xref: /linux-6.15/include/linux/maple_tree.h (revision 5c590804)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
4 /*
5  * Maple Tree - An RCU-safe adaptive tree for storing ranges
6  * Copyright (c) 2018-2022 Oracle
7  * Authors:     Liam R. Howlett <[email protected]>
8  *              Matthew Wilcox <[email protected]>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
15 
16 /*
17  * Allocated nodes are mutable until they have been inserted into the tree,
18  * at which time they cannot change their type until they have been removed
19  * from the tree and an RCU grace period has passed.
20  *
21  * Removed nodes have their ->parent set to point to themselves.  RCU readers
22  * check ->parent before relying on the value that they loaded from the
23  * slots array.  This lets us reuse the slots array for the RCU head.
24  *
25  * Nodes in the tree point to their parent unless bit 0 is set.
26  */
27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
28 /* 64bit sizes */
29 #define MAPLE_NODE_SLOTS	31	/* 256 bytes including ->parent */
30 #define MAPLE_RANGE64_SLOTS	16	/* 256 bytes */
31 #define MAPLE_ARANGE64_SLOTS	10	/* 240 bytes */
32 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 1)
33 #else
34 /* 32bit sizes */
35 #define MAPLE_NODE_SLOTS	63	/* 256 bytes including ->parent */
36 #define MAPLE_RANGE64_SLOTS	32	/* 256 bytes */
37 #define MAPLE_ARANGE64_SLOTS	21	/* 240 bytes */
38 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 2)
39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
40 
41 #define MAPLE_NODE_MASK		255UL
42 
43 /*
44  * The node->parent of the root node has bit 0 set and the rest of the pointer
45  * is a pointer to the tree itself.  No more bits are available in this pointer
46  * (on m68k, the data structure may only be 2-byte aligned).
47  *
48  * Internal non-root nodes can only have maple_range_* nodes as parents.  The
49  * parent pointer is 256B aligned like all other tree nodes.  When storing a 32
50  * or 64 bit values, the offset can fit into 4 bits.  The 16 bit values need an
51  * extra bit to store the offset.  This extra bit comes from a reuse of the last
52  * bit in the node type.  This is possible by using bit 1 to indicate if bit 2
53  * is part of the type or the slot.
54  *
55  * Once the type is decided, the decision of an allocation range type or a range
56  * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE
57  * flag.
58  *
59  *  Node types:
60  *   0x??1 = Root
61  *   0x?00 = 16 bit nodes
62  *   0x010 = 32 bit nodes
63  *   0x110 = 64 bit nodes
64  *
65  *  Slot size and location in the parent pointer:
66  *   type  : slot location
67  *   0x??1 : Root
68  *   0x?00 : 16 bit values, type in 0-1, slot in 2-6
69  *   0x010 : 32 bit values, type in 0-2, slot in 3-6
70  *   0x110 : 64 bit values, type in 0-2, slot in 3-6
71  */
72 
73 /*
74  * This metadata is used to optimize the gap updating code and in reverse
75  * searching for gaps or any other code that needs to find the end of the data.
76  */
77 struct maple_metadata {
78 	unsigned char end;
79 	unsigned char gap;
80 };
81 
82 /*
83  * Leaf nodes do not store pointers to nodes, they store user data.  Users may
84  * store almost any bit pattern.  As noted above, the optimisation of storing an
85  * entry at 0 in the root pointer cannot be done for data which have the bottom
86  * two bits set to '10'.  We also reserve values with the bottom two bits set to
87  * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use.  Some APIs
88  * return errnos as a negative errno shifted right by two bits and the bottom
89  * two bits set to '10', and while choosing to store these values in the array
90  * is not an error, it may lead to confusion if you're testing for an error with
91  * mas_is_err().
92  *
93  * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
94  * 3-6), bit 2 is reserved.  That leaves bits 0-1 unused for now.
95  *
96  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
97  * indicate that the tree is specifying ranges,  Pivots may appear in the
98  * subtree with an entry attached to the value whereas keys are unique to a
99  * specific position of a B-tree.  Pivot values are inclusive of the slot with
100  * the same index.
101  */
102 
103 struct maple_range_64 {
104 	struct maple_pnode *parent;
105 	unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
106 	union {
107 		void __rcu *slot[MAPLE_RANGE64_SLOTS];
108 		struct {
109 			void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
110 			struct maple_metadata meta;
111 		};
112 	};
113 };
114 
115 /*
116  * At tree creation time, the user can specify that they're willing to trade off
117  * storing fewer entries in a tree in return for storing more information in
118  * each node.
119  *
120  * The maple tree supports recording the largest range of NULL entries available
121  * in this node, also called gaps.  This optimises the tree for allocating a
122  * range.
123  */
124 struct maple_arange_64 {
125 	struct maple_pnode *parent;
126 	unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
127 	void __rcu *slot[MAPLE_ARANGE64_SLOTS];
128 	unsigned long gap[MAPLE_ARANGE64_SLOTS];
129 	struct maple_metadata meta;
130 };
131 
132 struct maple_alloc {
133 	unsigned long total;
134 	unsigned char node_count;
135 	unsigned int request_count;
136 	struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
137 };
138 
139 struct maple_topiary {
140 	struct maple_pnode *parent;
141 	struct maple_enode *next; /* Overlaps the pivot */
142 };
143 
144 enum maple_type {
145 	maple_dense,
146 	maple_leaf_64,
147 	maple_range_64,
148 	maple_arange_64,
149 };
150 
151 
152 /**
153  * DOC: Maple tree flags
154  *
155  * * MT_FLAGS_ALLOC_RANGE	- Track gaps in this tree
156  * * MT_FLAGS_USE_RCU		- Operate in RCU mode
157  * * MT_FLAGS_HEIGHT_OFFSET	- The position of the tree height in the flags
158  * * MT_FLAGS_HEIGHT_MASK	- The mask for the maple tree height value
159  * * MT_FLAGS_LOCK_MASK		- How the mt_lock is used
160  * * MT_FLAGS_LOCK_IRQ		- Acquired irq-safe
161  * * MT_FLAGS_LOCK_BH		- Acquired bh-safe
162  * * MT_FLAGS_LOCK_EXTERN	- mt_lock is not used
163  *
164  * MAPLE_HEIGHT_MAX	The largest height that can be stored
165  */
166 #define MT_FLAGS_ALLOC_RANGE	0x01
167 #define MT_FLAGS_USE_RCU	0x02
168 #define MT_FLAGS_HEIGHT_OFFSET	0x02
169 #define MT_FLAGS_HEIGHT_MASK	0x7C
170 #define MT_FLAGS_LOCK_MASK	0x300
171 #define MT_FLAGS_LOCK_IRQ	0x100
172 #define MT_FLAGS_LOCK_BH	0x200
173 #define MT_FLAGS_LOCK_EXTERN	0x300
174 
175 #define MAPLE_HEIGHT_MAX	31
176 
177 
178 #define MAPLE_NODE_TYPE_MASK	0x0F
179 #define MAPLE_NODE_TYPE_SHIFT	0x03
180 
181 #define MAPLE_RESERVED_RANGE	4096
182 
183 #ifdef CONFIG_LOCKDEP
184 typedef struct lockdep_map *lockdep_map_p;
185 #define mt_lock_is_held(mt)                                             \
186 	(!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock))
187 
188 #define mt_write_lock_is_held(mt)					\
189 	(!(mt)->ma_external_lock ||					\
190 	 lock_is_held_type((mt)->ma_external_lock, 0))
191 
192 #define mt_set_external_lock(mt, lock)					\
193 	(mt)->ma_external_lock = &(lock)->dep_map
194 
195 #define mt_on_stack(mt)			(mt).ma_external_lock = NULL
196 #else
197 typedef struct { /* nothing */ } lockdep_map_p;
198 #define mt_lock_is_held(mt)		1
199 #define mt_write_lock_is_held(mt)	1
200 #define mt_set_external_lock(mt, lock)	do { } while (0)
201 #define mt_on_stack(mt)			do { } while (0)
202 #endif
203 
204 /*
205  * If the tree contains a single entry at index 0, it is usually stored in
206  * tree->ma_root.  To optimise for the page cache, an entry which ends in '00',
207  * '01' or '11' is stored in the root, but an entry which ends in '10' will be
208  * stored in a node.  Bits 3-6 are used to store enum maple_type.
209  *
210  * The flags are used both to store some immutable information about this tree
211  * (set at tree creation time) and dynamic information set under the spinlock.
212  *
213  * Another use of flags are to indicate global states of the tree.  This is the
214  * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
215  * RCU mode.  This mode was added to allow the tree to reuse nodes instead of
216  * re-allocating and RCU freeing nodes when there is a single user.
217  */
218 struct maple_tree {
219 	union {
220 		spinlock_t	ma_lock;
221 		lockdep_map_p	ma_external_lock;
222 	};
223 	unsigned int	ma_flags;
224 	void __rcu      *ma_root;
225 };
226 
227 /**
228  * MTREE_INIT() - Initialize a maple tree
229  * @name: The maple tree name
230  * @__flags: The maple tree flags
231  *
232  */
233 #define MTREE_INIT(name, __flags) {					\
234 	.ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock),		\
235 	.ma_flags = __flags,						\
236 	.ma_root = NULL,						\
237 }
238 
239 /**
240  * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
241  * @name: The tree name
242  * @__flags: The maple tree flags
243  * @__lock: The external lock
244  */
245 #ifdef CONFIG_LOCKDEP
246 #define MTREE_INIT_EXT(name, __flags, __lock) {				\
247 	.ma_external_lock = &(__lock).dep_map,				\
248 	.ma_flags = (__flags),						\
249 	.ma_root = NULL,						\
250 }
251 #else
252 #define MTREE_INIT_EXT(name, __flags, __lock)	MTREE_INIT(name, __flags)
253 #endif
254 
255 #define DEFINE_MTREE(name)						\
256 	struct maple_tree name = MTREE_INIT(name, 0)
257 
258 #define mtree_lock(mt)		spin_lock((&(mt)->ma_lock))
259 #define mtree_unlock(mt)	spin_unlock((&(mt)->ma_lock))
260 
261 /*
262  * The Maple Tree squeezes various bits in at various points which aren't
263  * necessarily obvious.  Usually, this is done by observing that pointers are
264  * N-byte aligned and thus the bottom log_2(N) bits are available for use.  We
265  * don't use the high bits of pointers to store additional information because
266  * we don't know what bits are unused on any given architecture.
267  *
268  * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
269  * low bits for our own purposes.  Nodes are currently of 4 types:
270  * 1. Single pointer (Range is 0-0)
271  * 2. Non-leaf Allocation Range nodes
272  * 3. Non-leaf Range nodes
273  * 4. Leaf Range nodes All nodes consist of a number of node slots,
274  *    pivots, and a parent pointer.
275  */
276 
277 struct maple_node {
278 	union {
279 		struct {
280 			struct maple_pnode *parent;
281 			void __rcu *slot[MAPLE_NODE_SLOTS];
282 		};
283 		struct {
284 			void *pad;
285 			struct rcu_head rcu;
286 			struct maple_enode *piv_parent;
287 			unsigned char parent_slot;
288 			enum maple_type type;
289 			unsigned char slot_len;
290 			unsigned int ma_flags;
291 		};
292 		struct maple_range_64 mr64;
293 		struct maple_arange_64 ma64;
294 		struct maple_alloc alloc;
295 	};
296 };
297 
298 /*
299  * More complicated stores can cause two nodes to become one or three and
300  * potentially alter the height of the tree.  Either half of the tree may need
301  * to be rebalanced against the other.  The ma_topiary struct is used to track
302  * which nodes have been 'cut' from the tree so that the change can be done
303  * safely at a later date.  This is done to support RCU.
304  */
305 struct ma_topiary {
306 	struct maple_enode *head;
307 	struct maple_enode *tail;
308 	struct maple_tree *mtree;
309 };
310 
311 void *mtree_load(struct maple_tree *mt, unsigned long index);
312 
313 int mtree_insert(struct maple_tree *mt, unsigned long index,
314 		void *entry, gfp_t gfp);
315 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
316 		unsigned long last, void *entry, gfp_t gfp);
317 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
318 		void *entry, unsigned long size, unsigned long min,
319 		unsigned long max, gfp_t gfp);
320 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
321 		void *entry, unsigned long size, unsigned long min,
322 		unsigned long max, gfp_t gfp);
323 
324 int mtree_store_range(struct maple_tree *mt, unsigned long first,
325 		      unsigned long last, void *entry, gfp_t gfp);
326 int mtree_store(struct maple_tree *mt, unsigned long index,
327 		void *entry, gfp_t gfp);
328 void *mtree_erase(struct maple_tree *mt, unsigned long index);
329 
330 void mtree_destroy(struct maple_tree *mt);
331 void __mt_destroy(struct maple_tree *mt);
332 
333 /**
334  * mtree_empty() - Determine if a tree has any present entries.
335  * @mt: Maple Tree.
336  *
337  * Context: Any context.
338  * Return: %true if the tree contains only NULL pointers.
339  */
340 static inline bool mtree_empty(const struct maple_tree *mt)
341 {
342 	return mt->ma_root == NULL;
343 }
344 
345 /* Advanced API */
346 
347 /*
348  * The maple state is defined in the struct ma_state and is used to keep track
349  * of information during operations, and even between operations when using the
350  * advanced API.
351  *
352  * If state->node has bit 0 set then it references a tree location which is not
353  * a node (eg the root).  If bit 1 is set, the rest of the bits are a negative
354  * errno.  Bit 2 (the 'unallocated slots' bit) is clear.  Bits 3-6 indicate the
355  * node type.
356  *
357  * state->alloc either has a request number of nodes or an allocated node.  If
358  * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
359  * and the remaining bits are the value.  If state->alloc is a node, then the
360  * node will be of type maple_alloc.  maple_alloc has MAPLE_NODE_SLOTS - 1 for
361  * storing more allocated nodes, a total number of nodes allocated, and the
362  * node_count in this node.  node_count is the number of allocated nodes in this
363  * node.  The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
364  * nodes into state->alloc->slot[0]'s node.  Nodes are taken from state->alloc
365  * by removing a node from the state->alloc node until state->alloc->node_count
366  * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
367  * to state->alloc.  Nodes are pushed onto state->alloc by putting the current
368  * state->alloc into the pushed node's slot[0].
369  *
370  * The state also contains the implied min/max of the state->node, the depth of
371  * this search, and the offset. The implied min/max are either from the parent
372  * node or are 0-oo for the root node.  The depth is incremented or decremented
373  * every time a node is walked down or up.  The offset is the slot/pivot of
374  * interest in the node - either for reading or writing.
375  *
376  * When returning a value the maple state index and last respectively contain
377  * the start and end of the range for the entry.  Ranges are inclusive in the
378  * Maple Tree.
379  */
380 struct ma_state {
381 	struct maple_tree *tree;	/* The tree we're operating in */
382 	unsigned long index;		/* The index we're operating on - range start */
383 	unsigned long last;		/* The last index we're operating on - range end */
384 	struct maple_enode *node;	/* The node containing this entry */
385 	unsigned long min;		/* The minimum index of this node - implied pivot min */
386 	unsigned long max;		/* The maximum index of this node - implied pivot max */
387 	struct maple_alloc *alloc;	/* Allocated nodes for this operation */
388 	unsigned char depth;		/* depth of tree descent during write */
389 	unsigned char offset;
390 	unsigned char mas_flags;
391 };
392 
393 struct ma_wr_state {
394 	struct ma_state *mas;
395 	struct maple_node *node;	/* Decoded mas->node */
396 	unsigned long r_min;		/* range min */
397 	unsigned long r_max;		/* range max */
398 	enum maple_type type;		/* mas->node type */
399 	unsigned char offset_end;	/* The offset where the write ends */
400 	unsigned char node_end;		/* mas->node end */
401 	unsigned long *pivots;		/* mas->node->pivots pointer */
402 	unsigned long end_piv;		/* The pivot at the offset end */
403 	void __rcu **slots;		/* mas->node->slots pointer */
404 	void *entry;			/* The entry to write */
405 	void *content;			/* The existing entry that is being overwritten */
406 };
407 
408 #define mas_lock(mas)           spin_lock(&((mas)->tree->ma_lock))
409 #define mas_unlock(mas)         spin_unlock(&((mas)->tree->ma_lock))
410 
411 
412 /*
413  * Special values for ma_state.node.
414  * MAS_START means we have not searched the tree.
415  * MAS_ROOT means we have searched the tree and the entry we found lives in
416  * the root of the tree (ie it has index 0, length 1 and is the only entry in
417  * the tree).
418  * MAS_NONE means we have searched the tree and there is no node in the
419  * tree for this entry.  For example, we searched for index 1 in an empty
420  * tree.  Or we have a tree which points to a full leaf node and we
421  * searched for an entry which is larger than can be contained in that
422  * leaf node.
423  * MA_ERROR represents an errno.  After dropping the lock and attempting
424  * to resolve the error, the walk would have to be restarted from the
425  * top of the tree as the tree may have been modified.
426  */
427 #define MAS_START	((struct maple_enode *)1UL)
428 #define MAS_ROOT	((struct maple_enode *)5UL)
429 #define MAS_NONE	((struct maple_enode *)9UL)
430 #define MAS_PAUSE	((struct maple_enode *)17UL)
431 #define MA_ERROR(err) \
432 		((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
433 
434 #define MA_STATE(name, mt, first, end)					\
435 	struct ma_state name = {					\
436 		.tree = mt,						\
437 		.index = first,						\
438 		.last = end,						\
439 		.node = MAS_START,					\
440 		.min = 0,						\
441 		.max = ULONG_MAX,					\
442 		.alloc = NULL,						\
443 		.mas_flags = 0,						\
444 	}
445 
446 #define MA_WR_STATE(name, ma_state, wr_entry)				\
447 	struct ma_wr_state name = {					\
448 		.mas = ma_state,					\
449 		.content = NULL,					\
450 		.entry = wr_entry,					\
451 	}
452 
453 #define MA_TOPIARY(name, tree)						\
454 	struct ma_topiary name = {					\
455 		.head = NULL,						\
456 		.tail = NULL,						\
457 		.mtree = tree,						\
458 	}
459 
460 void *mas_walk(struct ma_state *mas);
461 void *mas_store(struct ma_state *mas, void *entry);
462 void *mas_erase(struct ma_state *mas);
463 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
464 void mas_store_prealloc(struct ma_state *mas, void *entry);
465 void *mas_find(struct ma_state *mas, unsigned long max);
466 void *mas_find_range(struct ma_state *mas, unsigned long max);
467 void *mas_find_rev(struct ma_state *mas, unsigned long min);
468 void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
469 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
470 bool mas_is_err(struct ma_state *mas);
471 
472 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
473 void mas_pause(struct ma_state *mas);
474 void maple_tree_init(void);
475 void mas_destroy(struct ma_state *mas);
476 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
477 
478 void *mas_prev(struct ma_state *mas, unsigned long min);
479 void *mas_prev_range(struct ma_state *mas, unsigned long max);
480 void *mas_next(struct ma_state *mas, unsigned long max);
481 void *mas_next_range(struct ma_state *mas, unsigned long max);
482 
483 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
484 		   unsigned long size);
485 /*
486  * This finds an empty area from the highest address to the lowest.
487  * AKA "Topdown" version,
488  */
489 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
490 		       unsigned long max, unsigned long size);
491 
492 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
493 			    unsigned long addr)
494 {
495 	memset(mas, 0, sizeof(struct ma_state));
496 	mas->tree = tree;
497 	mas->index = mas->last = addr;
498 	mas->max = ULONG_MAX;
499 	mas->node = MAS_START;
500 }
501 
502 /* Checks if a mas has not found anything */
503 static inline bool mas_is_none(const struct ma_state *mas)
504 {
505 	return mas->node == MAS_NONE;
506 }
507 
508 /* Checks if a mas has been paused */
509 static inline bool mas_is_paused(const struct ma_state *mas)
510 {
511 	return mas->node == MAS_PAUSE;
512 }
513 
514 /* Check if the mas is pointing to a node or not */
515 static inline bool mas_is_active(struct ma_state *mas)
516 {
517 	if ((unsigned long)mas->node >= MAPLE_RESERVED_RANGE)
518 		return true;
519 
520 	return false;
521 }
522 
523 /**
524  * mas_reset() - Reset a Maple Tree operation state.
525  * @mas: Maple Tree operation state.
526  *
527  * Resets the error or walk state of the @mas so future walks of the
528  * array will start from the root.  Use this if you have dropped the
529  * lock and want to reuse the ma_state.
530  *
531  * Context: Any context.
532  */
533 static inline void mas_reset(struct ma_state *mas)
534 {
535 	mas->node = MAS_START;
536 }
537 
538 /**
539  * mas_for_each() - Iterate over a range of the maple tree.
540  * @__mas: Maple Tree operation state (maple_state)
541  * @__entry: Entry retrieved from the tree
542  * @__max: maximum index to retrieve from the tree
543  *
544  * When returned, mas->index and mas->last will hold the entire range for the
545  * entry.
546  *
547  * Note: may return the zero entry.
548  */
549 #define mas_for_each(__mas, __entry, __max) \
550 	while (((__entry) = mas_find((__mas), (__max))) != NULL)
551 /**
552  * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the
553  * current location.
554  * @mas: Maple Tree operation state.
555  * @start: New start of range in the Maple Tree.
556  * @last: New end of range in the Maple Tree.
557  *
558  * set the internal maple state values to a sub-range.
559  * Please use mas_set_range() if you do not know where you are in the tree.
560  */
561 static inline void __mas_set_range(struct ma_state *mas, unsigned long start,
562 		unsigned long last)
563 {
564 	mas->index = start;
565 	mas->last = last;
566 }
567 
568 /**
569  * mas_set_range() - Set up Maple Tree operation state for a different index.
570  * @mas: Maple Tree operation state.
571  * @start: New start of range in the Maple Tree.
572  * @last: New end of range in the Maple Tree.
573  *
574  * Move the operation state to refer to a different range.  This will
575  * have the effect of starting a walk from the top; see mas_next()
576  * to move to an adjacent index.
577  */
578 static inline
579 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
580 {
581 	__mas_set_range(mas, start, last);
582 	mas->node = MAS_START;
583 }
584 
585 /**
586  * mas_set() - Set up Maple Tree operation state for a different index.
587  * @mas: Maple Tree operation state.
588  * @index: New index into the Maple Tree.
589  *
590  * Move the operation state to refer to a different index.  This will
591  * have the effect of starting a walk from the top; see mas_next()
592  * to move to an adjacent index.
593  */
594 static inline void mas_set(struct ma_state *mas, unsigned long index)
595 {
596 
597 	mas_set_range(mas, index, index);
598 }
599 
600 static inline bool mt_external_lock(const struct maple_tree *mt)
601 {
602 	return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
603 }
604 
605 /**
606  * mt_init_flags() - Initialise an empty maple tree with flags.
607  * @mt: Maple Tree
608  * @flags: maple tree flags.
609  *
610  * If you need to initialise a Maple Tree with special flags (eg, an
611  * allocation tree), use this function.
612  *
613  * Context: Any context.
614  */
615 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
616 {
617 	mt->ma_flags = flags;
618 	if (!mt_external_lock(mt))
619 		spin_lock_init(&mt->ma_lock);
620 	rcu_assign_pointer(mt->ma_root, NULL);
621 }
622 
623 /**
624  * mt_init() - Initialise an empty maple tree.
625  * @mt: Maple Tree
626  *
627  * An empty Maple Tree.
628  *
629  * Context: Any context.
630  */
631 static inline void mt_init(struct maple_tree *mt)
632 {
633 	mt_init_flags(mt, 0);
634 }
635 
636 static inline bool mt_in_rcu(struct maple_tree *mt)
637 {
638 #ifdef CONFIG_MAPLE_RCU_DISABLED
639 	return false;
640 #endif
641 	return mt->ma_flags & MT_FLAGS_USE_RCU;
642 }
643 
644 /**
645  * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
646  * @mt: The Maple Tree
647  */
648 static inline void mt_clear_in_rcu(struct maple_tree *mt)
649 {
650 	if (!mt_in_rcu(mt))
651 		return;
652 
653 	if (mt_external_lock(mt)) {
654 		WARN_ON(!mt_lock_is_held(mt));
655 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
656 	} else {
657 		mtree_lock(mt);
658 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
659 		mtree_unlock(mt);
660 	}
661 }
662 
663 /**
664  * mt_set_in_rcu() - Switch the tree to RCU safe mode.
665  * @mt: The Maple Tree
666  */
667 static inline void mt_set_in_rcu(struct maple_tree *mt)
668 {
669 	if (mt_in_rcu(mt))
670 		return;
671 
672 	if (mt_external_lock(mt)) {
673 		WARN_ON(!mt_lock_is_held(mt));
674 		mt->ma_flags |= MT_FLAGS_USE_RCU;
675 	} else {
676 		mtree_lock(mt);
677 		mt->ma_flags |= MT_FLAGS_USE_RCU;
678 		mtree_unlock(mt);
679 	}
680 }
681 
682 static inline unsigned int mt_height(const struct maple_tree *mt)
683 {
684 	return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
685 }
686 
687 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
688 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
689 		    unsigned long max);
690 void *mt_prev(struct maple_tree *mt, unsigned long index,  unsigned long min);
691 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
692 
693 /**
694  * mt_for_each - Iterate over each entry starting at index until max.
695  * @__tree: The Maple Tree
696  * @__entry: The current entry
697  * @__index: The index to start the search from. Subsequently used as iterator.
698  * @__max: The maximum limit for @index
699  *
700  * This iterator skips all entries, which resolve to a NULL pointer,
701  * e.g. entries which has been reserved with XA_ZERO_ENTRY.
702  */
703 #define mt_for_each(__tree, __entry, __index, __max) \
704 	for (__entry = mt_find(__tree, &(__index), __max); \
705 		__entry; __entry = mt_find_after(__tree, &(__index), __max))
706 
707 
708 #ifdef CONFIG_DEBUG_MAPLE_TREE
709 enum mt_dump_format {
710 	mt_dump_dec,
711 	mt_dump_hex,
712 };
713 
714 extern atomic_t maple_tree_tests_run;
715 extern atomic_t maple_tree_tests_passed;
716 
717 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
718 void mas_dump(const struct ma_state *mas);
719 void mas_wr_dump(const struct ma_wr_state *wr_mas);
720 void mt_validate(struct maple_tree *mt);
721 void mt_cache_shrink(void);
722 #define MT_BUG_ON(__tree, __x) do {					\
723 	atomic_inc(&maple_tree_tests_run);				\
724 	if (__x) {							\
725 		pr_info("BUG at %s:%d (%u)\n",				\
726 		__func__, __LINE__, __x);				\
727 		mt_dump(__tree, mt_dump_hex);				\
728 		pr_info("Pass: %u Run:%u\n",				\
729 			atomic_read(&maple_tree_tests_passed),		\
730 			atomic_read(&maple_tree_tests_run));		\
731 		dump_stack();						\
732 	} else {							\
733 		atomic_inc(&maple_tree_tests_passed);			\
734 	}								\
735 } while (0)
736 
737 #define MAS_BUG_ON(__mas, __x) do {					\
738 	atomic_inc(&maple_tree_tests_run);				\
739 	if (__x) {							\
740 		pr_info("BUG at %s:%d (%u)\n",				\
741 		__func__, __LINE__, __x);				\
742 		mas_dump(__mas);					\
743 		mt_dump((__mas)->tree, mt_dump_hex);			\
744 		pr_info("Pass: %u Run:%u\n",				\
745 			atomic_read(&maple_tree_tests_passed),		\
746 			atomic_read(&maple_tree_tests_run));		\
747 		dump_stack();						\
748 	} else {							\
749 		atomic_inc(&maple_tree_tests_passed);			\
750 	}								\
751 } while (0)
752 
753 #define MAS_WR_BUG_ON(__wrmas, __x) do {				\
754 	atomic_inc(&maple_tree_tests_run);				\
755 	if (__x) {							\
756 		pr_info("BUG at %s:%d (%u)\n",				\
757 		__func__, __LINE__, __x);				\
758 		mas_wr_dump(__wrmas);					\
759 		mas_dump((__wrmas)->mas);				\
760 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
761 		pr_info("Pass: %u Run:%u\n",				\
762 			atomic_read(&maple_tree_tests_passed),		\
763 			atomic_read(&maple_tree_tests_run));		\
764 		dump_stack();						\
765 	} else {							\
766 		atomic_inc(&maple_tree_tests_passed);			\
767 	}								\
768 } while (0)
769 
770 #define MT_WARN_ON(__tree, __x)  ({					\
771 	int ret = !!(__x);						\
772 	atomic_inc(&maple_tree_tests_run);				\
773 	if (ret) {							\
774 		pr_info("WARN at %s:%d (%u)\n",				\
775 		__func__, __LINE__, __x);				\
776 		mt_dump(__tree, mt_dump_hex);				\
777 		pr_info("Pass: %u Run:%u\n",				\
778 			atomic_read(&maple_tree_tests_passed),		\
779 			atomic_read(&maple_tree_tests_run));		\
780 		dump_stack();						\
781 	} else {							\
782 		atomic_inc(&maple_tree_tests_passed);			\
783 	}								\
784 	unlikely(ret);							\
785 })
786 
787 #define MAS_WARN_ON(__mas, __x) ({					\
788 	int ret = !!(__x);						\
789 	atomic_inc(&maple_tree_tests_run);				\
790 	if (ret) {							\
791 		pr_info("WARN at %s:%d (%u)\n",				\
792 		__func__, __LINE__, __x);				\
793 		mas_dump(__mas);					\
794 		mt_dump((__mas)->tree, mt_dump_hex);			\
795 		pr_info("Pass: %u Run:%u\n",				\
796 			atomic_read(&maple_tree_tests_passed),		\
797 			atomic_read(&maple_tree_tests_run));		\
798 		dump_stack();						\
799 	} else {							\
800 		atomic_inc(&maple_tree_tests_passed);			\
801 	}								\
802 	unlikely(ret);							\
803 })
804 
805 #define MAS_WR_WARN_ON(__wrmas, __x) ({					\
806 	int ret = !!(__x);						\
807 	atomic_inc(&maple_tree_tests_run);				\
808 	if (ret) {							\
809 		pr_info("WARN at %s:%d (%u)\n",				\
810 		__func__, __LINE__, __x);				\
811 		mas_wr_dump(__wrmas);					\
812 		mas_dump((__wrmas)->mas);				\
813 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
814 		pr_info("Pass: %u Run:%u\n",				\
815 			atomic_read(&maple_tree_tests_passed),		\
816 			atomic_read(&maple_tree_tests_run));		\
817 		dump_stack();						\
818 	} else {							\
819 		atomic_inc(&maple_tree_tests_passed);			\
820 	}								\
821 	unlikely(ret);							\
822 })
823 #else
824 #define MT_BUG_ON(__tree, __x)		BUG_ON(__x)
825 #define MAS_BUG_ON(__mas, __x)		BUG_ON(__x)
826 #define MAS_WR_BUG_ON(__mas, __x)	BUG_ON(__x)
827 #define MT_WARN_ON(__tree, __x)		WARN_ON(__x)
828 #define MAS_WARN_ON(__mas, __x)		WARN_ON(__x)
829 #define MAS_WR_WARN_ON(__mas, __x)	WARN_ON(__x)
830 #endif /* CONFIG_DEBUG_MAPLE_TREE */
831 
832 #endif /*_LINUX_MAPLE_TREE_H */
833