xref: /linux-6.15/include/linux/maple_tree.h (revision 02fdb25f)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
4 /*
5  * Maple Tree - An RCU-safe adaptive tree for storing ranges
6  * Copyright (c) 2018-2022 Oracle
7  * Authors:     Liam R. Howlett <[email protected]>
8  *              Matthew Wilcox <[email protected]>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
15 
16 /*
17  * Allocated nodes are mutable until they have been inserted into the tree,
18  * at which time they cannot change their type until they have been removed
19  * from the tree and an RCU grace period has passed.
20  *
21  * Removed nodes have their ->parent set to point to themselves.  RCU readers
22  * check ->parent before relying on the value that they loaded from the
23  * slots array.  This lets us reuse the slots array for the RCU head.
24  *
25  * Nodes in the tree point to their parent unless bit 0 is set.
26  */
27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
28 /* 64bit sizes */
29 #define MAPLE_NODE_SLOTS	31	/* 256 bytes including ->parent */
30 #define MAPLE_RANGE64_SLOTS	16	/* 256 bytes */
31 #define MAPLE_ARANGE64_SLOTS	10	/* 240 bytes */
32 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 1)
33 #else
34 /* 32bit sizes */
35 #define MAPLE_NODE_SLOTS	63	/* 256 bytes including ->parent */
36 #define MAPLE_RANGE64_SLOTS	32	/* 256 bytes */
37 #define MAPLE_ARANGE64_SLOTS	21	/* 240 bytes */
38 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 2)
39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
40 
41 #define MAPLE_NODE_MASK		255UL
42 
43 /*
44  * The node->parent of the root node has bit 0 set and the rest of the pointer
45  * is a pointer to the tree itself.  No more bits are available in this pointer
46  * (on m68k, the data structure may only be 2-byte aligned).
47  *
48  * Internal non-root nodes can only have maple_range_* nodes as parents.  The
49  * parent pointer is 256B aligned like all other tree nodes.  When storing a 32
50  * or 64 bit values, the offset can fit into 4 bits.  The 16 bit values need an
51  * extra bit to store the offset.  This extra bit comes from a reuse of the last
52  * bit in the node type.  This is possible by using bit 1 to indicate if bit 2
53  * is part of the type or the slot.
54  *
55  * Once the type is decided, the decision of an allocation range type or a range
56  * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE
57  * flag.
58  *
59  *  Node types:
60  *   0x??1 = Root
61  *   0x?00 = 16 bit nodes
62  *   0x010 = 32 bit nodes
63  *   0x110 = 64 bit nodes
64  *
65  *  Slot size and location in the parent pointer:
66  *   type  : slot location
67  *   0x??1 : Root
68  *   0x?00 : 16 bit values, type in 0-1, slot in 2-6
69  *   0x010 : 32 bit values, type in 0-2, slot in 3-6
70  *   0x110 : 64 bit values, type in 0-2, slot in 3-6
71  */
72 
73 /*
74  * This metadata is used to optimize the gap updating code and in reverse
75  * searching for gaps or any other code that needs to find the end of the data.
76  */
77 struct maple_metadata {
78 	unsigned char end;
79 	unsigned char gap;
80 };
81 
82 /*
83  * Leaf nodes do not store pointers to nodes, they store user data.  Users may
84  * store almost any bit pattern.  As noted above, the optimisation of storing an
85  * entry at 0 in the root pointer cannot be done for data which have the bottom
86  * two bits set to '10'.  We also reserve values with the bottom two bits set to
87  * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use.  Some APIs
88  * return errnos as a negative errno shifted right by two bits and the bottom
89  * two bits set to '10', and while choosing to store these values in the array
90  * is not an error, it may lead to confusion if you're testing for an error with
91  * mas_is_err().
92  *
93  * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
94  * 3-6), bit 2 is reserved.  That leaves bits 0-1 unused for now.
95  *
96  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
97  * indicate that the tree is specifying ranges,  Pivots may appear in the
98  * subtree with an entry attached to the value whereas keys are unique to a
99  * specific position of a B-tree.  Pivot values are inclusive of the slot with
100  * the same index.
101  */
102 
103 struct maple_range_64 {
104 	struct maple_pnode *parent;
105 	unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
106 	union {
107 		void __rcu *slot[MAPLE_RANGE64_SLOTS];
108 		struct {
109 			void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
110 			struct maple_metadata meta;
111 		};
112 	};
113 };
114 
115 /*
116  * At tree creation time, the user can specify that they're willing to trade off
117  * storing fewer entries in a tree in return for storing more information in
118  * each node.
119  *
120  * The maple tree supports recording the largest range of NULL entries available
121  * in this node, also called gaps.  This optimises the tree for allocating a
122  * range.
123  */
124 struct maple_arange_64 {
125 	struct maple_pnode *parent;
126 	unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
127 	void __rcu *slot[MAPLE_ARANGE64_SLOTS];
128 	unsigned long gap[MAPLE_ARANGE64_SLOTS];
129 	struct maple_metadata meta;
130 };
131 
132 struct maple_alloc {
133 	unsigned long total;
134 	unsigned char node_count;
135 	unsigned int request_count;
136 	struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
137 };
138 
139 struct maple_topiary {
140 	struct maple_pnode *parent;
141 	struct maple_enode *next; /* Overlaps the pivot */
142 };
143 
144 enum maple_type {
145 	maple_dense,
146 	maple_leaf_64,
147 	maple_range_64,
148 	maple_arange_64,
149 };
150 
151 
152 /**
153  * DOC: Maple tree flags
154  *
155  * * MT_FLAGS_ALLOC_RANGE	- Track gaps in this tree
156  * * MT_FLAGS_USE_RCU		- Operate in RCU mode
157  * * MT_FLAGS_HEIGHT_OFFSET	- The position of the tree height in the flags
158  * * MT_FLAGS_HEIGHT_MASK	- The mask for the maple tree height value
159  * * MT_FLAGS_LOCK_MASK		- How the mt_lock is used
160  * * MT_FLAGS_LOCK_IRQ		- Acquired irq-safe
161  * * MT_FLAGS_LOCK_BH		- Acquired bh-safe
162  * * MT_FLAGS_LOCK_EXTERN	- mt_lock is not used
163  *
164  * MAPLE_HEIGHT_MAX	The largest height that can be stored
165  */
166 #define MT_FLAGS_ALLOC_RANGE	0x01
167 #define MT_FLAGS_USE_RCU	0x02
168 #define MT_FLAGS_HEIGHT_OFFSET	0x02
169 #define MT_FLAGS_HEIGHT_MASK	0x7C
170 #define MT_FLAGS_LOCK_MASK	0x300
171 #define MT_FLAGS_LOCK_IRQ	0x100
172 #define MT_FLAGS_LOCK_BH	0x200
173 #define MT_FLAGS_LOCK_EXTERN	0x300
174 
175 #define MAPLE_HEIGHT_MAX	31
176 
177 
178 #define MAPLE_NODE_TYPE_MASK	0x0F
179 #define MAPLE_NODE_TYPE_SHIFT	0x03
180 
181 #define MAPLE_RESERVED_RANGE	4096
182 
183 #ifdef CONFIG_LOCKDEP
184 typedef struct lockdep_map *lockdep_map_p;
185 #define mt_lock_is_held(mt)                                             \
186 	(!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock))
187 
188 #define mt_set_external_lock(mt, lock)					\
189 	(mt)->ma_external_lock = &(lock)->dep_map
190 
191 #define mt_on_stack(mt)			(mt).ma_external_lock = NULL
192 #else
193 typedef struct { /* nothing */ } lockdep_map_p;
194 #define mt_lock_is_held(mt)	1
195 #define mt_set_external_lock(mt, lock)	do { } while (0)
196 #define mt_on_stack(mt)			do { } while (0)
197 #endif
198 
199 /*
200  * If the tree contains a single entry at index 0, it is usually stored in
201  * tree->ma_root.  To optimise for the page cache, an entry which ends in '00',
202  * '01' or '11' is stored in the root, but an entry which ends in '10' will be
203  * stored in a node.  Bits 3-6 are used to store enum maple_type.
204  *
205  * The flags are used both to store some immutable information about this tree
206  * (set at tree creation time) and dynamic information set under the spinlock.
207  *
208  * Another use of flags are to indicate global states of the tree.  This is the
209  * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
210  * RCU mode.  This mode was added to allow the tree to reuse nodes instead of
211  * re-allocating and RCU freeing nodes when there is a single user.
212  */
213 struct maple_tree {
214 	union {
215 		spinlock_t	ma_lock;
216 		lockdep_map_p	ma_external_lock;
217 	};
218 	void __rcu      *ma_root;
219 	unsigned int	ma_flags;
220 };
221 
222 /**
223  * MTREE_INIT() - Initialize a maple tree
224  * @name: The maple tree name
225  * @__flags: The maple tree flags
226  *
227  */
228 #define MTREE_INIT(name, __flags) {					\
229 	.ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock),		\
230 	.ma_flags = __flags,						\
231 	.ma_root = NULL,						\
232 }
233 
234 /**
235  * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
236  * @name: The tree name
237  * @__flags: The maple tree flags
238  * @__lock: The external lock
239  */
240 #ifdef CONFIG_LOCKDEP
241 #define MTREE_INIT_EXT(name, __flags, __lock) {				\
242 	.ma_external_lock = &(__lock).dep_map,				\
243 	.ma_flags = (__flags),						\
244 	.ma_root = NULL,						\
245 }
246 #else
247 #define MTREE_INIT_EXT(name, __flags, __lock)	MTREE_INIT(name, __flags)
248 #endif
249 
250 #define DEFINE_MTREE(name)						\
251 	struct maple_tree name = MTREE_INIT(name, 0)
252 
253 #define mtree_lock(mt)		spin_lock((&(mt)->ma_lock))
254 #define mtree_unlock(mt)	spin_unlock((&(mt)->ma_lock))
255 
256 /*
257  * The Maple Tree squeezes various bits in at various points which aren't
258  * necessarily obvious.  Usually, this is done by observing that pointers are
259  * N-byte aligned and thus the bottom log_2(N) bits are available for use.  We
260  * don't use the high bits of pointers to store additional information because
261  * we don't know what bits are unused on any given architecture.
262  *
263  * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
264  * low bits for our own purposes.  Nodes are currently of 4 types:
265  * 1. Single pointer (Range is 0-0)
266  * 2. Non-leaf Allocation Range nodes
267  * 3. Non-leaf Range nodes
268  * 4. Leaf Range nodes All nodes consist of a number of node slots,
269  *    pivots, and a parent pointer.
270  */
271 
272 struct maple_node {
273 	union {
274 		struct {
275 			struct maple_pnode *parent;
276 			void __rcu *slot[MAPLE_NODE_SLOTS];
277 		};
278 		struct {
279 			void *pad;
280 			struct rcu_head rcu;
281 			struct maple_enode *piv_parent;
282 			unsigned char parent_slot;
283 			enum maple_type type;
284 			unsigned char slot_len;
285 			unsigned int ma_flags;
286 		};
287 		struct maple_range_64 mr64;
288 		struct maple_arange_64 ma64;
289 		struct maple_alloc alloc;
290 	};
291 };
292 
293 /*
294  * More complicated stores can cause two nodes to become one or three and
295  * potentially alter the height of the tree.  Either half of the tree may need
296  * to be rebalanced against the other.  The ma_topiary struct is used to track
297  * which nodes have been 'cut' from the tree so that the change can be done
298  * safely at a later date.  This is done to support RCU.
299  */
300 struct ma_topiary {
301 	struct maple_enode *head;
302 	struct maple_enode *tail;
303 	struct maple_tree *mtree;
304 };
305 
306 void *mtree_load(struct maple_tree *mt, unsigned long index);
307 
308 int mtree_insert(struct maple_tree *mt, unsigned long index,
309 		void *entry, gfp_t gfp);
310 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
311 		unsigned long last, void *entry, gfp_t gfp);
312 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
313 		void *entry, unsigned long size, unsigned long min,
314 		unsigned long max, gfp_t gfp);
315 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
316 		void *entry, unsigned long size, unsigned long min,
317 		unsigned long max, gfp_t gfp);
318 
319 int mtree_store_range(struct maple_tree *mt, unsigned long first,
320 		      unsigned long last, void *entry, gfp_t gfp);
321 int mtree_store(struct maple_tree *mt, unsigned long index,
322 		void *entry, gfp_t gfp);
323 void *mtree_erase(struct maple_tree *mt, unsigned long index);
324 
325 void mtree_destroy(struct maple_tree *mt);
326 void __mt_destroy(struct maple_tree *mt);
327 
328 /**
329  * mtree_empty() - Determine if a tree has any present entries.
330  * @mt: Maple Tree.
331  *
332  * Context: Any context.
333  * Return: %true if the tree contains only NULL pointers.
334  */
335 static inline bool mtree_empty(const struct maple_tree *mt)
336 {
337 	return mt->ma_root == NULL;
338 }
339 
340 /* Advanced API */
341 
342 /*
343  * The maple state is defined in the struct ma_state and is used to keep track
344  * of information during operations, and even between operations when using the
345  * advanced API.
346  *
347  * If state->node has bit 0 set then it references a tree location which is not
348  * a node (eg the root).  If bit 1 is set, the rest of the bits are a negative
349  * errno.  Bit 2 (the 'unallocated slots' bit) is clear.  Bits 3-6 indicate the
350  * node type.
351  *
352  * state->alloc either has a request number of nodes or an allocated node.  If
353  * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
354  * and the remaining bits are the value.  If state->alloc is a node, then the
355  * node will be of type maple_alloc.  maple_alloc has MAPLE_NODE_SLOTS - 1 for
356  * storing more allocated nodes, a total number of nodes allocated, and the
357  * node_count in this node.  node_count is the number of allocated nodes in this
358  * node.  The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
359  * nodes into state->alloc->slot[0]'s node.  Nodes are taken from state->alloc
360  * by removing a node from the state->alloc node until state->alloc->node_count
361  * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
362  * to state->alloc.  Nodes are pushed onto state->alloc by putting the current
363  * state->alloc into the pushed node's slot[0].
364  *
365  * The state also contains the implied min/max of the state->node, the depth of
366  * this search, and the offset. The implied min/max are either from the parent
367  * node or are 0-oo for the root node.  The depth is incremented or decremented
368  * every time a node is walked down or up.  The offset is the slot/pivot of
369  * interest in the node - either for reading or writing.
370  *
371  * When returning a value the maple state index and last respectively contain
372  * the start and end of the range for the entry.  Ranges are inclusive in the
373  * Maple Tree.
374  */
375 struct ma_state {
376 	struct maple_tree *tree;	/* The tree we're operating in */
377 	unsigned long index;		/* The index we're operating on - range start */
378 	unsigned long last;		/* The last index we're operating on - range end */
379 	struct maple_enode *node;	/* The node containing this entry */
380 	unsigned long min;		/* The minimum index of this node - implied pivot min */
381 	unsigned long max;		/* The maximum index of this node - implied pivot max */
382 	struct maple_alloc *alloc;	/* Allocated nodes for this operation */
383 	unsigned char depth;		/* depth of tree descent during write */
384 	unsigned char offset;
385 	unsigned char mas_flags;
386 };
387 
388 struct ma_wr_state {
389 	struct ma_state *mas;
390 	struct maple_node *node;	/* Decoded mas->node */
391 	unsigned long r_min;		/* range min */
392 	unsigned long r_max;		/* range max */
393 	enum maple_type type;		/* mas->node type */
394 	unsigned char offset_end;	/* The offset where the write ends */
395 	unsigned char node_end;		/* mas->node end */
396 	unsigned long *pivots;		/* mas->node->pivots pointer */
397 	unsigned long end_piv;		/* The pivot at the offset end */
398 	void __rcu **slots;		/* mas->node->slots pointer */
399 	void *entry;			/* The entry to write */
400 	void *content;			/* The existing entry that is being overwritten */
401 };
402 
403 #define mas_lock(mas)           spin_lock(&((mas)->tree->ma_lock))
404 #define mas_unlock(mas)         spin_unlock(&((mas)->tree->ma_lock))
405 
406 
407 /*
408  * Special values for ma_state.node.
409  * MAS_START means we have not searched the tree.
410  * MAS_ROOT means we have searched the tree and the entry we found lives in
411  * the root of the tree (ie it has index 0, length 1 and is the only entry in
412  * the tree).
413  * MAS_NONE means we have searched the tree and there is no node in the
414  * tree for this entry.  For example, we searched for index 1 in an empty
415  * tree.  Or we have a tree which points to a full leaf node and we
416  * searched for an entry which is larger than can be contained in that
417  * leaf node.
418  * MA_ERROR represents an errno.  After dropping the lock and attempting
419  * to resolve the error, the walk would have to be restarted from the
420  * top of the tree as the tree may have been modified.
421  */
422 #define MAS_START	((struct maple_enode *)1UL)
423 #define MAS_ROOT	((struct maple_enode *)5UL)
424 #define MAS_NONE	((struct maple_enode *)9UL)
425 #define MAS_PAUSE	((struct maple_enode *)17UL)
426 #define MA_ERROR(err) \
427 		((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
428 
429 #define MA_STATE(name, mt, first, end)					\
430 	struct ma_state name = {					\
431 		.tree = mt,						\
432 		.index = first,						\
433 		.last = end,						\
434 		.node = MAS_START,					\
435 		.min = 0,						\
436 		.max = ULONG_MAX,					\
437 		.alloc = NULL,						\
438 		.mas_flags = 0,						\
439 	}
440 
441 #define MA_WR_STATE(name, ma_state, wr_entry)				\
442 	struct ma_wr_state name = {					\
443 		.mas = ma_state,					\
444 		.content = NULL,					\
445 		.entry = wr_entry,					\
446 	}
447 
448 #define MA_TOPIARY(name, tree)						\
449 	struct ma_topiary name = {					\
450 		.head = NULL,						\
451 		.tail = NULL,						\
452 		.mtree = tree,						\
453 	}
454 
455 void *mas_walk(struct ma_state *mas);
456 void *mas_store(struct ma_state *mas, void *entry);
457 void *mas_erase(struct ma_state *mas);
458 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
459 void mas_store_prealloc(struct ma_state *mas, void *entry);
460 void *mas_find(struct ma_state *mas, unsigned long max);
461 void *mas_find_range(struct ma_state *mas, unsigned long max);
462 void *mas_find_rev(struct ma_state *mas, unsigned long min);
463 void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
464 int mas_preallocate(struct ma_state *mas, gfp_t gfp);
465 bool mas_is_err(struct ma_state *mas);
466 
467 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
468 void mas_pause(struct ma_state *mas);
469 void maple_tree_init(void);
470 void mas_destroy(struct ma_state *mas);
471 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
472 
473 void *mas_prev(struct ma_state *mas, unsigned long min);
474 void *mas_prev_range(struct ma_state *mas, unsigned long max);
475 void *mas_next(struct ma_state *mas, unsigned long max);
476 void *mas_next_range(struct ma_state *mas, unsigned long max);
477 
478 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
479 		   unsigned long size);
480 /*
481  * This finds an empty area from the highest address to the lowest.
482  * AKA "Topdown" version,
483  */
484 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
485 		       unsigned long max, unsigned long size);
486 
487 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
488 			    unsigned long addr)
489 {
490 	memset(mas, 0, sizeof(struct ma_state));
491 	mas->tree = tree;
492 	mas->index = mas->last = addr;
493 	mas->max = ULONG_MAX;
494 	mas->node = MAS_START;
495 }
496 
497 /* Checks if a mas has not found anything */
498 static inline bool mas_is_none(const struct ma_state *mas)
499 {
500 	return mas->node == MAS_NONE;
501 }
502 
503 /* Checks if a mas has been paused */
504 static inline bool mas_is_paused(const struct ma_state *mas)
505 {
506 	return mas->node == MAS_PAUSE;
507 }
508 
509 /**
510  * mas_reset() - Reset a Maple Tree operation state.
511  * @mas: Maple Tree operation state.
512  *
513  * Resets the error or walk state of the @mas so future walks of the
514  * array will start from the root.  Use this if you have dropped the
515  * lock and want to reuse the ma_state.
516  *
517  * Context: Any context.
518  */
519 static inline void mas_reset(struct ma_state *mas)
520 {
521 	mas->node = MAS_START;
522 }
523 
524 /**
525  * mas_for_each() - Iterate over a range of the maple tree.
526  * @__mas: Maple Tree operation state (maple_state)
527  * @__entry: Entry retrieved from the tree
528  * @__max: maximum index to retrieve from the tree
529  *
530  * When returned, mas->index and mas->last will hold the entire range for the
531  * entry.
532  *
533  * Note: may return the zero entry.
534  */
535 #define mas_for_each(__mas, __entry, __max) \
536 	while (((__entry) = mas_find((__mas), (__max))) != NULL)
537 
538 /**
539  * mas_set_range() - Set up Maple Tree operation state for a different index.
540  * @mas: Maple Tree operation state.
541  * @start: New start of range in the Maple Tree.
542  * @last: New end of range in the Maple Tree.
543  *
544  * Move the operation state to refer to a different range.  This will
545  * have the effect of starting a walk from the top; see mas_next()
546  * to move to an adjacent index.
547  */
548 static inline
549 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
550 {
551 	       mas->index = start;
552 	       mas->last = last;
553 	       mas->node = MAS_START;
554 }
555 
556 /**
557  * mas_set() - Set up Maple Tree operation state for a different index.
558  * @mas: Maple Tree operation state.
559  * @index: New index into the Maple Tree.
560  *
561  * Move the operation state to refer to a different index.  This will
562  * have the effect of starting a walk from the top; see mas_next()
563  * to move to an adjacent index.
564  */
565 static inline void mas_set(struct ma_state *mas, unsigned long index)
566 {
567 
568 	mas_set_range(mas, index, index);
569 }
570 
571 static inline bool mt_external_lock(const struct maple_tree *mt)
572 {
573 	return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
574 }
575 
576 /**
577  * mt_init_flags() - Initialise an empty maple tree with flags.
578  * @mt: Maple Tree
579  * @flags: maple tree flags.
580  *
581  * If you need to initialise a Maple Tree with special flags (eg, an
582  * allocation tree), use this function.
583  *
584  * Context: Any context.
585  */
586 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
587 {
588 	mt->ma_flags = flags;
589 	if (!mt_external_lock(mt))
590 		spin_lock_init(&mt->ma_lock);
591 	rcu_assign_pointer(mt->ma_root, NULL);
592 }
593 
594 /**
595  * mt_init() - Initialise an empty maple tree.
596  * @mt: Maple Tree
597  *
598  * An empty Maple Tree.
599  *
600  * Context: Any context.
601  */
602 static inline void mt_init(struct maple_tree *mt)
603 {
604 	mt_init_flags(mt, 0);
605 }
606 
607 static inline bool mt_in_rcu(struct maple_tree *mt)
608 {
609 #ifdef CONFIG_MAPLE_RCU_DISABLED
610 	return false;
611 #endif
612 	return mt->ma_flags & MT_FLAGS_USE_RCU;
613 }
614 
615 /**
616  * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
617  * @mt: The Maple Tree
618  */
619 static inline void mt_clear_in_rcu(struct maple_tree *mt)
620 {
621 	if (!mt_in_rcu(mt))
622 		return;
623 
624 	if (mt_external_lock(mt)) {
625 		WARN_ON(!mt_lock_is_held(mt));
626 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
627 	} else {
628 		mtree_lock(mt);
629 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
630 		mtree_unlock(mt);
631 	}
632 }
633 
634 /**
635  * mt_set_in_rcu() - Switch the tree to RCU safe mode.
636  * @mt: The Maple Tree
637  */
638 static inline void mt_set_in_rcu(struct maple_tree *mt)
639 {
640 	if (mt_in_rcu(mt))
641 		return;
642 
643 	if (mt_external_lock(mt)) {
644 		WARN_ON(!mt_lock_is_held(mt));
645 		mt->ma_flags |= MT_FLAGS_USE_RCU;
646 	} else {
647 		mtree_lock(mt);
648 		mt->ma_flags |= MT_FLAGS_USE_RCU;
649 		mtree_unlock(mt);
650 	}
651 }
652 
653 static inline unsigned int mt_height(const struct maple_tree *mt)
654 {
655 	return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
656 }
657 
658 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
659 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
660 		    unsigned long max);
661 void *mt_prev(struct maple_tree *mt, unsigned long index,  unsigned long min);
662 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
663 
664 /**
665  * mt_for_each - Iterate over each entry starting at index until max.
666  * @__tree: The Maple Tree
667  * @__entry: The current entry
668  * @__index: The index to start the search from. Subsequently used as iterator.
669  * @__max: The maximum limit for @index
670  *
671  * This iterator skips all entries, which resolve to a NULL pointer,
672  * e.g. entries which has been reserved with XA_ZERO_ENTRY.
673  */
674 #define mt_for_each(__tree, __entry, __index, __max) \
675 	for (__entry = mt_find(__tree, &(__index), __max); \
676 		__entry; __entry = mt_find_after(__tree, &(__index), __max))
677 
678 
679 #ifdef CONFIG_DEBUG_MAPLE_TREE
680 enum mt_dump_format {
681 	mt_dump_dec,
682 	mt_dump_hex,
683 };
684 
685 extern atomic_t maple_tree_tests_run;
686 extern atomic_t maple_tree_tests_passed;
687 
688 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
689 void mas_dump(const struct ma_state *mas);
690 void mas_wr_dump(const struct ma_wr_state *wr_mas);
691 void mt_validate(struct maple_tree *mt);
692 void mt_cache_shrink(void);
693 #define MT_BUG_ON(__tree, __x) do {					\
694 	atomic_inc(&maple_tree_tests_run);				\
695 	if (__x) {							\
696 		pr_info("BUG at %s:%d (%u)\n",				\
697 		__func__, __LINE__, __x);				\
698 		mt_dump(__tree, mt_dump_hex);				\
699 		pr_info("Pass: %u Run:%u\n",				\
700 			atomic_read(&maple_tree_tests_passed),		\
701 			atomic_read(&maple_tree_tests_run));		\
702 		dump_stack();						\
703 	} else {							\
704 		atomic_inc(&maple_tree_tests_passed);			\
705 	}								\
706 } while (0)
707 
708 #define MAS_BUG_ON(__mas, __x) do {					\
709 	atomic_inc(&maple_tree_tests_run);				\
710 	if (__x) {							\
711 		pr_info("BUG at %s:%d (%u)\n",				\
712 		__func__, __LINE__, __x);				\
713 		mas_dump(__mas);					\
714 		mt_dump((__mas)->tree, mt_dump_hex);			\
715 		pr_info("Pass: %u Run:%u\n",				\
716 			atomic_read(&maple_tree_tests_passed),		\
717 			atomic_read(&maple_tree_tests_run));		\
718 		dump_stack();						\
719 	} else {							\
720 		atomic_inc(&maple_tree_tests_passed);			\
721 	}								\
722 } while (0)
723 
724 #define MAS_WR_BUG_ON(__wrmas, __x) do {				\
725 	atomic_inc(&maple_tree_tests_run);				\
726 	if (__x) {							\
727 		pr_info("BUG at %s:%d (%u)\n",				\
728 		__func__, __LINE__, __x);				\
729 		mas_wr_dump(__wrmas);					\
730 		mas_dump((__wrmas)->mas);				\
731 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
732 		pr_info("Pass: %u Run:%u\n",				\
733 			atomic_read(&maple_tree_tests_passed),		\
734 			atomic_read(&maple_tree_tests_run));		\
735 		dump_stack();						\
736 	} else {							\
737 		atomic_inc(&maple_tree_tests_passed);			\
738 	}								\
739 } while (0)
740 
741 #define MT_WARN_ON(__tree, __x)  ({					\
742 	int ret = !!(__x);						\
743 	atomic_inc(&maple_tree_tests_run);				\
744 	if (ret) {							\
745 		pr_info("WARN at %s:%d (%u)\n",				\
746 		__func__, __LINE__, __x);				\
747 		mt_dump(__tree, mt_dump_hex);				\
748 		pr_info("Pass: %u Run:%u\n",				\
749 			atomic_read(&maple_tree_tests_passed),		\
750 			atomic_read(&maple_tree_tests_run));		\
751 		dump_stack();						\
752 	} else {							\
753 		atomic_inc(&maple_tree_tests_passed);			\
754 	}								\
755 	unlikely(ret);							\
756 })
757 
758 #define MAS_WARN_ON(__mas, __x) ({					\
759 	int ret = !!(__x);						\
760 	atomic_inc(&maple_tree_tests_run);				\
761 	if (ret) {							\
762 		pr_info("WARN at %s:%d (%u)\n",				\
763 		__func__, __LINE__, __x);				\
764 		mas_dump(__mas);					\
765 		mt_dump((__mas)->tree, mt_dump_hex);			\
766 		pr_info("Pass: %u Run:%u\n",				\
767 			atomic_read(&maple_tree_tests_passed),		\
768 			atomic_read(&maple_tree_tests_run));		\
769 		dump_stack();						\
770 	} else {							\
771 		atomic_inc(&maple_tree_tests_passed);			\
772 	}								\
773 	unlikely(ret);							\
774 })
775 
776 #define MAS_WR_WARN_ON(__wrmas, __x) ({					\
777 	int ret = !!(__x);						\
778 	atomic_inc(&maple_tree_tests_run);				\
779 	if (ret) {							\
780 		pr_info("WARN at %s:%d (%u)\n",				\
781 		__func__, __LINE__, __x);				\
782 		mas_wr_dump(__wrmas);					\
783 		mas_dump((__wrmas)->mas);				\
784 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
785 		pr_info("Pass: %u Run:%u\n",				\
786 			atomic_read(&maple_tree_tests_passed),		\
787 			atomic_read(&maple_tree_tests_run));		\
788 		dump_stack();						\
789 	} else {							\
790 		atomic_inc(&maple_tree_tests_passed);			\
791 	}								\
792 	unlikely(ret);							\
793 })
794 #else
795 #define MT_BUG_ON(__tree, __x)		BUG_ON(__x)
796 #define MAS_BUG_ON(__mas, __x)		BUG_ON(__x)
797 #define MAS_WR_BUG_ON(__mas, __x)	BUG_ON(__x)
798 #define MT_WARN_ON(__tree, __x)		WARN_ON(__x)
799 #define MAS_WARN_ON(__mas, __x)		WARN_ON(__x)
800 #define MAS_WR_WARN_ON(__mas, __x)	WARN_ON(__x)
801 #endif /* CONFIG_DEBUG_MAPLE_TREE */
802 
803 #endif /*_LINUX_MAPLE_TREE_H */
804