1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_MAPLE_TREE_H 3 #define _LINUX_MAPLE_TREE_H 4 /* 5 * Maple Tree - An RCU-safe adaptive tree for storing ranges 6 * Copyright (c) 2018-2022 Oracle 7 * Authors: Liam R. Howlett <[email protected]> 8 * Matthew Wilcox <[email protected]> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/rcupdate.h> 13 #include <linux/spinlock.h> 14 /* #define CONFIG_MAPLE_RCU_DISABLED */ 15 16 /* 17 * Allocated nodes are mutable until they have been inserted into the tree, 18 * at which time they cannot change their type until they have been removed 19 * from the tree and an RCU grace period has passed. 20 * 21 * Removed nodes have their ->parent set to point to themselves. RCU readers 22 * check ->parent before relying on the value that they loaded from the 23 * slots array. This lets us reuse the slots array for the RCU head. 24 * 25 * Nodes in the tree point to their parent unless bit 0 is set. 26 */ 27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) 28 /* 64bit sizes */ 29 #define MAPLE_NODE_SLOTS 31 /* 256 bytes including ->parent */ 30 #define MAPLE_RANGE64_SLOTS 16 /* 256 bytes */ 31 #define MAPLE_ARANGE64_SLOTS 10 /* 240 bytes */ 32 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 1) 33 #else 34 /* 32bit sizes */ 35 #define MAPLE_NODE_SLOTS 63 /* 256 bytes including ->parent */ 36 #define MAPLE_RANGE64_SLOTS 32 /* 256 bytes */ 37 #define MAPLE_ARANGE64_SLOTS 21 /* 240 bytes */ 38 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 2) 39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */ 40 41 #define MAPLE_NODE_MASK 255UL 42 43 /* 44 * The node->parent of the root node has bit 0 set and the rest of the pointer 45 * is a pointer to the tree itself. No more bits are available in this pointer 46 * (on m68k, the data structure may only be 2-byte aligned). 47 * 48 * Internal non-root nodes can only have maple_range_* nodes as parents. The 49 * parent pointer is 256B aligned like all other tree nodes. When storing a 32 50 * or 64 bit values, the offset can fit into 4 bits. The 16 bit values need an 51 * extra bit to store the offset. This extra bit comes from a reuse of the last 52 * bit in the node type. This is possible by using bit 1 to indicate if bit 2 53 * is part of the type or the slot. 54 * 55 * Once the type is decided, the decision of an allocation range type or a range 56 * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE 57 * flag. 58 * 59 * Node types: 60 * 0x??1 = Root 61 * 0x?00 = 16 bit nodes 62 * 0x010 = 32 bit nodes 63 * 0x110 = 64 bit nodes 64 * 65 * Slot size and location in the parent pointer: 66 * type : slot location 67 * 0x??1 : Root 68 * 0x?00 : 16 bit values, type in 0-1, slot in 2-6 69 * 0x010 : 32 bit values, type in 0-2, slot in 3-6 70 * 0x110 : 64 bit values, type in 0-2, slot in 3-6 71 */ 72 73 /* 74 * This metadata is used to optimize the gap updating code and in reverse 75 * searching for gaps or any other code that needs to find the end of the data. 76 */ 77 struct maple_metadata { 78 unsigned char end; 79 unsigned char gap; 80 }; 81 82 /* 83 * Leaf nodes do not store pointers to nodes, they store user data. Users may 84 * store almost any bit pattern. As noted above, the optimisation of storing an 85 * entry at 0 in the root pointer cannot be done for data which have the bottom 86 * two bits set to '10'. We also reserve values with the bottom two bits set to 87 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use. Some APIs 88 * return errnos as a negative errno shifted right by two bits and the bottom 89 * two bits set to '10', and while choosing to store these values in the array 90 * is not an error, it may lead to confusion if you're testing for an error with 91 * mas_is_err(). 92 * 93 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits 94 * 3-6), bit 2 is reserved. That leaves bits 0-1 unused for now. 95 * 96 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 97 * indicate that the tree is specifying ranges, Pivots may appear in the 98 * subtree with an entry attached to the value whereas keys are unique to a 99 * specific position of a B-tree. Pivot values are inclusive of the slot with 100 * the same index. 101 */ 102 103 struct maple_range_64 { 104 struct maple_pnode *parent; 105 unsigned long pivot[MAPLE_RANGE64_SLOTS - 1]; 106 union { 107 void __rcu *slot[MAPLE_RANGE64_SLOTS]; 108 struct { 109 void __rcu *pad[MAPLE_RANGE64_SLOTS - 1]; 110 struct maple_metadata meta; 111 }; 112 }; 113 }; 114 115 /* 116 * At tree creation time, the user can specify that they're willing to trade off 117 * storing fewer entries in a tree in return for storing more information in 118 * each node. 119 * 120 * The maple tree supports recording the largest range of NULL entries available 121 * in this node, also called gaps. This optimises the tree for allocating a 122 * range. 123 */ 124 struct maple_arange_64 { 125 struct maple_pnode *parent; 126 unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1]; 127 void __rcu *slot[MAPLE_ARANGE64_SLOTS]; 128 unsigned long gap[MAPLE_ARANGE64_SLOTS]; 129 struct maple_metadata meta; 130 }; 131 132 struct maple_alloc { 133 unsigned long total; 134 unsigned char node_count; 135 unsigned int request_count; 136 struct maple_alloc *slot[MAPLE_ALLOC_SLOTS]; 137 }; 138 139 struct maple_topiary { 140 struct maple_pnode *parent; 141 struct maple_enode *next; /* Overlaps the pivot */ 142 }; 143 144 enum maple_type { 145 maple_dense, 146 maple_leaf_64, 147 maple_range_64, 148 maple_arange_64, 149 }; 150 151 152 /** 153 * DOC: Maple tree flags 154 * 155 * * MT_FLAGS_ALLOC_RANGE - Track gaps in this tree 156 * * MT_FLAGS_USE_RCU - Operate in RCU mode 157 * * MT_FLAGS_HEIGHT_OFFSET - The position of the tree height in the flags 158 * * MT_FLAGS_HEIGHT_MASK - The mask for the maple tree height value 159 * * MT_FLAGS_LOCK_MASK - How the mt_lock is used 160 * * MT_FLAGS_LOCK_IRQ - Acquired irq-safe 161 * * MT_FLAGS_LOCK_BH - Acquired bh-safe 162 * * MT_FLAGS_LOCK_EXTERN - mt_lock is not used 163 * 164 * MAPLE_HEIGHT_MAX The largest height that can be stored 165 */ 166 #define MT_FLAGS_ALLOC_RANGE 0x01 167 #define MT_FLAGS_USE_RCU 0x02 168 #define MT_FLAGS_HEIGHT_OFFSET 0x02 169 #define MT_FLAGS_HEIGHT_MASK 0x7C 170 #define MT_FLAGS_LOCK_MASK 0x300 171 #define MT_FLAGS_LOCK_IRQ 0x100 172 #define MT_FLAGS_LOCK_BH 0x200 173 #define MT_FLAGS_LOCK_EXTERN 0x300 174 175 #define MAPLE_HEIGHT_MAX 31 176 177 178 #define MAPLE_NODE_TYPE_MASK 0x0F 179 #define MAPLE_NODE_TYPE_SHIFT 0x03 180 181 #define MAPLE_RESERVED_RANGE 4096 182 183 #ifdef CONFIG_LOCKDEP 184 typedef struct lockdep_map *lockdep_map_p; 185 #define mt_lock_is_held(mt) \ 186 (!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock)) 187 188 #define mt_set_external_lock(mt, lock) \ 189 (mt)->ma_external_lock = &(lock)->dep_map 190 191 #define mt_on_stack(mt) (mt).ma_external_lock = NULL 192 #else 193 typedef struct { /* nothing */ } lockdep_map_p; 194 #define mt_lock_is_held(mt) 1 195 #define mt_set_external_lock(mt, lock) do { } while (0) 196 #define mt_on_stack(mt) do { } while (0) 197 #endif 198 199 /* 200 * If the tree contains a single entry at index 0, it is usually stored in 201 * tree->ma_root. To optimise for the page cache, an entry which ends in '00', 202 * '01' or '11' is stored in the root, but an entry which ends in '10' will be 203 * stored in a node. Bits 3-6 are used to store enum maple_type. 204 * 205 * The flags are used both to store some immutable information about this tree 206 * (set at tree creation time) and dynamic information set under the spinlock. 207 * 208 * Another use of flags are to indicate global states of the tree. This is the 209 * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in 210 * RCU mode. This mode was added to allow the tree to reuse nodes instead of 211 * re-allocating and RCU freeing nodes when there is a single user. 212 */ 213 struct maple_tree { 214 union { 215 spinlock_t ma_lock; 216 lockdep_map_p ma_external_lock; 217 }; 218 void __rcu *ma_root; 219 unsigned int ma_flags; 220 }; 221 222 /** 223 * MTREE_INIT() - Initialize a maple tree 224 * @name: The maple tree name 225 * @__flags: The maple tree flags 226 * 227 */ 228 #define MTREE_INIT(name, __flags) { \ 229 .ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock), \ 230 .ma_flags = __flags, \ 231 .ma_root = NULL, \ 232 } 233 234 /** 235 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock. 236 * @name: The tree name 237 * @__flags: The maple tree flags 238 * @__lock: The external lock 239 */ 240 #ifdef CONFIG_LOCKDEP 241 #define MTREE_INIT_EXT(name, __flags, __lock) { \ 242 .ma_external_lock = &(__lock).dep_map, \ 243 .ma_flags = (__flags), \ 244 .ma_root = NULL, \ 245 } 246 #else 247 #define MTREE_INIT_EXT(name, __flags, __lock) MTREE_INIT(name, __flags) 248 #endif 249 250 #define DEFINE_MTREE(name) \ 251 struct maple_tree name = MTREE_INIT(name, 0) 252 253 #define mtree_lock(mt) spin_lock((&(mt)->ma_lock)) 254 #define mtree_unlock(mt) spin_unlock((&(mt)->ma_lock)) 255 256 /* 257 * The Maple Tree squeezes various bits in at various points which aren't 258 * necessarily obvious. Usually, this is done by observing that pointers are 259 * N-byte aligned and thus the bottom log_2(N) bits are available for use. We 260 * don't use the high bits of pointers to store additional information because 261 * we don't know what bits are unused on any given architecture. 262 * 263 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8 264 * low bits for our own purposes. Nodes are currently of 4 types: 265 * 1. Single pointer (Range is 0-0) 266 * 2. Non-leaf Allocation Range nodes 267 * 3. Non-leaf Range nodes 268 * 4. Leaf Range nodes All nodes consist of a number of node slots, 269 * pivots, and a parent pointer. 270 */ 271 272 struct maple_node { 273 union { 274 struct { 275 struct maple_pnode *parent; 276 void __rcu *slot[MAPLE_NODE_SLOTS]; 277 }; 278 struct { 279 void *pad; 280 struct rcu_head rcu; 281 struct maple_enode *piv_parent; 282 unsigned char parent_slot; 283 enum maple_type type; 284 unsigned char slot_len; 285 unsigned int ma_flags; 286 }; 287 struct maple_range_64 mr64; 288 struct maple_arange_64 ma64; 289 struct maple_alloc alloc; 290 }; 291 }; 292 293 /* 294 * More complicated stores can cause two nodes to become one or three and 295 * potentially alter the height of the tree. Either half of the tree may need 296 * to be rebalanced against the other. The ma_topiary struct is used to track 297 * which nodes have been 'cut' from the tree so that the change can be done 298 * safely at a later date. This is done to support RCU. 299 */ 300 struct ma_topiary { 301 struct maple_enode *head; 302 struct maple_enode *tail; 303 struct maple_tree *mtree; 304 }; 305 306 void *mtree_load(struct maple_tree *mt, unsigned long index); 307 308 int mtree_insert(struct maple_tree *mt, unsigned long index, 309 void *entry, gfp_t gfp); 310 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 311 unsigned long last, void *entry, gfp_t gfp); 312 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 313 void *entry, unsigned long size, unsigned long min, 314 unsigned long max, gfp_t gfp); 315 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 316 void *entry, unsigned long size, unsigned long min, 317 unsigned long max, gfp_t gfp); 318 319 int mtree_store_range(struct maple_tree *mt, unsigned long first, 320 unsigned long last, void *entry, gfp_t gfp); 321 int mtree_store(struct maple_tree *mt, unsigned long index, 322 void *entry, gfp_t gfp); 323 void *mtree_erase(struct maple_tree *mt, unsigned long index); 324 325 void mtree_destroy(struct maple_tree *mt); 326 void __mt_destroy(struct maple_tree *mt); 327 328 /** 329 * mtree_empty() - Determine if a tree has any present entries. 330 * @mt: Maple Tree. 331 * 332 * Context: Any context. 333 * Return: %true if the tree contains only NULL pointers. 334 */ 335 static inline bool mtree_empty(const struct maple_tree *mt) 336 { 337 return mt->ma_root == NULL; 338 } 339 340 /* Advanced API */ 341 342 /* 343 * The maple state is defined in the struct ma_state and is used to keep track 344 * of information during operations, and even between operations when using the 345 * advanced API. 346 * 347 * If state->node has bit 0 set then it references a tree location which is not 348 * a node (eg the root). If bit 1 is set, the rest of the bits are a negative 349 * errno. Bit 2 (the 'unallocated slots' bit) is clear. Bits 3-6 indicate the 350 * node type. 351 * 352 * state->alloc either has a request number of nodes or an allocated node. If 353 * stat->alloc has a requested number of nodes, the first bit will be set (0x1) 354 * and the remaining bits are the value. If state->alloc is a node, then the 355 * node will be of type maple_alloc. maple_alloc has MAPLE_NODE_SLOTS - 1 for 356 * storing more allocated nodes, a total number of nodes allocated, and the 357 * node_count in this node. node_count is the number of allocated nodes in this 358 * node. The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further 359 * nodes into state->alloc->slot[0]'s node. Nodes are taken from state->alloc 360 * by removing a node from the state->alloc node until state->alloc->node_count 361 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted 362 * to state->alloc. Nodes are pushed onto state->alloc by putting the current 363 * state->alloc into the pushed node's slot[0]. 364 * 365 * The state also contains the implied min/max of the state->node, the depth of 366 * this search, and the offset. The implied min/max are either from the parent 367 * node or are 0-oo for the root node. The depth is incremented or decremented 368 * every time a node is walked down or up. The offset is the slot/pivot of 369 * interest in the node - either for reading or writing. 370 * 371 * When returning a value the maple state index and last respectively contain 372 * the start and end of the range for the entry. Ranges are inclusive in the 373 * Maple Tree. 374 */ 375 struct ma_state { 376 struct maple_tree *tree; /* The tree we're operating in */ 377 unsigned long index; /* The index we're operating on - range start */ 378 unsigned long last; /* The last index we're operating on - range end */ 379 struct maple_enode *node; /* The node containing this entry */ 380 unsigned long min; /* The minimum index of this node - implied pivot min */ 381 unsigned long max; /* The maximum index of this node - implied pivot max */ 382 struct maple_alloc *alloc; /* Allocated nodes for this operation */ 383 unsigned char depth; /* depth of tree descent during write */ 384 unsigned char offset; 385 unsigned char mas_flags; 386 }; 387 388 struct ma_wr_state { 389 struct ma_state *mas; 390 struct maple_node *node; /* Decoded mas->node */ 391 unsigned long r_min; /* range min */ 392 unsigned long r_max; /* range max */ 393 enum maple_type type; /* mas->node type */ 394 unsigned char offset_end; /* The offset where the write ends */ 395 unsigned char node_end; /* mas->node end */ 396 unsigned long *pivots; /* mas->node->pivots pointer */ 397 unsigned long end_piv; /* The pivot at the offset end */ 398 void __rcu **slots; /* mas->node->slots pointer */ 399 void *entry; /* The entry to write */ 400 void *content; /* The existing entry that is being overwritten */ 401 }; 402 403 #define mas_lock(mas) spin_lock(&((mas)->tree->ma_lock)) 404 #define mas_unlock(mas) spin_unlock(&((mas)->tree->ma_lock)) 405 406 407 /* 408 * Special values for ma_state.node. 409 * MAS_START means we have not searched the tree. 410 * MAS_ROOT means we have searched the tree and the entry we found lives in 411 * the root of the tree (ie it has index 0, length 1 and is the only entry in 412 * the tree). 413 * MAS_NONE means we have searched the tree and there is no node in the 414 * tree for this entry. For example, we searched for index 1 in an empty 415 * tree. Or we have a tree which points to a full leaf node and we 416 * searched for an entry which is larger than can be contained in that 417 * leaf node. 418 * MA_ERROR represents an errno. After dropping the lock and attempting 419 * to resolve the error, the walk would have to be restarted from the 420 * top of the tree as the tree may have been modified. 421 */ 422 #define MAS_START ((struct maple_enode *)1UL) 423 #define MAS_ROOT ((struct maple_enode *)5UL) 424 #define MAS_NONE ((struct maple_enode *)9UL) 425 #define MAS_PAUSE ((struct maple_enode *)17UL) 426 #define MA_ERROR(err) \ 427 ((struct maple_enode *)(((unsigned long)err << 2) | 2UL)) 428 429 #define MA_STATE(name, mt, first, end) \ 430 struct ma_state name = { \ 431 .tree = mt, \ 432 .index = first, \ 433 .last = end, \ 434 .node = MAS_START, \ 435 .min = 0, \ 436 .max = ULONG_MAX, \ 437 .alloc = NULL, \ 438 .mas_flags = 0, \ 439 } 440 441 #define MA_WR_STATE(name, ma_state, wr_entry) \ 442 struct ma_wr_state name = { \ 443 .mas = ma_state, \ 444 .content = NULL, \ 445 .entry = wr_entry, \ 446 } 447 448 #define MA_TOPIARY(name, tree) \ 449 struct ma_topiary name = { \ 450 .head = NULL, \ 451 .tail = NULL, \ 452 .mtree = tree, \ 453 } 454 455 void *mas_walk(struct ma_state *mas); 456 void *mas_store(struct ma_state *mas, void *entry); 457 void *mas_erase(struct ma_state *mas); 458 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp); 459 void mas_store_prealloc(struct ma_state *mas, void *entry); 460 void *mas_find(struct ma_state *mas, unsigned long max); 461 void *mas_find_range(struct ma_state *mas, unsigned long max); 462 void *mas_find_rev(struct ma_state *mas, unsigned long min); 463 void *mas_find_range_rev(struct ma_state *mas, unsigned long max); 464 int mas_preallocate(struct ma_state *mas, gfp_t gfp); 465 bool mas_is_err(struct ma_state *mas); 466 467 bool mas_nomem(struct ma_state *mas, gfp_t gfp); 468 void mas_pause(struct ma_state *mas); 469 void maple_tree_init(void); 470 void mas_destroy(struct ma_state *mas); 471 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries); 472 473 void *mas_prev(struct ma_state *mas, unsigned long min); 474 void *mas_prev_range(struct ma_state *mas, unsigned long max); 475 void *mas_next(struct ma_state *mas, unsigned long max); 476 void *mas_next_range(struct ma_state *mas, unsigned long max); 477 478 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max, 479 unsigned long size); 480 /* 481 * This finds an empty area from the highest address to the lowest. 482 * AKA "Topdown" version, 483 */ 484 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 485 unsigned long max, unsigned long size); 486 487 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree, 488 unsigned long addr) 489 { 490 memset(mas, 0, sizeof(struct ma_state)); 491 mas->tree = tree; 492 mas->index = mas->last = addr; 493 mas->max = ULONG_MAX; 494 mas->node = MAS_START; 495 } 496 497 /* Checks if a mas has not found anything */ 498 static inline bool mas_is_none(const struct ma_state *mas) 499 { 500 return mas->node == MAS_NONE; 501 } 502 503 /* Checks if a mas has been paused */ 504 static inline bool mas_is_paused(const struct ma_state *mas) 505 { 506 return mas->node == MAS_PAUSE; 507 } 508 509 /** 510 * mas_reset() - Reset a Maple Tree operation state. 511 * @mas: Maple Tree operation state. 512 * 513 * Resets the error or walk state of the @mas so future walks of the 514 * array will start from the root. Use this if you have dropped the 515 * lock and want to reuse the ma_state. 516 * 517 * Context: Any context. 518 */ 519 static inline void mas_reset(struct ma_state *mas) 520 { 521 mas->node = MAS_START; 522 } 523 524 /** 525 * mas_for_each() - Iterate over a range of the maple tree. 526 * @__mas: Maple Tree operation state (maple_state) 527 * @__entry: Entry retrieved from the tree 528 * @__max: maximum index to retrieve from the tree 529 * 530 * When returned, mas->index and mas->last will hold the entire range for the 531 * entry. 532 * 533 * Note: may return the zero entry. 534 */ 535 #define mas_for_each(__mas, __entry, __max) \ 536 while (((__entry) = mas_find((__mas), (__max))) != NULL) 537 538 /** 539 * mas_set_range() - Set up Maple Tree operation state for a different index. 540 * @mas: Maple Tree operation state. 541 * @start: New start of range in the Maple Tree. 542 * @last: New end of range in the Maple Tree. 543 * 544 * Move the operation state to refer to a different range. This will 545 * have the effect of starting a walk from the top; see mas_next() 546 * to move to an adjacent index. 547 */ 548 static inline 549 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last) 550 { 551 mas->index = start; 552 mas->last = last; 553 mas->node = MAS_START; 554 } 555 556 /** 557 * mas_set() - Set up Maple Tree operation state for a different index. 558 * @mas: Maple Tree operation state. 559 * @index: New index into the Maple Tree. 560 * 561 * Move the operation state to refer to a different index. This will 562 * have the effect of starting a walk from the top; see mas_next() 563 * to move to an adjacent index. 564 */ 565 static inline void mas_set(struct ma_state *mas, unsigned long index) 566 { 567 568 mas_set_range(mas, index, index); 569 } 570 571 static inline bool mt_external_lock(const struct maple_tree *mt) 572 { 573 return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN; 574 } 575 576 /** 577 * mt_init_flags() - Initialise an empty maple tree with flags. 578 * @mt: Maple Tree 579 * @flags: maple tree flags. 580 * 581 * If you need to initialise a Maple Tree with special flags (eg, an 582 * allocation tree), use this function. 583 * 584 * Context: Any context. 585 */ 586 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags) 587 { 588 mt->ma_flags = flags; 589 if (!mt_external_lock(mt)) 590 spin_lock_init(&mt->ma_lock); 591 rcu_assign_pointer(mt->ma_root, NULL); 592 } 593 594 /** 595 * mt_init() - Initialise an empty maple tree. 596 * @mt: Maple Tree 597 * 598 * An empty Maple Tree. 599 * 600 * Context: Any context. 601 */ 602 static inline void mt_init(struct maple_tree *mt) 603 { 604 mt_init_flags(mt, 0); 605 } 606 607 static inline bool mt_in_rcu(struct maple_tree *mt) 608 { 609 #ifdef CONFIG_MAPLE_RCU_DISABLED 610 return false; 611 #endif 612 return mt->ma_flags & MT_FLAGS_USE_RCU; 613 } 614 615 /** 616 * mt_clear_in_rcu() - Switch the tree to non-RCU mode. 617 * @mt: The Maple Tree 618 */ 619 static inline void mt_clear_in_rcu(struct maple_tree *mt) 620 { 621 if (!mt_in_rcu(mt)) 622 return; 623 624 if (mt_external_lock(mt)) { 625 WARN_ON(!mt_lock_is_held(mt)); 626 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 627 } else { 628 mtree_lock(mt); 629 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 630 mtree_unlock(mt); 631 } 632 } 633 634 /** 635 * mt_set_in_rcu() - Switch the tree to RCU safe mode. 636 * @mt: The Maple Tree 637 */ 638 static inline void mt_set_in_rcu(struct maple_tree *mt) 639 { 640 if (mt_in_rcu(mt)) 641 return; 642 643 if (mt_external_lock(mt)) { 644 WARN_ON(!mt_lock_is_held(mt)); 645 mt->ma_flags |= MT_FLAGS_USE_RCU; 646 } else { 647 mtree_lock(mt); 648 mt->ma_flags |= MT_FLAGS_USE_RCU; 649 mtree_unlock(mt); 650 } 651 } 652 653 static inline unsigned int mt_height(const struct maple_tree *mt) 654 { 655 return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET; 656 } 657 658 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max); 659 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 660 unsigned long max); 661 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min); 662 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max); 663 664 /** 665 * mt_for_each - Iterate over each entry starting at index until max. 666 * @__tree: The Maple Tree 667 * @__entry: The current entry 668 * @__index: The index to start the search from. Subsequently used as iterator. 669 * @__max: The maximum limit for @index 670 * 671 * This iterator skips all entries, which resolve to a NULL pointer, 672 * e.g. entries which has been reserved with XA_ZERO_ENTRY. 673 */ 674 #define mt_for_each(__tree, __entry, __index, __max) \ 675 for (__entry = mt_find(__tree, &(__index), __max); \ 676 __entry; __entry = mt_find_after(__tree, &(__index), __max)) 677 678 679 #ifdef CONFIG_DEBUG_MAPLE_TREE 680 enum mt_dump_format { 681 mt_dump_dec, 682 mt_dump_hex, 683 }; 684 685 extern atomic_t maple_tree_tests_run; 686 extern atomic_t maple_tree_tests_passed; 687 688 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format); 689 void mas_dump(const struct ma_state *mas); 690 void mas_wr_dump(const struct ma_wr_state *wr_mas); 691 void mt_validate(struct maple_tree *mt); 692 void mt_cache_shrink(void); 693 #define MT_BUG_ON(__tree, __x) do { \ 694 atomic_inc(&maple_tree_tests_run); \ 695 if (__x) { \ 696 pr_info("BUG at %s:%d (%u)\n", \ 697 __func__, __LINE__, __x); \ 698 mt_dump(__tree, mt_dump_hex); \ 699 pr_info("Pass: %u Run:%u\n", \ 700 atomic_read(&maple_tree_tests_passed), \ 701 atomic_read(&maple_tree_tests_run)); \ 702 dump_stack(); \ 703 } else { \ 704 atomic_inc(&maple_tree_tests_passed); \ 705 } \ 706 } while (0) 707 708 #define MAS_BUG_ON(__mas, __x) do { \ 709 atomic_inc(&maple_tree_tests_run); \ 710 if (__x) { \ 711 pr_info("BUG at %s:%d (%u)\n", \ 712 __func__, __LINE__, __x); \ 713 mas_dump(__mas); \ 714 mt_dump((__mas)->tree, mt_dump_hex); \ 715 pr_info("Pass: %u Run:%u\n", \ 716 atomic_read(&maple_tree_tests_passed), \ 717 atomic_read(&maple_tree_tests_run)); \ 718 dump_stack(); \ 719 } else { \ 720 atomic_inc(&maple_tree_tests_passed); \ 721 } \ 722 } while (0) 723 724 #define MAS_WR_BUG_ON(__wrmas, __x) do { \ 725 atomic_inc(&maple_tree_tests_run); \ 726 if (__x) { \ 727 pr_info("BUG at %s:%d (%u)\n", \ 728 __func__, __LINE__, __x); \ 729 mas_wr_dump(__wrmas); \ 730 mas_dump((__wrmas)->mas); \ 731 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 732 pr_info("Pass: %u Run:%u\n", \ 733 atomic_read(&maple_tree_tests_passed), \ 734 atomic_read(&maple_tree_tests_run)); \ 735 dump_stack(); \ 736 } else { \ 737 atomic_inc(&maple_tree_tests_passed); \ 738 } \ 739 } while (0) 740 741 #define MT_WARN_ON(__tree, __x) ({ \ 742 int ret = !!(__x); \ 743 atomic_inc(&maple_tree_tests_run); \ 744 if (ret) { \ 745 pr_info("WARN at %s:%d (%u)\n", \ 746 __func__, __LINE__, __x); \ 747 mt_dump(__tree, mt_dump_hex); \ 748 pr_info("Pass: %u Run:%u\n", \ 749 atomic_read(&maple_tree_tests_passed), \ 750 atomic_read(&maple_tree_tests_run)); \ 751 dump_stack(); \ 752 } else { \ 753 atomic_inc(&maple_tree_tests_passed); \ 754 } \ 755 unlikely(ret); \ 756 }) 757 758 #define MAS_WARN_ON(__mas, __x) ({ \ 759 int ret = !!(__x); \ 760 atomic_inc(&maple_tree_tests_run); \ 761 if (ret) { \ 762 pr_info("WARN at %s:%d (%u)\n", \ 763 __func__, __LINE__, __x); \ 764 mas_dump(__mas); \ 765 mt_dump((__mas)->tree, mt_dump_hex); \ 766 pr_info("Pass: %u Run:%u\n", \ 767 atomic_read(&maple_tree_tests_passed), \ 768 atomic_read(&maple_tree_tests_run)); \ 769 dump_stack(); \ 770 } else { \ 771 atomic_inc(&maple_tree_tests_passed); \ 772 } \ 773 unlikely(ret); \ 774 }) 775 776 #define MAS_WR_WARN_ON(__wrmas, __x) ({ \ 777 int ret = !!(__x); \ 778 atomic_inc(&maple_tree_tests_run); \ 779 if (ret) { \ 780 pr_info("WARN at %s:%d (%u)\n", \ 781 __func__, __LINE__, __x); \ 782 mas_wr_dump(__wrmas); \ 783 mas_dump((__wrmas)->mas); \ 784 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 785 pr_info("Pass: %u Run:%u\n", \ 786 atomic_read(&maple_tree_tests_passed), \ 787 atomic_read(&maple_tree_tests_run)); \ 788 dump_stack(); \ 789 } else { \ 790 atomic_inc(&maple_tree_tests_passed); \ 791 } \ 792 unlikely(ret); \ 793 }) 794 #else 795 #define MT_BUG_ON(__tree, __x) BUG_ON(__x) 796 #define MAS_BUG_ON(__mas, __x) BUG_ON(__x) 797 #define MAS_WR_BUG_ON(__mas, __x) BUG_ON(__x) 798 #define MT_WARN_ON(__tree, __x) WARN_ON(__x) 799 #define MAS_WARN_ON(__mas, __x) WARN_ON(__x) 800 #define MAS_WR_WARN_ON(__mas, __x) WARN_ON(__x) 801 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 802 803 #endif /*_LINUX_MAPLE_TREE_H */ 804