xref: /linux-6.15/include/linux/maple_tree.h (revision 799fb82a)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
4 /*
5  * Maple Tree - An RCU-safe adaptive tree for storing ranges
6  * Copyright (c) 2018-2022 Oracle
7  * Authors:     Liam R. Howlett <[email protected]>
8  *              Matthew Wilcox <[email protected]>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
15 
16 /*
17  * Allocated nodes are mutable until they have been inserted into the tree,
18  * at which time they cannot change their type until they have been removed
19  * from the tree and an RCU grace period has passed.
20  *
21  * Removed nodes have their ->parent set to point to themselves.  RCU readers
22  * check ->parent before relying on the value that they loaded from the
23  * slots array.  This lets us reuse the slots array for the RCU head.
24  *
25  * Nodes in the tree point to their parent unless bit 0 is set.
26  */
27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
28 /* 64bit sizes */
29 #define MAPLE_NODE_SLOTS	31	/* 256 bytes including ->parent */
30 #define MAPLE_RANGE64_SLOTS	16	/* 256 bytes */
31 #define MAPLE_ARANGE64_SLOTS	10	/* 240 bytes */
32 #define MAPLE_ARANGE64_META_MAX	15	/* Out of range for metadata */
33 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 1)
34 #else
35 /* 32bit sizes */
36 #define MAPLE_NODE_SLOTS	63	/* 256 bytes including ->parent */
37 #define MAPLE_RANGE64_SLOTS	32	/* 256 bytes */
38 #define MAPLE_ARANGE64_SLOTS	21	/* 240 bytes */
39 #define MAPLE_ARANGE64_META_MAX	31	/* Out of range for metadata */
40 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 2)
41 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
42 
43 #define MAPLE_NODE_MASK		255UL
44 
45 /*
46  * The node->parent of the root node has bit 0 set and the rest of the pointer
47  * is a pointer to the tree itself.  No more bits are available in this pointer
48  * (on m68k, the data structure may only be 2-byte aligned).
49  *
50  * Internal non-root nodes can only have maple_range_* nodes as parents.  The
51  * parent pointer is 256B aligned like all other tree nodes.  When storing a 32
52  * or 64 bit values, the offset can fit into 4 bits.  The 16 bit values need an
53  * extra bit to store the offset.  This extra bit comes from a reuse of the last
54  * bit in the node type.  This is possible by using bit 1 to indicate if bit 2
55  * is part of the type or the slot.
56  *
57  * Once the type is decided, the decision of an allocation range type or a range
58  * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE
59  * flag.
60  *
61  *  Node types:
62  *   0x??1 = Root
63  *   0x?00 = 16 bit nodes
64  *   0x010 = 32 bit nodes
65  *   0x110 = 64 bit nodes
66  *
67  *  Slot size and location in the parent pointer:
68  *   type  : slot location
69  *   0x??1 : Root
70  *   0x?00 : 16 bit values, type in 0-1, slot in 2-6
71  *   0x010 : 32 bit values, type in 0-2, slot in 3-6
72  *   0x110 : 64 bit values, type in 0-2, slot in 3-6
73  */
74 
75 /*
76  * This metadata is used to optimize the gap updating code and in reverse
77  * searching for gaps or any other code that needs to find the end of the data.
78  */
79 struct maple_metadata {
80 	unsigned char end;
81 	unsigned char gap;
82 };
83 
84 /*
85  * Leaf nodes do not store pointers to nodes, they store user data.  Users may
86  * store almost any bit pattern.  As noted above, the optimisation of storing an
87  * entry at 0 in the root pointer cannot be done for data which have the bottom
88  * two bits set to '10'.  We also reserve values with the bottom two bits set to
89  * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use.  Some APIs
90  * return errnos as a negative errno shifted right by two bits and the bottom
91  * two bits set to '10', and while choosing to store these values in the array
92  * is not an error, it may lead to confusion if you're testing for an error with
93  * mas_is_err().
94  *
95  * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
96  * 3-6), bit 2 is reserved.  That leaves bits 0-1 unused for now.
97  *
98  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
99  * indicate that the tree is specifying ranges,  Pivots may appear in the
100  * subtree with an entry attached to the value whereas keys are unique to a
101  * specific position of a B-tree.  Pivot values are inclusive of the slot with
102  * the same index.
103  */
104 
105 struct maple_range_64 {
106 	struct maple_pnode *parent;
107 	unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
108 	union {
109 		void __rcu *slot[MAPLE_RANGE64_SLOTS];
110 		struct {
111 			void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
112 			struct maple_metadata meta;
113 		};
114 	};
115 };
116 
117 /*
118  * At tree creation time, the user can specify that they're willing to trade off
119  * storing fewer entries in a tree in return for storing more information in
120  * each node.
121  *
122  * The maple tree supports recording the largest range of NULL entries available
123  * in this node, also called gaps.  This optimises the tree for allocating a
124  * range.
125  */
126 struct maple_arange_64 {
127 	struct maple_pnode *parent;
128 	unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
129 	void __rcu *slot[MAPLE_ARANGE64_SLOTS];
130 	unsigned long gap[MAPLE_ARANGE64_SLOTS];
131 	struct maple_metadata meta;
132 };
133 
134 struct maple_alloc {
135 	unsigned long total;
136 	unsigned char node_count;
137 	unsigned int request_count;
138 	struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
139 };
140 
141 struct maple_topiary {
142 	struct maple_pnode *parent;
143 	struct maple_enode *next; /* Overlaps the pivot */
144 };
145 
146 enum maple_type {
147 	maple_dense,
148 	maple_leaf_64,
149 	maple_range_64,
150 	maple_arange_64,
151 };
152 
153 
154 /**
155  * DOC: Maple tree flags
156  *
157  * * MT_FLAGS_ALLOC_RANGE	- Track gaps in this tree
158  * * MT_FLAGS_USE_RCU		- Operate in RCU mode
159  * * MT_FLAGS_HEIGHT_OFFSET	- The position of the tree height in the flags
160  * * MT_FLAGS_HEIGHT_MASK	- The mask for the maple tree height value
161  * * MT_FLAGS_LOCK_MASK		- How the mt_lock is used
162  * * MT_FLAGS_LOCK_IRQ		- Acquired irq-safe
163  * * MT_FLAGS_LOCK_BH		- Acquired bh-safe
164  * * MT_FLAGS_LOCK_EXTERN	- mt_lock is not used
165  *
166  * MAPLE_HEIGHT_MAX	The largest height that can be stored
167  */
168 #define MT_FLAGS_ALLOC_RANGE	0x01
169 #define MT_FLAGS_USE_RCU	0x02
170 #define MT_FLAGS_HEIGHT_OFFSET	0x02
171 #define MT_FLAGS_HEIGHT_MASK	0x7C
172 #define MT_FLAGS_LOCK_MASK	0x300
173 #define MT_FLAGS_LOCK_IRQ	0x100
174 #define MT_FLAGS_LOCK_BH	0x200
175 #define MT_FLAGS_LOCK_EXTERN	0x300
176 
177 #define MAPLE_HEIGHT_MAX	31
178 
179 
180 #define MAPLE_NODE_TYPE_MASK	0x0F
181 #define MAPLE_NODE_TYPE_SHIFT	0x03
182 
183 #define MAPLE_RESERVED_RANGE	4096
184 
185 #ifdef CONFIG_LOCKDEP
186 typedef struct lockdep_map *lockdep_map_p;
187 #define mt_lock_is_held(mt)	lock_is_held(mt->ma_external_lock)
188 #define mt_set_external_lock(mt, lock)					\
189 	(mt)->ma_external_lock = &(lock)->dep_map
190 #else
191 typedef struct { /* nothing */ } lockdep_map_p;
192 #define mt_lock_is_held(mt)	1
193 #define mt_set_external_lock(mt, lock)	do { } while (0)
194 #endif
195 
196 /*
197  * If the tree contains a single entry at index 0, it is usually stored in
198  * tree->ma_root.  To optimise for the page cache, an entry which ends in '00',
199  * '01' or '11' is stored in the root, but an entry which ends in '10' will be
200  * stored in a node.  Bits 3-6 are used to store enum maple_type.
201  *
202  * The flags are used both to store some immutable information about this tree
203  * (set at tree creation time) and dynamic information set under the spinlock.
204  *
205  * Another use of flags are to indicate global states of the tree.  This is the
206  * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
207  * RCU mode.  This mode was added to allow the tree to reuse nodes instead of
208  * re-allocating and RCU freeing nodes when there is a single user.
209  */
210 struct maple_tree {
211 	union {
212 		spinlock_t	ma_lock;
213 		lockdep_map_p	ma_external_lock;
214 	};
215 	void __rcu      *ma_root;
216 	unsigned int	ma_flags;
217 };
218 
219 /**
220  * MTREE_INIT() - Initialize a maple tree
221  * @name: The maple tree name
222  * @__flags: The maple tree flags
223  *
224  */
225 #define MTREE_INIT(name, __flags) {					\
226 	.ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock),		\
227 	.ma_flags = __flags,						\
228 	.ma_root = NULL,						\
229 }
230 
231 /**
232  * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
233  * @name: The tree name
234  * @__flags: The maple tree flags
235  * @__lock: The external lock
236  */
237 #ifdef CONFIG_LOCKDEP
238 #define MTREE_INIT_EXT(name, __flags, __lock) {				\
239 	.ma_external_lock = &(__lock).dep_map,				\
240 	.ma_flags = (__flags),						\
241 	.ma_root = NULL,						\
242 }
243 #else
244 #define MTREE_INIT_EXT(name, __flags, __lock)	MTREE_INIT(name, __flags)
245 #endif
246 
247 #define DEFINE_MTREE(name)						\
248 	struct maple_tree name = MTREE_INIT(name, 0)
249 
250 #define mtree_lock(mt)		spin_lock((&(mt)->ma_lock))
251 #define mtree_unlock(mt)	spin_unlock((&(mt)->ma_lock))
252 
253 /*
254  * The Maple Tree squeezes various bits in at various points which aren't
255  * necessarily obvious.  Usually, this is done by observing that pointers are
256  * N-byte aligned and thus the bottom log_2(N) bits are available for use.  We
257  * don't use the high bits of pointers to store additional information because
258  * we don't know what bits are unused on any given architecture.
259  *
260  * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
261  * low bits for our own purposes.  Nodes are currently of 4 types:
262  * 1. Single pointer (Range is 0-0)
263  * 2. Non-leaf Allocation Range nodes
264  * 3. Non-leaf Range nodes
265  * 4. Leaf Range nodes All nodes consist of a number of node slots,
266  *    pivots, and a parent pointer.
267  */
268 
269 struct maple_node {
270 	union {
271 		struct {
272 			struct maple_pnode *parent;
273 			void __rcu *slot[MAPLE_NODE_SLOTS];
274 		};
275 		struct {
276 			void *pad;
277 			struct rcu_head rcu;
278 			struct maple_enode *piv_parent;
279 			unsigned char parent_slot;
280 			enum maple_type type;
281 			unsigned char slot_len;
282 			unsigned int ma_flags;
283 		};
284 		struct maple_range_64 mr64;
285 		struct maple_arange_64 ma64;
286 		struct maple_alloc alloc;
287 	};
288 };
289 
290 /*
291  * More complicated stores can cause two nodes to become one or three and
292  * potentially alter the height of the tree.  Either half of the tree may need
293  * to be rebalanced against the other.  The ma_topiary struct is used to track
294  * which nodes have been 'cut' from the tree so that the change can be done
295  * safely at a later date.  This is done to support RCU.
296  */
297 struct ma_topiary {
298 	struct maple_enode *head;
299 	struct maple_enode *tail;
300 	struct maple_tree *mtree;
301 };
302 
303 void *mtree_load(struct maple_tree *mt, unsigned long index);
304 
305 int mtree_insert(struct maple_tree *mt, unsigned long index,
306 		void *entry, gfp_t gfp);
307 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
308 		unsigned long last, void *entry, gfp_t gfp);
309 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
310 		void *entry, unsigned long size, unsigned long min,
311 		unsigned long max, gfp_t gfp);
312 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
313 		void *entry, unsigned long size, unsigned long min,
314 		unsigned long max, gfp_t gfp);
315 
316 int mtree_store_range(struct maple_tree *mt, unsigned long first,
317 		      unsigned long last, void *entry, gfp_t gfp);
318 int mtree_store(struct maple_tree *mt, unsigned long index,
319 		void *entry, gfp_t gfp);
320 void *mtree_erase(struct maple_tree *mt, unsigned long index);
321 
322 void mtree_destroy(struct maple_tree *mt);
323 void __mt_destroy(struct maple_tree *mt);
324 
325 /**
326  * mtree_empty() - Determine if a tree has any present entries.
327  * @mt: Maple Tree.
328  *
329  * Context: Any context.
330  * Return: %true if the tree contains only NULL pointers.
331  */
332 static inline bool mtree_empty(const struct maple_tree *mt)
333 {
334 	return mt->ma_root == NULL;
335 }
336 
337 /* Advanced API */
338 
339 /*
340  * The maple state is defined in the struct ma_state and is used to keep track
341  * of information during operations, and even between operations when using the
342  * advanced API.
343  *
344  * If state->node has bit 0 set then it references a tree location which is not
345  * a node (eg the root).  If bit 1 is set, the rest of the bits are a negative
346  * errno.  Bit 2 (the 'unallocated slots' bit) is clear.  Bits 3-6 indicate the
347  * node type.
348  *
349  * state->alloc either has a request number of nodes or an allocated node.  If
350  * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
351  * and the remaining bits are the value.  If state->alloc is a node, then the
352  * node will be of type maple_alloc.  maple_alloc has MAPLE_NODE_SLOTS - 1 for
353  * storing more allocated nodes, a total number of nodes allocated, and the
354  * node_count in this node.  node_count is the number of allocated nodes in this
355  * node.  The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
356  * nodes into state->alloc->slot[0]'s node.  Nodes are taken from state->alloc
357  * by removing a node from the state->alloc node until state->alloc->node_count
358  * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
359  * to state->alloc.  Nodes are pushed onto state->alloc by putting the current
360  * state->alloc into the pushed node's slot[0].
361  *
362  * The state also contains the implied min/max of the state->node, the depth of
363  * this search, and the offset. The implied min/max are either from the parent
364  * node or are 0-oo for the root node.  The depth is incremented or decremented
365  * every time a node is walked down or up.  The offset is the slot/pivot of
366  * interest in the node - either for reading or writing.
367  *
368  * When returning a value the maple state index and last respectively contain
369  * the start and end of the range for the entry.  Ranges are inclusive in the
370  * Maple Tree.
371  */
372 struct ma_state {
373 	struct maple_tree *tree;	/* The tree we're operating in */
374 	unsigned long index;		/* The index we're operating on - range start */
375 	unsigned long last;		/* The last index we're operating on - range end */
376 	struct maple_enode *node;	/* The node containing this entry */
377 	unsigned long min;		/* The minimum index of this node - implied pivot min */
378 	unsigned long max;		/* The maximum index of this node - implied pivot max */
379 	struct maple_alloc *alloc;	/* Allocated nodes for this operation */
380 	unsigned char depth;		/* depth of tree descent during write */
381 	unsigned char offset;
382 	unsigned char mas_flags;
383 };
384 
385 struct ma_wr_state {
386 	struct ma_state *mas;
387 	struct maple_node *node;	/* Decoded mas->node */
388 	unsigned long r_min;		/* range min */
389 	unsigned long r_max;		/* range max */
390 	enum maple_type type;		/* mas->node type */
391 	unsigned char offset_end;	/* The offset where the write ends */
392 	unsigned char node_end;		/* mas->node end */
393 	unsigned long *pivots;		/* mas->node->pivots pointer */
394 	unsigned long end_piv;		/* The pivot at the offset end */
395 	void __rcu **slots;		/* mas->node->slots pointer */
396 	void *entry;			/* The entry to write */
397 	void *content;			/* The existing entry that is being overwritten */
398 };
399 
400 #define mas_lock(mas)           spin_lock(&((mas)->tree->ma_lock))
401 #define mas_unlock(mas)         spin_unlock(&((mas)->tree->ma_lock))
402 
403 
404 /*
405  * Special values for ma_state.node.
406  * MAS_START means we have not searched the tree.
407  * MAS_ROOT means we have searched the tree and the entry we found lives in
408  * the root of the tree (ie it has index 0, length 1 and is the only entry in
409  * the tree).
410  * MAS_NONE means we have searched the tree and there is no node in the
411  * tree for this entry.  For example, we searched for index 1 in an empty
412  * tree.  Or we have a tree which points to a full leaf node and we
413  * searched for an entry which is larger than can be contained in that
414  * leaf node.
415  * MA_ERROR represents an errno.  After dropping the lock and attempting
416  * to resolve the error, the walk would have to be restarted from the
417  * top of the tree as the tree may have been modified.
418  */
419 #define MAS_START	((struct maple_enode *)1UL)
420 #define MAS_ROOT	((struct maple_enode *)5UL)
421 #define MAS_NONE	((struct maple_enode *)9UL)
422 #define MAS_PAUSE	((struct maple_enode *)17UL)
423 #define MA_ERROR(err) \
424 		((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
425 
426 #define MA_STATE(name, mt, first, end)					\
427 	struct ma_state name = {					\
428 		.tree = mt,						\
429 		.index = first,						\
430 		.last = end,						\
431 		.node = MAS_START,					\
432 		.min = 0,						\
433 		.max = ULONG_MAX,					\
434 		.alloc = NULL,						\
435 	}
436 
437 #define MA_WR_STATE(name, ma_state, wr_entry)				\
438 	struct ma_wr_state name = {					\
439 		.mas = ma_state,					\
440 		.content = NULL,					\
441 		.entry = wr_entry,					\
442 	}
443 
444 #define MA_TOPIARY(name, tree)						\
445 	struct ma_topiary name = {					\
446 		.head = NULL,						\
447 		.tail = NULL,						\
448 		.mtree = tree,						\
449 	}
450 
451 void *mas_walk(struct ma_state *mas);
452 void *mas_store(struct ma_state *mas, void *entry);
453 void *mas_erase(struct ma_state *mas);
454 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
455 void mas_store_prealloc(struct ma_state *mas, void *entry);
456 void *mas_find(struct ma_state *mas, unsigned long max);
457 void *mas_find_rev(struct ma_state *mas, unsigned long min);
458 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
459 bool mas_is_err(struct ma_state *mas);
460 
461 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
462 void mas_pause(struct ma_state *mas);
463 void maple_tree_init(void);
464 void mas_destroy(struct ma_state *mas);
465 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
466 
467 void *mas_prev(struct ma_state *mas, unsigned long min);
468 void *mas_next(struct ma_state *mas, unsigned long max);
469 
470 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
471 		   unsigned long size);
472 
473 /* Checks if a mas has not found anything */
474 static inline bool mas_is_none(struct ma_state *mas)
475 {
476 	return mas->node == MAS_NONE;
477 }
478 
479 /* Checks if a mas has been paused */
480 static inline bool mas_is_paused(struct ma_state *mas)
481 {
482 	return mas->node == MAS_PAUSE;
483 }
484 
485 /*
486  * This finds an empty area from the highest address to the lowest.
487  * AKA "Topdown" version,
488  */
489 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
490 		       unsigned long max, unsigned long size);
491 /**
492  * mas_reset() - Reset a Maple Tree operation state.
493  * @mas: Maple Tree operation state.
494  *
495  * Resets the error or walk state of the @mas so future walks of the
496  * array will start from the root.  Use this if you have dropped the
497  * lock and want to reuse the ma_state.
498  *
499  * Context: Any context.
500  */
501 static inline void mas_reset(struct ma_state *mas)
502 {
503 	mas->node = MAS_START;
504 }
505 
506 /**
507  * mas_for_each() - Iterate over a range of the maple tree.
508  * @__mas: Maple Tree operation state (maple_state)
509  * @__entry: Entry retrieved from the tree
510  * @__max: maximum index to retrieve from the tree
511  *
512  * When returned, mas->index and mas->last will hold the entire range for the
513  * entry.
514  *
515  * Note: may return the zero entry.
516  */
517 #define mas_for_each(__mas, __entry, __max) \
518 	while (((__entry) = mas_find((__mas), (__max))) != NULL)
519 
520 
521 /**
522  * mas_set_range() - Set up Maple Tree operation state for a different index.
523  * @mas: Maple Tree operation state.
524  * @start: New start of range in the Maple Tree.
525  * @last: New end of range in the Maple Tree.
526  *
527  * Move the operation state to refer to a different range.  This will
528  * have the effect of starting a walk from the top; see mas_next()
529  * to move to an adjacent index.
530  */
531 static inline
532 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
533 {
534 	       mas->index = start;
535 	       mas->last = last;
536 	       mas->node = MAS_START;
537 }
538 
539 /**
540  * mas_set() - Set up Maple Tree operation state for a different index.
541  * @mas: Maple Tree operation state.
542  * @index: New index into the Maple Tree.
543  *
544  * Move the operation state to refer to a different index.  This will
545  * have the effect of starting a walk from the top; see mas_next()
546  * to move to an adjacent index.
547  */
548 static inline void mas_set(struct ma_state *mas, unsigned long index)
549 {
550 
551 	mas_set_range(mas, index, index);
552 }
553 
554 static inline bool mt_external_lock(const struct maple_tree *mt)
555 {
556 	return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
557 }
558 
559 /**
560  * mt_init_flags() - Initialise an empty maple tree with flags.
561  * @mt: Maple Tree
562  * @flags: maple tree flags.
563  *
564  * If you need to initialise a Maple Tree with special flags (eg, an
565  * allocation tree), use this function.
566  *
567  * Context: Any context.
568  */
569 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
570 {
571 	mt->ma_flags = flags;
572 	if (!mt_external_lock(mt))
573 		spin_lock_init(&mt->ma_lock);
574 	rcu_assign_pointer(mt->ma_root, NULL);
575 }
576 
577 /**
578  * mt_init() - Initialise an empty maple tree.
579  * @mt: Maple Tree
580  *
581  * An empty Maple Tree.
582  *
583  * Context: Any context.
584  */
585 static inline void mt_init(struct maple_tree *mt)
586 {
587 	mt_init_flags(mt, 0);
588 }
589 
590 static inline bool mt_in_rcu(struct maple_tree *mt)
591 {
592 #ifdef CONFIG_MAPLE_RCU_DISABLED
593 	return false;
594 #endif
595 	return mt->ma_flags & MT_FLAGS_USE_RCU;
596 }
597 
598 /**
599  * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
600  * @mt: The Maple Tree
601  */
602 static inline void mt_clear_in_rcu(struct maple_tree *mt)
603 {
604 	if (!mt_in_rcu(mt))
605 		return;
606 
607 	if (mt_external_lock(mt)) {
608 		BUG_ON(!mt_lock_is_held(mt));
609 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
610 	} else {
611 		mtree_lock(mt);
612 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
613 		mtree_unlock(mt);
614 	}
615 }
616 
617 /**
618  * mt_set_in_rcu() - Switch the tree to RCU safe mode.
619  * @mt: The Maple Tree
620  */
621 static inline void mt_set_in_rcu(struct maple_tree *mt)
622 {
623 	if (mt_in_rcu(mt))
624 		return;
625 
626 	if (mt_external_lock(mt)) {
627 		BUG_ON(!mt_lock_is_held(mt));
628 		mt->ma_flags |= MT_FLAGS_USE_RCU;
629 	} else {
630 		mtree_lock(mt);
631 		mt->ma_flags |= MT_FLAGS_USE_RCU;
632 		mtree_unlock(mt);
633 	}
634 }
635 
636 static inline unsigned int mt_height(const struct maple_tree *mt)
637 {
638 	return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
639 }
640 
641 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
642 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
643 		    unsigned long max);
644 void *mt_prev(struct maple_tree *mt, unsigned long index,  unsigned long min);
645 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
646 
647 /**
648  * mt_for_each - Iterate over each entry starting at index until max.
649  * @__tree: The Maple Tree
650  * @__entry: The current entry
651  * @__index: The index to update to track the location in the tree
652  * @__max: The maximum limit for @index
653  *
654  * Note: Will not return the zero entry.
655  */
656 #define mt_for_each(__tree, __entry, __index, __max) \
657 	for (__entry = mt_find(__tree, &(__index), __max); \
658 		__entry; __entry = mt_find_after(__tree, &(__index), __max))
659 
660 
661 #ifdef CONFIG_DEBUG_MAPLE_TREE
662 extern atomic_t maple_tree_tests_run;
663 extern atomic_t maple_tree_tests_passed;
664 
665 void mt_dump(const struct maple_tree *mt);
666 void mt_validate(struct maple_tree *mt);
667 void mt_cache_shrink(void);
668 #define MT_BUG_ON(__tree, __x) do {					\
669 	atomic_inc(&maple_tree_tests_run);				\
670 	if (__x) {							\
671 		pr_info("BUG at %s:%d (%u)\n",				\
672 		__func__, __LINE__, __x);				\
673 		mt_dump(__tree);					\
674 		pr_info("Pass: %u Run:%u\n",				\
675 			atomic_read(&maple_tree_tests_passed),		\
676 			atomic_read(&maple_tree_tests_run));		\
677 		dump_stack();						\
678 	} else {							\
679 		atomic_inc(&maple_tree_tests_passed);			\
680 	}								\
681 } while (0)
682 #else
683 #define MT_BUG_ON(__tree, __x) BUG_ON(__x)
684 #endif /* CONFIG_DEBUG_MAPLE_TREE */
685 
686 #endif /*_LINUX_MAPLE_TREE_H */
687