (mt_external_lock(mt)) {
639 		WARN_ON(!mt_lock_is_held(mt));
640 		mt->ma_flags |= MT_FLAGS_USE_RCU;
641 	} else {
642 		mtree_lock(mt);
643 		mt->ma_flags |= MT_FLAGS_USE_RCU;
644 		mtree_unlock(mt);
645 	}
646 }
647 
648 static inline unsigned int mt_height(const struct maple_tree *mt)
649 {
650 	return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
651 }
652 
653 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
654 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
655 		    unsigned long max);
656 void *mt_prev(struct maple_tree *mt, unsigned long index,  unsigned long min);
657 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
658 
659 /**
660  * mt_for_each - Iterate over each entry starting at index until max.
661  * @__tree: The Maple Tree
662  * @__entry: The current entry
663  * @__index: The index to start the search from. Subsequently used as iterator.
664  * @__max: The maximum limit for @index
665  *
666  * This iterator skips all entries, which resolve to a NULL pointer,
667  * e.g. entries which has been reserved with XA_ZERO_ENTRY.
668  */
669 #define mt_for_each(__tree, __entry, __index, __max) \
670 	for (__entry = mt_find(__tree, &(__index), __max); \
671 		__entry; __entry = mt_find_after(__tree, &(__index), __max))
672 
673 
674 #ifdef CONFIG_DEBUG_MAPLE_TREE
675 enum mt_dump_format {
676 	mt_dump_dec,
677 	mt_dump_hex,
678 };
679 
680 extern atomic_t maple_tree_tests_run;
681 extern atomic_t maple_tree_tests_passed;
682 
683 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
684 void mas_dump(const struct ma_state *mas);
685 void mas_wr_dump(const struct ma_wr_state *wr_mas);
686 void mt_validate(struct maple_tree *mt);
687 void mt_cache_shrink(void);
688 #define MT_BUG_ON(__tree, __x) do {					\
689 	atomic_inc(&maple_tree_tests_run);				\
690 	if (__x) {							\
691 		pr_info("BUG at %s:%d (%u)\n",				\
692 		__func__, __LINE__, __x);				\
693 		mt_dump(__tree, mt_dump_hex);				\
694 		pr_info("Pass: %u Run:%u\n",				\
695 			atomic_read(&maple_tree_tests_passed),		\
696 			atomic_read(&maple_tree_tests_run));		\
697 		dump_stack();						\
698 	} else {							\
699 		atomic_inc(&maple_tree_tests_passed);			\
700 	}								\
701 } while (0)
702 
703 #define MAS_BUG_ON(__mas, __x) do {					\
704 	atomic_inc(&maple_tree_tests_run);				\
705 	if (__x) {							\
706 		pr_info("BUG at %s:%d (%u)\n",				\
707 		__func__, __LINE__, __x);				\
708 		mas_dump(__mas);					\
709 		mt_dump((__mas)->tree, mt_dump_hex);			\
710 		pr_info("Pass: %u Run:%u\n",				\
711 			atomic_read(&maple_tree_tests_passed),		\
712 			atomic_read(&maple_tree_tests_run));		\
713 		dump_stack();						\
714 	} else {							\
715 		atomic_inc(&maple_tree_tests_passed);			\
716 	}								\
717 } while (0)
718 
719 #define MAS_WR_BUG_ON(__wrmas, __x) do {				\
720 	atomic_inc(&maple_tree_tests_run);				\
721 	if (__x) {							\
722 		pr_info("BUG at %s:%d (%u)\n",				\
723 		__func__, __LINE__, __x);				\
724 		mas_wr_dump(__wrmas);					\
725 		mas_dump((__wrmas)->mas);				\
726 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
727 		pr_info("Pass: %u Run:%u\n",				\
728 			atomic_read(&maple_tree_tests_passed),		\
729 			atomic_read(&maple_tree_tests_run));		\
730 		dump_stack();						\
731 	} else {							\
732 		atomic_inc(&maple_tree_tests_passed);			\
733 	}								\
734 } while (0)
735 
736 #define MT_WARN_ON(__tree, __x)  ({					\
737 	int ret = !!(__x);						\
738 	atomic_inc(&maple_tree_tests_run);				\
739 	if (ret) {							\
740 		pr_info("WARN at %s:%d (%u)\n",				\
741 		__func__, __LINE__, __x);				\
742 		mt_dump(__tree, mt_dump_hex);				\
743 		pr_info("Pass: %u Run:%u\n",				\
744 			atomic_read(&maple_tree_tests_passed),		\
745 			atomic_read(&maple_tree_tests_run));		\
746 		dump_stack();						\
747 	} else {							\
748 		atomic_inc(&maple_tree_tests_passed);			\
749 	}								\
750 	unlikely(ret);							\
751 })
752 
753 #define MAS_WARN_ON(__mas, __x) ({					\
754 	int ret = !!(__x);						\
755 	atomic_inc(&maple_tree_tests_run);				\
756 	if (ret) {							\
757 		pr_info("WARN at %s:%d (%u)\n",				\
758 		__func__, __LINE__, __x);				\
759 		mas_dump(__mas);					\
760 		mt_dump((__mas)->tree, mt_dump_hex);			\
761 		pr_info("Pass: %u Run:%u\n",				\
762 			atomic_read(&maple_tree_tests_passed),		\
763 			atomic_read(&maple_tree_tests_run));		\
764 		dump_stack();						\
765 	} else {							\
766 		atomic_inc(&maple_tree_tests_passed);			\
767 	}								\
768 	unlikely(ret);							\
769 })
770 
771 #define MAS_WR_WARN_ON(__wrmas, __x) ({					\
772 	int ret = !!(__x);						\
773 	atomic_inc(&maple_tree_tests_run);				\
774 	if (ret) {							\
775 		pr_info("WARN at %s:%d (%u)\n",				\
776 		__func__, __LINE__, __x);				\
777 		mas_wr_dump(__wrmas);					\
778 		mas_dump((__wrmas)->mas);				\
779 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
780 		pr_info("Pass: %u Run:%u\n",				\
781 			atomic_read(&maple_tree_tests_passed),		\
782 			atomic_read(&maple_tree_tests_run));		\
783 		dump_stack();						\
784 	} else {							\
785 		atomic_inc(&maple_tree_tests_passed);			\
786 	}								\
787 	unlikely(ret);							\
788 })
789 #else
790 #define MT_BUG_ON(__tree, __x)		BUG_ON(__x)
791 #define MAS_BUG_ON(__mas, __x)		BUG_ON(__x)
792 #define MAS_WR_BUG_ON(__mas, __x)	BUG_ON(__x)
793 #define MT_WARN_ON(__tree, __x)		WARN_ON(__x)
794 #define MAS_WARN_ON(__mas, __x)		WARN_ON(__x)
795 #define MAS_WR_WARN_ON(__mas, __x)	WARN_ON(__x)
796 #endif /* CONFIG_DEBUG_MAPLE_TREE */
797 
798 #endif /*_LINUX_MAPLE_TREE_H */
799