1 #ifndef _LINUX_LIST_H 2 #define _LINUX_LIST_H 3 4 #ifdef __KERNEL__ 5 6 #include <linux/stddef.h> 7 #include <linux/prefetch.h> 8 #include <asm/system.h> 9 10 /* 11 * These are non-NULL pointers that will result in page faults 12 * under normal circumstances, used to verify that nobody uses 13 * non-initialized list entries. 14 */ 15 #define LIST_POISON1 ((void *) 0x00100100) 16 #define LIST_POISON2 ((void *) 0x00200200) 17 18 /* 19 * Simple doubly linked list implementation. 20 * 21 * Some of the internal functions ("__xxx") are useful when 22 * manipulating whole lists rather than single entries, as 23 * sometimes we already know the next/prev entries and we can 24 * generate better code by using them directly rather than 25 * using the generic single-entry routines. 26 */ 27 28 struct list_head { 29 struct list_head *next, *prev; 30 }; 31 32 #define LIST_HEAD_INIT(name) { &(name), &(name) } 33 34 #define LIST_HEAD(name) \ 35 struct list_head name = LIST_HEAD_INIT(name) 36 37 static inline void INIT_LIST_HEAD(struct list_head *list) 38 { 39 list->next = list; 40 list->prev = list; 41 } 42 43 /* 44 * Insert a new entry between two known consecutive entries. 45 * 46 * This is only for internal list manipulation where we know 47 * the prev/next entries already! 48 */ 49 static inline void __list_add(struct list_head *new, 50 struct list_head *prev, 51 struct list_head *next) 52 { 53 next->prev = new; 54 new->next = next; 55 new->prev = prev; 56 prev->next = new; 57 } 58 59 /** 60 * list_add - add a new entry 61 * @new: new entry to be added 62 * @head: list head to add it after 63 * 64 * Insert a new entry after the specified head. 65 * This is good for implementing stacks. 66 */ 67 static inline void list_add(struct list_head *new, struct list_head *head) 68 { 69 __list_add(new, head, head->next); 70 } 71 72 /** 73 * list_add_tail - add a new entry 74 * @new: new entry to be added 75 * @head: list head to add it before 76 * 77 * Insert a new entry before the specified head. 78 * This is useful for implementing queues. 79 */ 80 static inline void list_add_tail(struct list_head *new, struct list_head *head) 81 { 82 __list_add(new, head->prev, head); 83 } 84 85 /* 86 * Insert a new entry between two known consecutive entries. 87 * 88 * This is only for internal list manipulation where we know 89 * the prev/next entries already! 90 */ 91 static inline void __list_add_rcu(struct list_head * new, 92 struct list_head * prev, struct list_head * next) 93 { 94 new->next = next; 95 new->prev = prev; 96 smp_wmb(); 97 next->prev = new; 98 prev->next = new; 99 } 100 101 /** 102 * list_add_rcu - add a new entry to rcu-protected list 103 * @new: new entry to be added 104 * @head: list head to add it after 105 * 106 * Insert a new entry after the specified head. 107 * This is good for implementing stacks. 108 * 109 * The caller must take whatever precautions are necessary 110 * (such as holding appropriate locks) to avoid racing 111 * with another list-mutation primitive, such as list_add_rcu() 112 * or list_del_rcu(), running on this same list. 113 * However, it is perfectly legal to run concurrently with 114 * the _rcu list-traversal primitives, such as 115 * list_for_each_entry_rcu(). 116 */ 117 static inline void list_add_rcu(struct list_head *new, struct list_head *head) 118 { 119 __list_add_rcu(new, head, head->next); 120 } 121 122 /** 123 * list_add_tail_rcu - add a new entry to rcu-protected list 124 * @new: new entry to be added 125 * @head: list head to add it before 126 * 127 * Insert a new entry before the specified head. 128 * This is useful for implementing queues. 129 * 130 * The caller must take whatever precautions are necessary 131 * (such as holding appropriate locks) to avoid racing 132 * with another list-mutation primitive, such as list_add_tail_rcu() 133 * or list_del_rcu(), running on this same list. 134 * However, it is perfectly legal to run concurrently with 135 * the _rcu list-traversal primitives, such as 136 * list_for_each_entry_rcu(). 137 */ 138 static inline void list_add_tail_rcu(struct list_head *new, 139 struct list_head *head) 140 { 141 __list_add_rcu(new, head->prev, head); 142 } 143 144 /* 145 * Delete a list entry by making the prev/next entries 146 * point to each other. 147 * 148 * This is only for internal list manipulation where we know 149 * the prev/next entries already! 150 */ 151 static inline void __list_del(struct list_head * prev, struct list_head * next) 152 { 153 next->prev = prev; 154 prev->next = next; 155 } 156 157 /** 158 * list_del - deletes entry from list. 159 * @entry: the element to delete from the list. 160 * Note: list_empty on entry does not return true after this, the entry is 161 * in an undefined state. 162 */ 163 static inline void list_del(struct list_head *entry) 164 { 165 __list_del(entry->prev, entry->next); 166 entry->next = LIST_POISON1; 167 entry->prev = LIST_POISON2; 168 } 169 170 /** 171 * list_del_rcu - deletes entry from list without re-initialization 172 * @entry: the element to delete from the list. 173 * 174 * Note: list_empty on entry does not return true after this, 175 * the entry is in an undefined state. It is useful for RCU based 176 * lockfree traversal. 177 * 178 * In particular, it means that we can not poison the forward 179 * pointers that may still be used for walking the list. 180 * 181 * The caller must take whatever precautions are necessary 182 * (such as holding appropriate locks) to avoid racing 183 * with another list-mutation primitive, such as list_del_rcu() 184 * or list_add_rcu(), running on this same list. 185 * However, it is perfectly legal to run concurrently with 186 * the _rcu list-traversal primitives, such as 187 * list_for_each_entry_rcu(). 188 * 189 * Note that the caller is not permitted to immediately free 190 * the newly deleted entry. Instead, either synchronize_rcu() 191 * or call_rcu() must be used to defer freeing until an RCU 192 * grace period has elapsed. 193 */ 194 static inline void list_del_rcu(struct list_head *entry) 195 { 196 __list_del(entry->prev, entry->next); 197 entry->prev = LIST_POISON2; 198 } 199 200 /* 201 * list_replace_rcu - replace old entry by new one 202 * @old : the element to be replaced 203 * @new : the new element to insert 204 * 205 * The old entry will be replaced with the new entry atomically. 206 */ 207 static inline void list_replace_rcu(struct list_head *old, 208 struct list_head *new) 209 { 210 new->next = old->next; 211 new->prev = old->prev; 212 smp_wmb(); 213 new->next->prev = new; 214 new->prev->next = new; 215 old->prev = LIST_POISON2; 216 } 217 218 /** 219 * list_del_init - deletes entry from list and reinitialize it. 220 * @entry: the element to delete from the list. 221 */ 222 static inline void list_del_init(struct list_head *entry) 223 { 224 __list_del(entry->prev, entry->next); 225 INIT_LIST_HEAD(entry); 226 } 227 228 /** 229 * list_move - delete from one list and add as another's head 230 * @list: the entry to move 231 * @head: the head that will precede our entry 232 */ 233 static inline void list_move(struct list_head *list, struct list_head *head) 234 { 235 __list_del(list->prev, list->next); 236 list_add(list, head); 237 } 238 239 /** 240 * list_move_tail - delete from one list and add as another's tail 241 * @list: the entry to move 242 * @head: the head that will follow our entry 243 */ 244 static inline void list_move_tail(struct list_head *list, 245 struct list_head *head) 246 { 247 __list_del(list->prev, list->next); 248 list_add_tail(list, head); 249 } 250 251 /** 252 * list_empty - tests whether a list is empty 253 * @head: the list to test. 254 */ 255 static inline int list_empty(const struct list_head *head) 256 { 257 return head->next == head; 258 } 259 260 /** 261 * list_empty_careful - tests whether a list is 262 * empty _and_ checks that no other CPU might be 263 * in the process of still modifying either member 264 * 265 * NOTE: using list_empty_careful() without synchronization 266 * can only be safe if the only activity that can happen 267 * to the list entry is list_del_init(). Eg. it cannot be used 268 * if another CPU could re-list_add() it. 269 * 270 * @head: the list to test. 271 */ 272 static inline int list_empty_careful(const struct list_head *head) 273 { 274 struct list_head *next = head->next; 275 return (next == head) && (next == head->prev); 276 } 277 278 static inline void __list_splice(struct list_head *list, 279 struct list_head *head) 280 { 281 struct list_head *first = list->next; 282 struct list_head *last = list->prev; 283 struct list_head *at = head->next; 284 285 first->prev = head; 286 head->next = first; 287 288 last->next = at; 289 at->prev = last; 290 } 291 292 /** 293 * list_splice - join two lists 294 * @list: the new list to add. 295 * @head: the place to add it in the first list. 296 */ 297 static inline void list_splice(struct list_head *list, struct list_head *head) 298 { 299 if (!list_empty(list)) 300 __list_splice(list, head); 301 } 302 303 /** 304 * list_splice_init - join two lists and reinitialise the emptied list. 305 * @list: the new list to add. 306 * @head: the place to add it in the first list. 307 * 308 * The list at @list is reinitialised 309 */ 310 static inline void list_splice_init(struct list_head *list, 311 struct list_head *head) 312 { 313 if (!list_empty(list)) { 314 __list_splice(list, head); 315 INIT_LIST_HEAD(list); 316 } 317 } 318 319 /** 320 * list_entry - get the struct for this entry 321 * @ptr: the &struct list_head pointer. 322 * @type: the type of the struct this is embedded in. 323 * @member: the name of the list_struct within the struct. 324 */ 325 #define list_entry(ptr, type, member) \ 326 container_of(ptr, type, member) 327 328 /** 329 * list_for_each - iterate over a list 330 * @pos: the &struct list_head to use as a loop counter. 331 * @head: the head for your list. 332 */ 333 #define list_for_each(pos, head) \ 334 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 335 pos = pos->next) 336 337 /** 338 * __list_for_each - iterate over a list 339 * @pos: the &struct list_head to use as a loop counter. 340 * @head: the head for your list. 341 * 342 * This variant differs from list_for_each() in that it's the 343 * simplest possible list iteration code, no prefetching is done. 344 * Use this for code that knows the list to be very short (empty 345 * or 1 entry) most of the time. 346 */ 347 #define __list_for_each(pos, head) \ 348 for (pos = (head)->next; pos != (head); pos = pos->next) 349 350 /** 351 * list_for_each_prev - iterate over a list backwards 352 * @pos: the &struct list_head to use as a loop counter. 353 * @head: the head for your list. 354 */ 355 #define list_for_each_prev(pos, head) \ 356 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 357 pos = pos->prev) 358 359 /** 360 * list_for_each_safe - iterate over a list safe against removal of list entry 361 * @pos: the &struct list_head to use as a loop counter. 362 * @n: another &struct list_head to use as temporary storage 363 * @head: the head for your list. 364 */ 365 #define list_for_each_safe(pos, n, head) \ 366 for (pos = (head)->next, n = pos->next; pos != (head); \ 367 pos = n, n = pos->next) 368 369 /** 370 * list_for_each_entry - iterate over list of given type 371 * @pos: the type * to use as a loop counter. 372 * @head: the head for your list. 373 * @member: the name of the list_struct within the struct. 374 */ 375 #define list_for_each_entry(pos, head, member) \ 376 for (pos = list_entry((head)->next, typeof(*pos), member); \ 377 prefetch(pos->member.next), &pos->member != (head); \ 378 pos = list_entry(pos->member.next, typeof(*pos), member)) 379 380 /** 381 * list_for_each_entry_reverse - iterate backwards over list of given type. 382 * @pos: the type * to use as a loop counter. 383 * @head: the head for your list. 384 * @member: the name of the list_struct within the struct. 385 */ 386 #define list_for_each_entry_reverse(pos, head, member) \ 387 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 388 prefetch(pos->member.prev), &pos->member != (head); \ 389 pos = list_entry(pos->member.prev, typeof(*pos), member)) 390 391 /** 392 * list_prepare_entry - prepare a pos entry for use as a start point in 393 * list_for_each_entry_continue 394 * @pos: the type * to use as a start point 395 * @head: the head of the list 396 * @member: the name of the list_struct within the struct. 397 */ 398 #define list_prepare_entry(pos, head, member) \ 399 ((pos) ? : list_entry(head, typeof(*pos), member)) 400 401 /** 402 * list_for_each_entry_continue - iterate over list of given type 403 * continuing after existing point 404 * @pos: the type * to use as a loop counter. 405 * @head: the head for your list. 406 * @member: the name of the list_struct within the struct. 407 */ 408 #define list_for_each_entry_continue(pos, head, member) \ 409 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 410 prefetch(pos->member.next), &pos->member != (head); \ 411 pos = list_entry(pos->member.next, typeof(*pos), member)) 412 413 /** 414 * list_for_each_entry_from - iterate over list of given type 415 * continuing from existing point 416 * @pos: the type * to use as a loop counter. 417 * @head: the head for your list. 418 * @member: the name of the list_struct within the struct. 419 */ 420 #define list_for_each_entry_from(pos, head, member) \ 421 for (; prefetch(pos->member.next), &pos->member != (head); \ 422 pos = list_entry(pos->member.next, typeof(*pos), member)) 423 424 /** 425 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 426 * @pos: the type * to use as a loop counter. 427 * @n: another type * to use as temporary storage 428 * @head: the head for your list. 429 * @member: the name of the list_struct within the struct. 430 */ 431 #define list_for_each_entry_safe(pos, n, head, member) \ 432 for (pos = list_entry((head)->next, typeof(*pos), member), \ 433 n = list_entry(pos->member.next, typeof(*pos), member); \ 434 &pos->member != (head); \ 435 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 436 437 /** 438 * list_for_each_entry_safe_continue - iterate over list of given type 439 * continuing after existing point safe against removal of list entry 440 * @pos: the type * to use as a loop counter. 441 * @n: another type * to use as temporary storage 442 * @head: the head for your list. 443 * @member: the name of the list_struct within the struct. 444 */ 445 #define list_for_each_entry_safe_continue(pos, n, head, member) \ 446 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 447 n = list_entry(pos->member.next, typeof(*pos), member); \ 448 &pos->member != (head); \ 449 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 450 451 /** 452 * list_for_each_entry_safe_from - iterate over list of given type 453 * from existing point safe against removal of list entry 454 * @pos: the type * to use as a loop counter. 455 * @n: another type * to use as temporary storage 456 * @head: the head for your list. 457 * @member: the name of the list_struct within the struct. 458 */ 459 #define list_for_each_entry_safe_from(pos, n, head, member) \ 460 for (n = list_entry(pos->member.next, typeof(*pos), member); \ 461 &pos->member != (head); \ 462 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 463 464 /** 465 * list_for_each_entry_safe_reverse - iterate backwards over list of given type safe against 466 * removal of list entry 467 * @pos: the type * to use as a loop counter. 468 * @n: another type * to use as temporary storage 469 * @head: the head for your list. 470 * @member: the name of the list_struct within the struct. 471 */ 472 #define list_for_each_entry_safe_reverse(pos, n, head, member) \ 473 for (pos = list_entry((head)->prev, typeof(*pos), member), \ 474 n = list_entry(pos->member.prev, typeof(*pos), member); \ 475 &pos->member != (head); \ 476 pos = n, n = list_entry(n->member.prev, typeof(*n), member)) 477 478 /** 479 * list_for_each_rcu - iterate over an rcu-protected list 480 * @pos: the &struct list_head to use as a loop counter. 481 * @head: the head for your list. 482 * 483 * This list-traversal primitive may safely run concurrently with 484 * the _rcu list-mutation primitives such as list_add_rcu() 485 * as long as the traversal is guarded by rcu_read_lock(). 486 */ 487 #define list_for_each_rcu(pos, head) \ 488 for (pos = (head)->next; \ 489 prefetch(rcu_dereference(pos)->next), pos != (head); \ 490 pos = pos->next) 491 492 #define __list_for_each_rcu(pos, head) \ 493 for (pos = (head)->next; \ 494 rcu_dereference(pos) != (head); \ 495 pos = pos->next) 496 497 /** 498 * list_for_each_safe_rcu - iterate over an rcu-protected list safe 499 * against removal of list entry 500 * @pos: the &struct list_head to use as a loop counter. 501 * @n: another &struct list_head to use as temporary storage 502 * @head: the head for your list. 503 * 504 * This list-traversal primitive may safely run concurrently with 505 * the _rcu list-mutation primitives such as list_add_rcu() 506 * as long as the traversal is guarded by rcu_read_lock(). 507 */ 508 #define list_for_each_safe_rcu(pos, n, head) \ 509 for (pos = (head)->next; \ 510 n = rcu_dereference(pos)->next, pos != (head); \ 511 pos = n) 512 513 /** 514 * list_for_each_entry_rcu - iterate over rcu list of given type 515 * @pos: the type * to use as a loop counter. 516 * @head: the head for your list. 517 * @member: the name of the list_struct within the struct. 518 * 519 * This list-traversal primitive may safely run concurrently with 520 * the _rcu list-mutation primitives such as list_add_rcu() 521 * as long as the traversal is guarded by rcu_read_lock(). 522 */ 523 #define list_for_each_entry_rcu(pos, head, member) \ 524 for (pos = list_entry((head)->next, typeof(*pos), member); \ 525 prefetch(rcu_dereference(pos)->member.next), \ 526 &pos->member != (head); \ 527 pos = list_entry(pos->member.next, typeof(*pos), member)) 528 529 530 /** 531 * list_for_each_continue_rcu - iterate over an rcu-protected list 532 * continuing after existing point. 533 * @pos: the &struct list_head to use as a loop counter. 534 * @head: the head for your list. 535 * 536 * This list-traversal primitive may safely run concurrently with 537 * the _rcu list-mutation primitives such as list_add_rcu() 538 * as long as the traversal is guarded by rcu_read_lock(). 539 */ 540 #define list_for_each_continue_rcu(pos, head) \ 541 for ((pos) = (pos)->next; \ 542 prefetch(rcu_dereference((pos))->next), (pos) != (head); \ 543 (pos) = (pos)->next) 544 545 /* 546 * Double linked lists with a single pointer list head. 547 * Mostly useful for hash tables where the two pointer list head is 548 * too wasteful. 549 * You lose the ability to access the tail in O(1). 550 */ 551 552 struct hlist_head { 553 struct hlist_node *first; 554 }; 555 556 struct hlist_node { 557 struct hlist_node *next, **pprev; 558 }; 559 560 #define HLIST_HEAD_INIT { .first = NULL } 561 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 562 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 563 static inline void INIT_HLIST_NODE(struct hlist_node *h) 564 { 565 h->next = NULL; 566 h->pprev = NULL; 567 } 568 569 static inline int hlist_unhashed(const struct hlist_node *h) 570 { 571 return !h->pprev; 572 } 573 574 static inline int hlist_empty(const struct hlist_head *h) 575 { 576 return !h->first; 577 } 578 579 static inline void __hlist_del(struct hlist_node *n) 580 { 581 struct hlist_node *next = n->next; 582 struct hlist_node **pprev = n->pprev; 583 *pprev = next; 584 if (next) 585 next->pprev = pprev; 586 } 587 588 static inline void hlist_del(struct hlist_node *n) 589 { 590 __hlist_del(n); 591 n->next = LIST_POISON1; 592 n->pprev = LIST_POISON2; 593 } 594 595 /** 596 * hlist_del_rcu - deletes entry from hash list without re-initialization 597 * @n: the element to delete from the hash list. 598 * 599 * Note: list_unhashed() on entry does not return true after this, 600 * the entry is in an undefined state. It is useful for RCU based 601 * lockfree traversal. 602 * 603 * In particular, it means that we can not poison the forward 604 * pointers that may still be used for walking the hash list. 605 * 606 * The caller must take whatever precautions are necessary 607 * (such as holding appropriate locks) to avoid racing 608 * with another list-mutation primitive, such as hlist_add_head_rcu() 609 * or hlist_del_rcu(), running on this same list. 610 * However, it is perfectly legal to run concurrently with 611 * the _rcu list-traversal primitives, such as 612 * hlist_for_each_entry(). 613 */ 614 static inline void hlist_del_rcu(struct hlist_node *n) 615 { 616 __hlist_del(n); 617 n->pprev = LIST_POISON2; 618 } 619 620 static inline void hlist_del_init(struct hlist_node *n) 621 { 622 if (n->pprev) { 623 __hlist_del(n); 624 INIT_HLIST_NODE(n); 625 } 626 } 627 628 /* 629 * hlist_replace_rcu - replace old entry by new one 630 * @old : the element to be replaced 631 * @new : the new element to insert 632 * 633 * The old entry will be replaced with the new entry atomically. 634 */ 635 static inline void hlist_replace_rcu(struct hlist_node *old, 636 struct hlist_node *new) 637 { 638 struct hlist_node *next = old->next; 639 640 new->next = next; 641 new->pprev = old->pprev; 642 smp_wmb(); 643 if (next) 644 new->next->pprev = &new->next; 645 *new->pprev = new; 646 old->pprev = LIST_POISON2; 647 } 648 649 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 650 { 651 struct hlist_node *first = h->first; 652 n->next = first; 653 if (first) 654 first->pprev = &n->next; 655 h->first = n; 656 n->pprev = &h->first; 657 } 658 659 660 /** 661 * hlist_add_head_rcu - adds the specified element to the specified hlist, 662 * while permitting racing traversals. 663 * @n: the element to add to the hash list. 664 * @h: the list to add to. 665 * 666 * The caller must take whatever precautions are necessary 667 * (such as holding appropriate locks) to avoid racing 668 * with another list-mutation primitive, such as hlist_add_head_rcu() 669 * or hlist_del_rcu(), running on this same list. 670 * However, it is perfectly legal to run concurrently with 671 * the _rcu list-traversal primitives, such as 672 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 673 * problems on Alpha CPUs. Regardless of the type of CPU, the 674 * list-traversal primitive must be guarded by rcu_read_lock(). 675 */ 676 static inline void hlist_add_head_rcu(struct hlist_node *n, 677 struct hlist_head *h) 678 { 679 struct hlist_node *first = h->first; 680 n->next = first; 681 n->pprev = &h->first; 682 smp_wmb(); 683 if (first) 684 first->pprev = &n->next; 685 h->first = n; 686 } 687 688 /* next must be != NULL */ 689 static inline void hlist_add_before(struct hlist_node *n, 690 struct hlist_node *next) 691 { 692 n->pprev = next->pprev; 693 n->next = next; 694 next->pprev = &n->next; 695 *(n->pprev) = n; 696 } 697 698 static inline void hlist_add_after(struct hlist_node *n, 699 struct hlist_node *next) 700 { 701 next->next = n->next; 702 n->next = next; 703 next->pprev = &n->next; 704 705 if(next->next) 706 next->next->pprev = &next->next; 707 } 708 709 /** 710 * hlist_add_before_rcu - adds the specified element to the specified hlist 711 * before the specified node while permitting racing traversals. 712 * @n: the new element to add to the hash list. 713 * @next: the existing element to add the new element before. 714 * 715 * The caller must take whatever precautions are necessary 716 * (such as holding appropriate locks) to avoid racing 717 * with another list-mutation primitive, such as hlist_add_head_rcu() 718 * or hlist_del_rcu(), running on this same list. 719 * However, it is perfectly legal to run concurrently with 720 * the _rcu list-traversal primitives, such as 721 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 722 * problems on Alpha CPUs. 723 */ 724 static inline void hlist_add_before_rcu(struct hlist_node *n, 725 struct hlist_node *next) 726 { 727 n->pprev = next->pprev; 728 n->next = next; 729 smp_wmb(); 730 next->pprev = &n->next; 731 *(n->pprev) = n; 732 } 733 734 /** 735 * hlist_add_after_rcu - adds the specified element to the specified hlist 736 * after the specified node while permitting racing traversals. 737 * @prev: the existing element to add the new element after. 738 * @n: the new element to add to the hash list. 739 * 740 * The caller must take whatever precautions are necessary 741 * (such as holding appropriate locks) to avoid racing 742 * with another list-mutation primitive, such as hlist_add_head_rcu() 743 * or hlist_del_rcu(), running on this same list. 744 * However, it is perfectly legal to run concurrently with 745 * the _rcu list-traversal primitives, such as 746 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 747 * problems on Alpha CPUs. 748 */ 749 static inline void hlist_add_after_rcu(struct hlist_node *prev, 750 struct hlist_node *n) 751 { 752 n->next = prev->next; 753 n->pprev = &prev->next; 754 smp_wmb(); 755 prev->next = n; 756 if (n->next) 757 n->next->pprev = &n->next; 758 } 759 760 #define hlist_entry(ptr, type, member) container_of(ptr,type,member) 761 762 #define hlist_for_each(pos, head) \ 763 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 764 pos = pos->next) 765 766 #define hlist_for_each_safe(pos, n, head) \ 767 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 768 pos = n) 769 770 /** 771 * hlist_for_each_entry - iterate over list of given type 772 * @tpos: the type * to use as a loop counter. 773 * @pos: the &struct hlist_node to use as a loop counter. 774 * @head: the head for your list. 775 * @member: the name of the hlist_node within the struct. 776 */ 777 #define hlist_for_each_entry(tpos, pos, head, member) \ 778 for (pos = (head)->first; \ 779 pos && ({ prefetch(pos->next); 1;}) && \ 780 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 781 pos = pos->next) 782 783 /** 784 * hlist_for_each_entry_continue - iterate over a hlist continuing after existing point 785 * @tpos: the type * to use as a loop counter. 786 * @pos: the &struct hlist_node to use as a loop counter. 787 * @member: the name of the hlist_node within the struct. 788 */ 789 #define hlist_for_each_entry_continue(tpos, pos, member) \ 790 for (pos = (pos)->next; \ 791 pos && ({ prefetch(pos->next); 1;}) && \ 792 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 793 pos = pos->next) 794 795 /** 796 * hlist_for_each_entry_from - iterate over a hlist continuing from existing point 797 * @tpos: the type * to use as a loop counter. 798 * @pos: the &struct hlist_node to use as a loop counter. 799 * @member: the name of the hlist_node within the struct. 800 */ 801 #define hlist_for_each_entry_from(tpos, pos, member) \ 802 for (; pos && ({ prefetch(pos->next); 1;}) && \ 803 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 804 pos = pos->next) 805 806 /** 807 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 808 * @tpos: the type * to use as a loop counter. 809 * @pos: the &struct hlist_node to use as a loop counter. 810 * @n: another &struct hlist_node to use as temporary storage 811 * @head: the head for your list. 812 * @member: the name of the hlist_node within the struct. 813 */ 814 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 815 for (pos = (head)->first; \ 816 pos && ({ n = pos->next; 1; }) && \ 817 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 818 pos = n) 819 820 /** 821 * hlist_for_each_entry_rcu - iterate over rcu list of given type 822 * @tpos: the type * to use as a loop counter. 823 * @pos: the &struct hlist_node to use as a loop counter. 824 * @head: the head for your list. 825 * @member: the name of the hlist_node within the struct. 826 * 827 * This list-traversal primitive may safely run concurrently with 828 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 829 * as long as the traversal is guarded by rcu_read_lock(). 830 */ 831 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 832 for (pos = (head)->first; \ 833 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \ 834 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 835 pos = pos->next) 836 837 #else 838 #warning "don't include kernel headers in userspace" 839 #endif /* __KERNEL__ */ 840 #endif 841