1 #ifndef _LINUX_LIST_H 2 #define _LINUX_LIST_H 3 4 #ifdef __KERNEL__ 5 6 #include <linux/stddef.h> 7 #include <linux/poison.h> 8 #include <linux/prefetch.h> 9 #include <asm/system.h> 10 11 /* 12 * Simple doubly linked list implementation. 13 * 14 * Some of the internal functions ("__xxx") are useful when 15 * manipulating whole lists rather than single entries, as 16 * sometimes we already know the next/prev entries and we can 17 * generate better code by using them directly rather than 18 * using the generic single-entry routines. 19 */ 20 21 struct list_head { 22 struct list_head *next, *prev; 23 }; 24 25 #define LIST_HEAD_INIT(name) { &(name), &(name) } 26 27 #define LIST_HEAD(name) \ 28 struct list_head name = LIST_HEAD_INIT(name) 29 30 static inline void INIT_LIST_HEAD(struct list_head *list) 31 { 32 list->next = list; 33 list->prev = list; 34 } 35 36 /* 37 * Insert a new entry between two known consecutive entries. 38 * 39 * This is only for internal list manipulation where we know 40 * the prev/next entries already! 41 */ 42 #ifndef CONFIG_DEBUG_LIST 43 static inline void __list_add(struct list_head *new, 44 struct list_head *prev, 45 struct list_head *next) 46 { 47 next->prev = new; 48 new->next = next; 49 new->prev = prev; 50 prev->next = new; 51 } 52 #else 53 extern void __list_add(struct list_head *new, 54 struct list_head *prev, 55 struct list_head *next); 56 #endif 57 58 /** 59 * list_add - add a new entry 60 * @new: new entry to be added 61 * @head: list head to add it after 62 * 63 * Insert a new entry after the specified head. 64 * This is good for implementing stacks. 65 */ 66 #ifndef CONFIG_DEBUG_LIST 67 static inline void list_add(struct list_head *new, struct list_head *head) 68 { 69 __list_add(new, head, head->next); 70 } 71 #else 72 extern void list_add(struct list_head *new, struct list_head *head); 73 #endif 74 75 76 /** 77 * list_add_tail - add a new entry 78 * @new: new entry to be added 79 * @head: list head to add it before 80 * 81 * Insert a new entry before the specified head. 82 * This is useful for implementing queues. 83 */ 84 static inline void list_add_tail(struct list_head *new, struct list_head *head) 85 { 86 __list_add(new, head->prev, head); 87 } 88 89 /* 90 * Insert a new entry between two known consecutive entries. 91 * 92 * This is only for internal list manipulation where we know 93 * the prev/next entries already! 94 */ 95 static inline void __list_add_rcu(struct list_head * new, 96 struct list_head * prev, struct list_head * next) 97 { 98 new->next = next; 99 new->prev = prev; 100 smp_wmb(); 101 next->prev = new; 102 prev->next = new; 103 } 104 105 /** 106 * list_add_rcu - add a new entry to rcu-protected list 107 * @new: new entry to be added 108 * @head: list head to add it after 109 * 110 * Insert a new entry after the specified head. 111 * This is good for implementing stacks. 112 * 113 * The caller must take whatever precautions are necessary 114 * (such as holding appropriate locks) to avoid racing 115 * with another list-mutation primitive, such as list_add_rcu() 116 * or list_del_rcu(), running on this same list. 117 * However, it is perfectly legal to run concurrently with 118 * the _rcu list-traversal primitives, such as 119 * list_for_each_entry_rcu(). 120 */ 121 static inline void list_add_rcu(struct list_head *new, struct list_head *head) 122 { 123 __list_add_rcu(new, head, head->next); 124 } 125 126 /** 127 * list_add_tail_rcu - add a new entry to rcu-protected list 128 * @new: new entry to be added 129 * @head: list head to add it before 130 * 131 * Insert a new entry before the specified head. 132 * This is useful for implementing queues. 133 * 134 * The caller must take whatever precautions are necessary 135 * (such as holding appropriate locks) to avoid racing 136 * with another list-mutation primitive, such as list_add_tail_rcu() 137 * or list_del_rcu(), running on this same list. 138 * However, it is perfectly legal to run concurrently with 139 * the _rcu list-traversal primitives, such as 140 * list_for_each_entry_rcu(). 141 */ 142 static inline void list_add_tail_rcu(struct list_head *new, 143 struct list_head *head) 144 { 145 __list_add_rcu(new, head->prev, head); 146 } 147 148 /* 149 * Delete a list entry by making the prev/next entries 150 * point to each other. 151 * 152 * This is only for internal list manipulation where we know 153 * the prev/next entries already! 154 */ 155 static inline void __list_del(struct list_head * prev, struct list_head * next) 156 { 157 next->prev = prev; 158 prev->next = next; 159 } 160 161 /** 162 * list_del - deletes entry from list. 163 * @entry: the element to delete from the list. 164 * Note: list_empty() on entry does not return true after this, the entry is 165 * in an undefined state. 166 */ 167 #ifndef CONFIG_DEBUG_LIST 168 static inline void list_del(struct list_head *entry) 169 { 170 __list_del(entry->prev, entry->next); 171 entry->next = LIST_POISON1; 172 entry->prev = LIST_POISON2; 173 } 174 #else 175 extern void list_del(struct list_head *entry); 176 #endif 177 178 /** 179 * list_del_rcu - deletes entry from list without re-initialization 180 * @entry: the element to delete from the list. 181 * 182 * Note: list_empty() on entry does not return true after this, 183 * the entry is in an undefined state. It is useful for RCU based 184 * lockfree traversal. 185 * 186 * In particular, it means that we can not poison the forward 187 * pointers that may still be used for walking the list. 188 * 189 * The caller must take whatever precautions are necessary 190 * (such as holding appropriate locks) to avoid racing 191 * with another list-mutation primitive, such as list_del_rcu() 192 * or list_add_rcu(), running on this same list. 193 * However, it is perfectly legal to run concurrently with 194 * the _rcu list-traversal primitives, such as 195 * list_for_each_entry_rcu(). 196 * 197 * Note that the caller is not permitted to immediately free 198 * the newly deleted entry. Instead, either synchronize_rcu() 199 * or call_rcu() must be used to defer freeing until an RCU 200 * grace period has elapsed. 201 */ 202 static inline void list_del_rcu(struct list_head *entry) 203 { 204 __list_del(entry->prev, entry->next); 205 entry->prev = LIST_POISON2; 206 } 207 208 /** 209 * list_replace - replace old entry by new one 210 * @old : the element to be replaced 211 * @new : the new element to insert 212 * 213 * If @old was empty, it will be overwritten. 214 */ 215 static inline void list_replace(struct list_head *old, 216 struct list_head *new) 217 { 218 new->next = old->next; 219 new->next->prev = new; 220 new->prev = old->prev; 221 new->prev->next = new; 222 } 223 224 static inline void list_replace_init(struct list_head *old, 225 struct list_head *new) 226 { 227 list_replace(old, new); 228 INIT_LIST_HEAD(old); 229 } 230 231 /** 232 * list_replace_rcu - replace old entry by new one 233 * @old : the element to be replaced 234 * @new : the new element to insert 235 * 236 * The @old entry will be replaced with the @new entry atomically. 237 * Note: @old should not be empty. 238 */ 239 static inline void list_replace_rcu(struct list_head *old, 240 struct list_head *new) 241 { 242 new->next = old->next; 243 new->prev = old->prev; 244 smp_wmb(); 245 new->next->prev = new; 246 new->prev->next = new; 247 old->prev = LIST_POISON2; 248 } 249 250 /** 251 * list_del_init - deletes entry from list and reinitialize it. 252 * @entry: the element to delete from the list. 253 */ 254 static inline void list_del_init(struct list_head *entry) 255 { 256 __list_del(entry->prev, entry->next); 257 INIT_LIST_HEAD(entry); 258 } 259 260 /** 261 * list_move - delete from one list and add as another's head 262 * @list: the entry to move 263 * @head: the head that will precede our entry 264 */ 265 static inline void list_move(struct list_head *list, struct list_head *head) 266 { 267 __list_del(list->prev, list->next); 268 list_add(list, head); 269 } 270 271 /** 272 * list_move_tail - delete from one list and add as another's tail 273 * @list: the entry to move 274 * @head: the head that will follow our entry 275 */ 276 static inline void list_move_tail(struct list_head *list, 277 struct list_head *head) 278 { 279 __list_del(list->prev, list->next); 280 list_add_tail(list, head); 281 } 282 283 /** 284 * list_is_last - tests whether @list is the last entry in list @head 285 * @list: the entry to test 286 * @head: the head of the list 287 */ 288 static inline int list_is_last(const struct list_head *list, 289 const struct list_head *head) 290 { 291 return list->next == head; 292 } 293 294 /** 295 * list_empty - tests whether a list is empty 296 * @head: the list to test. 297 */ 298 static inline int list_empty(const struct list_head *head) 299 { 300 return head->next == head; 301 } 302 303 /** 304 * list_empty_careful - tests whether a list is empty and not being modified 305 * @head: the list to test 306 * 307 * Description: 308 * tests whether a list is empty _and_ checks that no other CPU might be 309 * in the process of modifying either member (next or prev) 310 * 311 * NOTE: using list_empty_careful() without synchronization 312 * can only be safe if the only activity that can happen 313 * to the list entry is list_del_init(). Eg. it cannot be used 314 * if another CPU could re-list_add() it. 315 */ 316 static inline int list_empty_careful(const struct list_head *head) 317 { 318 struct list_head *next = head->next; 319 return (next == head) && (next == head->prev); 320 } 321 322 /** 323 * list_is_singular - tests whether a list has just one entry. 324 * @head: the list to test. 325 */ 326 static inline int list_is_singular(const struct list_head *head) 327 { 328 return !list_empty(head) && (head->next == head->prev); 329 } 330 331 static inline void __list_splice(const struct list_head *list, 332 struct list_head *head) 333 { 334 struct list_head *first = list->next; 335 struct list_head *last = list->prev; 336 struct list_head *at = head->next; 337 338 first->prev = head; 339 head->next = first; 340 341 last->next = at; 342 at->prev = last; 343 } 344 345 /** 346 * list_splice - join two lists 347 * @list: the new list to add. 348 * @head: the place to add it in the first list. 349 */ 350 static inline void list_splice(const struct list_head *list, 351 struct list_head *head) 352 { 353 if (!list_empty(list)) 354 __list_splice(list, head); 355 } 356 357 /** 358 * list_splice_init - join two lists and reinitialise the emptied list. 359 * @list: the new list to add. 360 * @head: the place to add it in the first list. 361 * 362 * The list at @list is reinitialised 363 */ 364 static inline void list_splice_init(struct list_head *list, 365 struct list_head *head) 366 { 367 if (!list_empty(list)) { 368 __list_splice(list, head); 369 INIT_LIST_HEAD(list); 370 } 371 } 372 373 /** 374 * list_splice_init_rcu - splice an RCU-protected list into an existing list. 375 * @list: the RCU-protected list to splice 376 * @head: the place in the list to splice the first list into 377 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ... 378 * 379 * @head can be RCU-read traversed concurrently with this function. 380 * 381 * Note that this function blocks. 382 * 383 * Important note: the caller must take whatever action is necessary to 384 * prevent any other updates to @head. In principle, it is possible 385 * to modify the list as soon as sync() begins execution. 386 * If this sort of thing becomes necessary, an alternative version 387 * based on call_rcu() could be created. But only if -really- 388 * needed -- there is no shortage of RCU API members. 389 */ 390 static inline void list_splice_init_rcu(struct list_head *list, 391 struct list_head *head, 392 void (*sync)(void)) 393 { 394 struct list_head *first = list->next; 395 struct list_head *last = list->prev; 396 struct list_head *at = head->next; 397 398 if (list_empty(head)) 399 return; 400 401 /* "first" and "last" tracking list, so initialize it. */ 402 403 INIT_LIST_HEAD(list); 404 405 /* 406 * At this point, the list body still points to the source list. 407 * Wait for any readers to finish using the list before splicing 408 * the list body into the new list. Any new readers will see 409 * an empty list. 410 */ 411 412 sync(); 413 414 /* 415 * Readers are finished with the source list, so perform splice. 416 * The order is important if the new list is global and accessible 417 * to concurrent RCU readers. Note that RCU readers are not 418 * permitted to traverse the prev pointers without excluding 419 * this function. 420 */ 421 422 last->next = at; 423 smp_wmb(); 424 head->next = first; 425 first->prev = head; 426 at->prev = last; 427 } 428 429 /** 430 * list_entry - get the struct for this entry 431 * @ptr: the &struct list_head pointer. 432 * @type: the type of the struct this is embedded in. 433 * @member: the name of the list_struct within the struct. 434 */ 435 #define list_entry(ptr, type, member) \ 436 container_of(ptr, type, member) 437 438 /** 439 * list_first_entry - get the first element from a list 440 * @ptr: the list head to take the element from. 441 * @type: the type of the struct this is embedded in. 442 * @member: the name of the list_struct within the struct. 443 * 444 * Note, that list is expected to be not empty. 445 */ 446 #define list_first_entry(ptr, type, member) \ 447 list_entry((ptr)->next, type, member) 448 449 /** 450 * list_for_each - iterate over a list 451 * @pos: the &struct list_head to use as a loop cursor. 452 * @head: the head for your list. 453 */ 454 #define list_for_each(pos, head) \ 455 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 456 pos = pos->next) 457 458 /** 459 * __list_for_each - iterate over a list 460 * @pos: the &struct list_head to use as a loop cursor. 461 * @head: the head for your list. 462 * 463 * This variant differs from list_for_each() in that it's the 464 * simplest possible list iteration code, no prefetching is done. 465 * Use this for code that knows the list to be very short (empty 466 * or 1 entry) most of the time. 467 */ 468 #define __list_for_each(pos, head) \ 469 for (pos = (head)->next; pos != (head); pos = pos->next) 470 471 /** 472 * list_for_each_prev - iterate over a list backwards 473 * @pos: the &struct list_head to use as a loop cursor. 474 * @head: the head for your list. 475 */ 476 #define list_for_each_prev(pos, head) \ 477 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 478 pos = pos->prev) 479 480 /** 481 * list_for_each_safe - iterate over a list safe against removal of list entry 482 * @pos: the &struct list_head to use as a loop cursor. 483 * @n: another &struct list_head to use as temporary storage 484 * @head: the head for your list. 485 */ 486 #define list_for_each_safe(pos, n, head) \ 487 for (pos = (head)->next, n = pos->next; pos != (head); \ 488 pos = n, n = pos->next) 489 490 /** 491 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry 492 * @pos: the &struct list_head to use as a loop cursor. 493 * @n: another &struct list_head to use as temporary storage 494 * @head: the head for your list. 495 */ 496 #define list_for_each_prev_safe(pos, n, head) \ 497 for (pos = (head)->prev, n = pos->prev; \ 498 prefetch(pos->prev), pos != (head); \ 499 pos = n, n = pos->prev) 500 501 /** 502 * list_for_each_entry - iterate over list of given type 503 * @pos: the type * to use as a loop cursor. 504 * @head: the head for your list. 505 * @member: the name of the list_struct within the struct. 506 */ 507 #define list_for_each_entry(pos, head, member) \ 508 for (pos = list_entry((head)->next, typeof(*pos), member); \ 509 prefetch(pos->member.next), &pos->member != (head); \ 510 pos = list_entry(pos->member.next, typeof(*pos), member)) 511 512 /** 513 * list_for_each_entry_reverse - iterate backwards over list of given type. 514 * @pos: the type * to use as a loop cursor. 515 * @head: the head for your list. 516 * @member: the name of the list_struct within the struct. 517 */ 518 #define list_for_each_entry_reverse(pos, head, member) \ 519 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 520 prefetch(pos->member.prev), &pos->member != (head); \ 521 pos = list_entry(pos->member.prev, typeof(*pos), member)) 522 523 /** 524 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 525 * @pos: the type * to use as a start point 526 * @head: the head of the list 527 * @member: the name of the list_struct within the struct. 528 * 529 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 530 */ 531 #define list_prepare_entry(pos, head, member) \ 532 ((pos) ? : list_entry(head, typeof(*pos), member)) 533 534 /** 535 * list_for_each_entry_continue - continue iteration over list of given type 536 * @pos: the type * to use as a loop cursor. 537 * @head: the head for your list. 538 * @member: the name of the list_struct within the struct. 539 * 540 * Continue to iterate over list of given type, continuing after 541 * the current position. 542 */ 543 #define list_for_each_entry_continue(pos, head, member) \ 544 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 545 prefetch(pos->member.next), &pos->member != (head); \ 546 pos = list_entry(pos->member.next, typeof(*pos), member)) 547 548 /** 549 * list_for_each_entry_continue_reverse - iterate backwards from the given point 550 * @pos: the type * to use as a loop cursor. 551 * @head: the head for your list. 552 * @member: the name of the list_struct within the struct. 553 * 554 * Start to iterate over list of given type backwards, continuing after 555 * the current position. 556 */ 557 #define list_for_each_entry_continue_reverse(pos, head, member) \ 558 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \ 559 prefetch(pos->member.prev), &pos->member != (head); \ 560 pos = list_entry(pos->member.prev, typeof(*pos), member)) 561 562 /** 563 * list_for_each_entry_from - iterate over list of given type from the current point 564 * @pos: the type * to use as a loop cursor. 565 * @head: the head for your list. 566 * @member: the name of the list_struct within the struct. 567 * 568 * Iterate over list of given type, continuing from current position. 569 */ 570 #define list_for_each_entry_from(pos, head, member) \ 571 for (; prefetch(pos->member.next), &pos->member != (head); \ 572 pos = list_entry(pos->member.next, typeof(*pos), member)) 573 574 /** 575 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 576 * @pos: the type * to use as a loop cursor. 577 * @n: another type * to use as temporary storage 578 * @head: the head for your list. 579 * @member: the name of the list_struct within the struct. 580 */ 581 #define list_for_each_entry_safe(pos, n, head, member) \ 582 for (pos = list_entry((head)->next, typeof(*pos), member), \ 583 n = list_entry(pos->member.next, typeof(*pos), member); \ 584 &pos->member != (head); \ 585 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 586 587 /** 588 * list_for_each_entry_safe_continue 589 * @pos: the type * to use as a loop cursor. 590 * @n: another type * to use as temporary storage 591 * @head: the head for your list. 592 * @member: the name of the list_struct within the struct. 593 * 594 * Iterate over list of given type, continuing after current point, 595 * safe against removal of list entry. 596 */ 597 #define list_for_each_entry_safe_continue(pos, n, head, member) \ 598 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 599 n = list_entry(pos->member.next, typeof(*pos), member); \ 600 &pos->member != (head); \ 601 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 602 603 /** 604 * list_for_each_entry_safe_from 605 * @pos: the type * to use as a loop cursor. 606 * @n: another type * to use as temporary storage 607 * @head: the head for your list. 608 * @member: the name of the list_struct within the struct. 609 * 610 * Iterate over list of given type from current point, safe against 611 * removal of list entry. 612 */ 613 #define list_for_each_entry_safe_from(pos, n, head, member) \ 614 for (n = list_entry(pos->member.next, typeof(*pos), member); \ 615 &pos->member != (head); \ 616 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 617 618 /** 619 * list_for_each_entry_safe_reverse 620 * @pos: the type * to use as a loop cursor. 621 * @n: another type * to use as temporary storage 622 * @head: the head for your list. 623 * @member: the name of the list_struct within the struct. 624 * 625 * Iterate backwards over list of given type, safe against removal 626 * of list entry. 627 */ 628 #define list_for_each_entry_safe_reverse(pos, n, head, member) \ 629 for (pos = list_entry((head)->prev, typeof(*pos), member), \ 630 n = list_entry(pos->member.prev, typeof(*pos), member); \ 631 &pos->member != (head); \ 632 pos = n, n = list_entry(n->member.prev, typeof(*n), member)) 633 634 /** 635 * list_for_each_rcu - iterate over an rcu-protected list 636 * @pos: the &struct list_head to use as a loop cursor. 637 * @head: the head for your list. 638 * 639 * This list-traversal primitive may safely run concurrently with 640 * the _rcu list-mutation primitives such as list_add_rcu() 641 * as long as the traversal is guarded by rcu_read_lock(). 642 */ 643 #define list_for_each_rcu(pos, head) \ 644 for (pos = rcu_dereference((head)->next); \ 645 prefetch(pos->next), pos != (head); \ 646 pos = rcu_dereference(pos->next)) 647 648 #define __list_for_each_rcu(pos, head) \ 649 for (pos = rcu_dereference((head)->next); \ 650 pos != (head); \ 651 pos = rcu_dereference(pos->next)) 652 653 /** 654 * list_for_each_entry_rcu - iterate over rcu list of given type 655 * @pos: the type * to use as a loop cursor. 656 * @head: the head for your list. 657 * @member: the name of the list_struct within the struct. 658 * 659 * This list-traversal primitive may safely run concurrently with 660 * the _rcu list-mutation primitives such as list_add_rcu() 661 * as long as the traversal is guarded by rcu_read_lock(). 662 */ 663 #define list_for_each_entry_rcu(pos, head, member) \ 664 for (pos = list_entry(rcu_dereference((head)->next), typeof(*pos), member); \ 665 prefetch(pos->member.next), &pos->member != (head); \ 666 pos = list_entry(rcu_dereference(pos->member.next), typeof(*pos), member)) 667 668 669 /** 670 * list_for_each_continue_rcu 671 * @pos: the &struct list_head to use as a loop cursor. 672 * @head: the head for your list. 673 * 674 * Iterate over an rcu-protected list, continuing after current point. 675 * 676 * This list-traversal primitive may safely run concurrently with 677 * the _rcu list-mutation primitives such as list_add_rcu() 678 * as long as the traversal is guarded by rcu_read_lock(). 679 */ 680 #define list_for_each_continue_rcu(pos, head) \ 681 for ((pos) = rcu_dereference((pos)->next); \ 682 prefetch((pos)->next), (pos) != (head); \ 683 (pos) = rcu_dereference((pos)->next)) 684 685 /* 686 * Double linked lists with a single pointer list head. 687 * Mostly useful for hash tables where the two pointer list head is 688 * too wasteful. 689 * You lose the ability to access the tail in O(1). 690 */ 691 692 struct hlist_head { 693 struct hlist_node *first; 694 }; 695 696 struct hlist_node { 697 struct hlist_node *next, **pprev; 698 }; 699 700 #define HLIST_HEAD_INIT { .first = NULL } 701 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 702 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 703 static inline void INIT_HLIST_NODE(struct hlist_node *h) 704 { 705 h->next = NULL; 706 h->pprev = NULL; 707 } 708 709 static inline int hlist_unhashed(const struct hlist_node *h) 710 { 711 return !h->pprev; 712 } 713 714 static inline int hlist_empty(const struct hlist_head *h) 715 { 716 return !h->first; 717 } 718 719 static inline void __hlist_del(struct hlist_node *n) 720 { 721 struct hlist_node *next = n->next; 722 struct hlist_node **pprev = n->pprev; 723 *pprev = next; 724 if (next) 725 next->pprev = pprev; 726 } 727 728 static inline void hlist_del(struct hlist_node *n) 729 { 730 __hlist_del(n); 731 n->next = LIST_POISON1; 732 n->pprev = LIST_POISON2; 733 } 734 735 /** 736 * hlist_del_rcu - deletes entry from hash list without re-initialization 737 * @n: the element to delete from the hash list. 738 * 739 * Note: list_unhashed() on entry does not return true after this, 740 * the entry is in an undefined state. It is useful for RCU based 741 * lockfree traversal. 742 * 743 * In particular, it means that we can not poison the forward 744 * pointers that may still be used for walking the hash list. 745 * 746 * The caller must take whatever precautions are necessary 747 * (such as holding appropriate locks) to avoid racing 748 * with another list-mutation primitive, such as hlist_add_head_rcu() 749 * or hlist_del_rcu(), running on this same list. 750 * However, it is perfectly legal to run concurrently with 751 * the _rcu list-traversal primitives, such as 752 * hlist_for_each_entry(). 753 */ 754 static inline void hlist_del_rcu(struct hlist_node *n) 755 { 756 __hlist_del(n); 757 n->pprev = LIST_POISON2; 758 } 759 760 static inline void hlist_del_init(struct hlist_node *n) 761 { 762 if (!hlist_unhashed(n)) { 763 __hlist_del(n); 764 INIT_HLIST_NODE(n); 765 } 766 } 767 768 /** 769 * hlist_replace_rcu - replace old entry by new one 770 * @old : the element to be replaced 771 * @new : the new element to insert 772 * 773 * The @old entry will be replaced with the @new entry atomically. 774 */ 775 static inline void hlist_replace_rcu(struct hlist_node *old, 776 struct hlist_node *new) 777 { 778 struct hlist_node *next = old->next; 779 780 new->next = next; 781 new->pprev = old->pprev; 782 smp_wmb(); 783 if (next) 784 new->next->pprev = &new->next; 785 *new->pprev = new; 786 old->pprev = LIST_POISON2; 787 } 788 789 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 790 { 791 struct hlist_node *first = h->first; 792 n->next = first; 793 if (first) 794 first->pprev = &n->next; 795 h->first = n; 796 n->pprev = &h->first; 797 } 798 799 800 /** 801 * hlist_add_head_rcu 802 * @n: the element to add to the hash list. 803 * @h: the list to add to. 804 * 805 * Description: 806 * Adds the specified element to the specified hlist, 807 * while permitting racing traversals. 808 * 809 * The caller must take whatever precautions are necessary 810 * (such as holding appropriate locks) to avoid racing 811 * with another list-mutation primitive, such as hlist_add_head_rcu() 812 * or hlist_del_rcu(), running on this same list. 813 * However, it is perfectly legal to run concurrently with 814 * the _rcu list-traversal primitives, such as 815 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 816 * problems on Alpha CPUs. Regardless of the type of CPU, the 817 * list-traversal primitive must be guarded by rcu_read_lock(). 818 */ 819 static inline void hlist_add_head_rcu(struct hlist_node *n, 820 struct hlist_head *h) 821 { 822 struct hlist_node *first = h->first; 823 n->next = first; 824 n->pprev = &h->first; 825 smp_wmb(); 826 if (first) 827 first->pprev = &n->next; 828 h->first = n; 829 } 830 831 /* next must be != NULL */ 832 static inline void hlist_add_before(struct hlist_node *n, 833 struct hlist_node *next) 834 { 835 n->pprev = next->pprev; 836 n->next = next; 837 next->pprev = &n->next; 838 *(n->pprev) = n; 839 } 840 841 static inline void hlist_add_after(struct hlist_node *n, 842 struct hlist_node *next) 843 { 844 next->next = n->next; 845 n->next = next; 846 next->pprev = &n->next; 847 848 if(next->next) 849 next->next->pprev = &next->next; 850 } 851 852 /** 853 * hlist_add_before_rcu 854 * @n: the new element to add to the hash list. 855 * @next: the existing element to add the new element before. 856 * 857 * Description: 858 * Adds the specified element to the specified hlist 859 * before the specified node while permitting racing traversals. 860 * 861 * The caller must take whatever precautions are necessary 862 * (such as holding appropriate locks) to avoid racing 863 * with another list-mutation primitive, such as hlist_add_head_rcu() 864 * or hlist_del_rcu(), running on this same list. 865 * However, it is perfectly legal to run concurrently with 866 * the _rcu list-traversal primitives, such as 867 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 868 * problems on Alpha CPUs. 869 */ 870 static inline void hlist_add_before_rcu(struct hlist_node *n, 871 struct hlist_node *next) 872 { 873 n->pprev = next->pprev; 874 n->next = next; 875 smp_wmb(); 876 next->pprev = &n->next; 877 *(n->pprev) = n; 878 } 879 880 /** 881 * hlist_add_after_rcu 882 * @prev: the existing element to add the new element after. 883 * @n: the new element to add to the hash list. 884 * 885 * Description: 886 * Adds the specified element to the specified hlist 887 * after the specified node while permitting racing traversals. 888 * 889 * The caller must take whatever precautions are necessary 890 * (such as holding appropriate locks) to avoid racing 891 * with another list-mutation primitive, such as hlist_add_head_rcu() 892 * or hlist_del_rcu(), running on this same list. 893 * However, it is perfectly legal to run concurrently with 894 * the _rcu list-traversal primitives, such as 895 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 896 * problems on Alpha CPUs. 897 */ 898 static inline void hlist_add_after_rcu(struct hlist_node *prev, 899 struct hlist_node *n) 900 { 901 n->next = prev->next; 902 n->pprev = &prev->next; 903 smp_wmb(); 904 prev->next = n; 905 if (n->next) 906 n->next->pprev = &n->next; 907 } 908 909 #define hlist_entry(ptr, type, member) container_of(ptr,type,member) 910 911 #define hlist_for_each(pos, head) \ 912 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 913 pos = pos->next) 914 915 #define hlist_for_each_safe(pos, n, head) \ 916 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 917 pos = n) 918 919 /** 920 * hlist_for_each_entry - iterate over list of given type 921 * @tpos: the type * to use as a loop cursor. 922 * @pos: the &struct hlist_node to use as a loop cursor. 923 * @head: the head for your list. 924 * @member: the name of the hlist_node within the struct. 925 */ 926 #define hlist_for_each_entry(tpos, pos, head, member) \ 927 for (pos = (head)->first; \ 928 pos && ({ prefetch(pos->next); 1;}) && \ 929 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 930 pos = pos->next) 931 932 /** 933 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point 934 * @tpos: the type * to use as a loop cursor. 935 * @pos: the &struct hlist_node to use as a loop cursor. 936 * @member: the name of the hlist_node within the struct. 937 */ 938 #define hlist_for_each_entry_continue(tpos, pos, member) \ 939 for (pos = (pos)->next; \ 940 pos && ({ prefetch(pos->next); 1;}) && \ 941 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 942 pos = pos->next) 943 944 /** 945 * hlist_for_each_entry_from - iterate over a hlist continuing from current point 946 * @tpos: the type * to use as a loop cursor. 947 * @pos: the &struct hlist_node to use as a loop cursor. 948 * @member: the name of the hlist_node within the struct. 949 */ 950 #define hlist_for_each_entry_from(tpos, pos, member) \ 951 for (; pos && ({ prefetch(pos->next); 1;}) && \ 952 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 953 pos = pos->next) 954 955 /** 956 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 957 * @tpos: the type * to use as a loop cursor. 958 * @pos: the &struct hlist_node to use as a loop cursor. 959 * @n: another &struct hlist_node to use as temporary storage 960 * @head: the head for your list. 961 * @member: the name of the hlist_node within the struct. 962 */ 963 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 964 for (pos = (head)->first; \ 965 pos && ({ n = pos->next; 1; }) && \ 966 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 967 pos = n) 968 969 /** 970 * hlist_for_each_entry_rcu - iterate over rcu list of given type 971 * @tpos: the type * to use as a loop cursor. 972 * @pos: the &struct hlist_node to use as a loop cursor. 973 * @head: the head for your list. 974 * @member: the name of the hlist_node within the struct. 975 * 976 * This list-traversal primitive may safely run concurrently with 977 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 978 * as long as the traversal is guarded by rcu_read_lock(). 979 */ 980 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 981 for (pos = rcu_dereference((head)->first); \ 982 pos && ({ prefetch(pos->next); 1;}) && \ 983 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 984 pos = rcu_dereference(pos->next)) 985 986 #else 987 #warning "don't include kernel headers in userspace" 988 #endif /* __KERNEL__ */ 989 #endif 990