1 #ifndef _LINUX_LIST_H 2 #define _LINUX_LIST_H 3 4 #ifdef __KERNEL__ 5 6 #include <linux/stddef.h> 7 #include <linux/poison.h> 8 #include <linux/prefetch.h> 9 #include <asm/system.h> 10 11 /* 12 * Simple doubly linked list implementation. 13 * 14 * Some of the internal functions ("__xxx") are useful when 15 * manipulating whole lists rather than single entries, as 16 * sometimes we already know the next/prev entries and we can 17 * generate better code by using them directly rather than 18 * using the generic single-entry routines. 19 */ 20 21 struct list_head { 22 struct list_head *next, *prev; 23 }; 24 25 #define LIST_HEAD_INIT(name) { &(name), &(name) } 26 27 #define LIST_HEAD(name) \ 28 struct list_head name = LIST_HEAD_INIT(name) 29 30 static inline void INIT_LIST_HEAD(struct list_head *list) 31 { 32 list->next = list; 33 list->prev = list; 34 } 35 36 /* 37 * Insert a new entry between two known consecutive entries. 38 * 39 * This is only for internal list manipulation where we know 40 * the prev/next entries already! 41 */ 42 #ifndef CONFIG_DEBUG_LIST 43 static inline void __list_add(struct list_head *new, 44 struct list_head *prev, 45 struct list_head *next) 46 { 47 next->prev = new; 48 new->next = next; 49 new->prev = prev; 50 prev->next = new; 51 } 52 #else 53 extern void __list_add(struct list_head *new, 54 struct list_head *prev, 55 struct list_head *next); 56 #endif 57 58 /** 59 * list_add - add a new entry 60 * @new: new entry to be added 61 * @head: list head to add it after 62 * 63 * Insert a new entry after the specified head. 64 * This is good for implementing stacks. 65 */ 66 #ifndef CONFIG_DEBUG_LIST 67 static inline void list_add(struct list_head *new, struct list_head *head) 68 { 69 __list_add(new, head, head->next); 70 } 71 #else 72 extern void list_add(struct list_head *new, struct list_head *head); 73 #endif 74 75 76 /** 77 * list_add_tail - add a new entry 78 * @new: new entry to be added 79 * @head: list head to add it before 80 * 81 * Insert a new entry before the specified head. 82 * This is useful for implementing queues. 83 */ 84 static inline void list_add_tail(struct list_head *new, struct list_head *head) 85 { 86 __list_add(new, head->prev, head); 87 } 88 89 /* 90 * Insert a new entry between two known consecutive entries. 91 * 92 * This is only for internal list manipulation where we know 93 * the prev/next entries already! 94 */ 95 static inline void __list_add_rcu(struct list_head * new, 96 struct list_head * prev, struct list_head * next) 97 { 98 new->next = next; 99 new->prev = prev; 100 smp_wmb(); 101 next->prev = new; 102 prev->next = new; 103 } 104 105 /** 106 * list_add_rcu - add a new entry to rcu-protected list 107 * @new: new entry to be added 108 * @head: list head to add it after 109 * 110 * Insert a new entry after the specified head. 111 * This is good for implementing stacks. 112 * 113 * The caller must take whatever precautions are necessary 114 * (such as holding appropriate locks) to avoid racing 115 * with another list-mutation primitive, such as list_add_rcu() 116 * or list_del_rcu(), running on this same list. 117 * However, it is perfectly legal to run concurrently with 118 * the _rcu list-traversal primitives, such as 119 * list_for_each_entry_rcu(). 120 */ 121 static inline void list_add_rcu(struct list_head *new, struct list_head *head) 122 { 123 __list_add_rcu(new, head, head->next); 124 } 125 126 /** 127 * list_add_tail_rcu - add a new entry to rcu-protected list 128 * @new: new entry to be added 129 * @head: list head to add it before 130 * 131 * Insert a new entry before the specified head. 132 * This is useful for implementing queues. 133 * 134 * The caller must take whatever precautions are necessary 135 * (such as holding appropriate locks) to avoid racing 136 * with another list-mutation primitive, such as list_add_tail_rcu() 137 * or list_del_rcu(), running on this same list. 138 * However, it is perfectly legal to run concurrently with 139 * the _rcu list-traversal primitives, such as 140 * list_for_each_entry_rcu(). 141 */ 142 static inline void list_add_tail_rcu(struct list_head *new, 143 struct list_head *head) 144 { 145 __list_add_rcu(new, head->prev, head); 146 } 147 148 /* 149 * Delete a list entry by making the prev/next entries 150 * point to each other. 151 * 152 * This is only for internal list manipulation where we know 153 * the prev/next entries already! 154 */ 155 static inline void __list_del(struct list_head * prev, struct list_head * next) 156 { 157 next->prev = prev; 158 prev->next = next; 159 } 160 161 /** 162 * list_del - deletes entry from list. 163 * @entry: the element to delete from the list. 164 * Note: list_empty() on entry does not return true after this, the entry is 165 * in an undefined state. 166 */ 167 #ifndef CONFIG_DEBUG_LIST 168 static inline void list_del(struct list_head *entry) 169 { 170 __list_del(entry->prev, entry->next); 171 entry->next = LIST_POISON1; 172 entry->prev = LIST_POISON2; 173 } 174 #else 175 extern void list_del(struct list_head *entry); 176 #endif 177 178 /** 179 * list_del_rcu - deletes entry from list without re-initialization 180 * @entry: the element to delete from the list. 181 * 182 * Note: list_empty() on entry does not return true after this, 183 * the entry is in an undefined state. It is useful for RCU based 184 * lockfree traversal. 185 * 186 * In particular, it means that we can not poison the forward 187 * pointers that may still be used for walking the list. 188 * 189 * The caller must take whatever precautions are necessary 190 * (such as holding appropriate locks) to avoid racing 191 * with another list-mutation primitive, such as list_del_rcu() 192 * or list_add_rcu(), running on this same list. 193 * However, it is perfectly legal to run concurrently with 194 * the _rcu list-traversal primitives, such as 195 * list_for_each_entry_rcu(). 196 * 197 * Note that the caller is not permitted to immediately free 198 * the newly deleted entry. Instead, either synchronize_rcu() 199 * or call_rcu() must be used to defer freeing until an RCU 200 * grace period has elapsed. 201 */ 202 static inline void list_del_rcu(struct list_head *entry) 203 { 204 __list_del(entry->prev, entry->next); 205 entry->prev = LIST_POISON2; 206 } 207 208 /** 209 * list_replace - replace old entry by new one 210 * @old : the element to be replaced 211 * @new : the new element to insert 212 * 213 * If @old was empty, it will be overwritten. 214 */ 215 static inline void list_replace(struct list_head *old, 216 struct list_head *new) 217 { 218 new->next = old->next; 219 new->next->prev = new; 220 new->prev = old->prev; 221 new->prev->next = new; 222 } 223 224 static inline void list_replace_init(struct list_head *old, 225 struct list_head *new) 226 { 227 list_replace(old, new); 228 INIT_LIST_HEAD(old); 229 } 230 231 /** 232 * list_replace_rcu - replace old entry by new one 233 * @old : the element to be replaced 234 * @new : the new element to insert 235 * 236 * The @old entry will be replaced with the @new entry atomically. 237 * Note: @old should not be empty. 238 */ 239 static inline void list_replace_rcu(struct list_head *old, 240 struct list_head *new) 241 { 242 new->next = old->next; 243 new->prev = old->prev; 244 smp_wmb(); 245 new->next->prev = new; 246 new->prev->next = new; 247 old->prev = LIST_POISON2; 248 } 249 250 /** 251 * list_del_init - deletes entry from list and reinitialize it. 252 * @entry: the element to delete from the list. 253 */ 254 static inline void list_del_init(struct list_head *entry) 255 { 256 __list_del(entry->prev, entry->next); 257 INIT_LIST_HEAD(entry); 258 } 259 260 /** 261 * list_move - delete from one list and add as another's head 262 * @list: the entry to move 263 * @head: the head that will precede our entry 264 */ 265 static inline void list_move(struct list_head *list, struct list_head *head) 266 { 267 __list_del(list->prev, list->next); 268 list_add(list, head); 269 } 270 271 /** 272 * list_move_tail - delete from one list and add as another's tail 273 * @list: the entry to move 274 * @head: the head that will follow our entry 275 */ 276 static inline void list_move_tail(struct list_head *list, 277 struct list_head *head) 278 { 279 __list_del(list->prev, list->next); 280 list_add_tail(list, head); 281 } 282 283 /** 284 * list_is_last - tests whether @list is the last entry in list @head 285 * @list: the entry to test 286 * @head: the head of the list 287 */ 288 static inline int list_is_last(const struct list_head *list, 289 const struct list_head *head) 290 { 291 return list->next == head; 292 } 293 294 /** 295 * list_empty - tests whether a list is empty 296 * @head: the list to test. 297 */ 298 static inline int list_empty(const struct list_head *head) 299 { 300 return head->next == head; 301 } 302 303 /** 304 * list_empty_careful - tests whether a list is empty and not being modified 305 * @head: the list to test 306 * 307 * Description: 308 * tests whether a list is empty _and_ checks that no other CPU might be 309 * in the process of modifying either member (next or prev) 310 * 311 * NOTE: using list_empty_careful() without synchronization 312 * can only be safe if the only activity that can happen 313 * to the list entry is list_del_init(). Eg. it cannot be used 314 * if another CPU could re-list_add() it. 315 */ 316 static inline int list_empty_careful(const struct list_head *head) 317 { 318 struct list_head *next = head->next; 319 return (next == head) && (next == head->prev); 320 } 321 322 static inline void __list_splice(struct list_head *list, 323 struct list_head *head) 324 { 325 struct list_head *first = list->next; 326 struct list_head *last = list->prev; 327 struct list_head *at = head->next; 328 329 first->prev = head; 330 head->next = first; 331 332 last->next = at; 333 at->prev = last; 334 } 335 336 /** 337 * list_splice - join two lists 338 * @list: the new list to add. 339 * @head: the place to add it in the first list. 340 */ 341 static inline void list_splice(struct list_head *list, struct list_head *head) 342 { 343 if (!list_empty(list)) 344 __list_splice(list, head); 345 } 346 347 /** 348 * list_splice_init - join two lists and reinitialise the emptied list. 349 * @list: the new list to add. 350 * @head: the place to add it in the first list. 351 * 352 * The list at @list is reinitialised 353 */ 354 static inline void list_splice_init(struct list_head *list, 355 struct list_head *head) 356 { 357 if (!list_empty(list)) { 358 __list_splice(list, head); 359 INIT_LIST_HEAD(list); 360 } 361 } 362 363 /** 364 * list_splice_init_rcu - splice an RCU-protected list into an existing list. 365 * @list: the RCU-protected list to splice 366 * @head: the place in the list to splice the first list into 367 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ... 368 * 369 * @head can be RCU-read traversed concurrently with this function. 370 * 371 * Note that this function blocks. 372 * 373 * Important note: the caller must take whatever action is necessary to 374 * prevent any other updates to @head. In principle, it is possible 375 * to modify the list as soon as sync() begins execution. 376 * If this sort of thing becomes necessary, an alternative version 377 * based on call_rcu() could be created. But only if -really- 378 * needed -- there is no shortage of RCU API members. 379 */ 380 static inline void list_splice_init_rcu(struct list_head *list, 381 struct list_head *head, 382 void (*sync)(void)) 383 { 384 struct list_head *first = list->next; 385 struct list_head *last = list->prev; 386 struct list_head *at = head->next; 387 388 if (list_empty(head)) 389 return; 390 391 /* "first" and "last" tracking list, so initialize it. */ 392 393 INIT_LIST_HEAD(list); 394 395 /* 396 * At this point, the list body still points to the source list. 397 * Wait for any readers to finish using the list before splicing 398 * the list body into the new list. Any new readers will see 399 * an empty list. 400 */ 401 402 sync(); 403 404 /* 405 * Readers are finished with the source list, so perform splice. 406 * The order is important if the new list is global and accessible 407 * to concurrent RCU readers. Note that RCU readers are not 408 * permitted to traverse the prev pointers without excluding 409 * this function. 410 */ 411 412 last->next = at; 413 smp_wmb(); 414 head->next = first; 415 first->prev = head; 416 at->prev = last; 417 } 418 419 /** 420 * list_entry - get the struct for this entry 421 * @ptr: the &struct list_head pointer. 422 * @type: the type of the struct this is embedded in. 423 * @member: the name of the list_struct within the struct. 424 */ 425 #define list_entry(ptr, type, member) \ 426 container_of(ptr, type, member) 427 428 /** 429 * list_first_entry - get the first element from a list 430 * @ptr: the list head to take the element from. 431 * @type: the type of the struct this is embedded in. 432 * @member: the name of the list_struct within the struct. 433 * 434 * Note, that list is expected to be not empty. 435 */ 436 #define list_first_entry(ptr, type, member) \ 437 list_entry((ptr)->next, type, member) 438 439 /** 440 * list_for_each - iterate over a list 441 * @pos: the &struct list_head to use as a loop cursor. 442 * @head: the head for your list. 443 */ 444 #define list_for_each(pos, head) \ 445 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 446 pos = pos->next) 447 448 /** 449 * __list_for_each - iterate over a list 450 * @pos: the &struct list_head to use as a loop cursor. 451 * @head: the head for your list. 452 * 453 * This variant differs from list_for_each() in that it's the 454 * simplest possible list iteration code, no prefetching is done. 455 * Use this for code that knows the list to be very short (empty 456 * or 1 entry) most of the time. 457 */ 458 #define __list_for_each(pos, head) \ 459 for (pos = (head)->next; pos != (head); pos = pos->next) 460 461 /** 462 * list_for_each_prev - iterate over a list backwards 463 * @pos: the &struct list_head to use as a loop cursor. 464 * @head: the head for your list. 465 */ 466 #define list_for_each_prev(pos, head) \ 467 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 468 pos = pos->prev) 469 470 /** 471 * list_for_each_safe - iterate over a list safe against removal of list entry 472 * @pos: the &struct list_head to use as a loop cursor. 473 * @n: another &struct list_head to use as temporary storage 474 * @head: the head for your list. 475 */ 476 #define list_for_each_safe(pos, n, head) \ 477 for (pos = (head)->next, n = pos->next; pos != (head); \ 478 pos = n, n = pos->next) 479 480 /** 481 * list_for_each_entry - iterate over list of given type 482 * @pos: the type * to use as a loop cursor. 483 * @head: the head for your list. 484 * @member: the name of the list_struct within the struct. 485 */ 486 #define list_for_each_entry(pos, head, member) \ 487 for (pos = list_entry((head)->next, typeof(*pos), member); \ 488 prefetch(pos->member.next), &pos->member != (head); \ 489 pos = list_entry(pos->member.next, typeof(*pos), member)) 490 491 /** 492 * list_for_each_entry_reverse - iterate backwards over list of given type. 493 * @pos: the type * to use as a loop cursor. 494 * @head: the head for your list. 495 * @member: the name of the list_struct within the struct. 496 */ 497 #define list_for_each_entry_reverse(pos, head, member) \ 498 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 499 prefetch(pos->member.prev), &pos->member != (head); \ 500 pos = list_entry(pos->member.prev, typeof(*pos), member)) 501 502 /** 503 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 504 * @pos: the type * to use as a start point 505 * @head: the head of the list 506 * @member: the name of the list_struct within the struct. 507 * 508 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 509 */ 510 #define list_prepare_entry(pos, head, member) \ 511 ((pos) ? : list_entry(head, typeof(*pos), member)) 512 513 /** 514 * list_for_each_entry_continue - continue iteration over list of given type 515 * @pos: the type * to use as a loop cursor. 516 * @head: the head for your list. 517 * @member: the name of the list_struct within the struct. 518 * 519 * Continue to iterate over list of given type, continuing after 520 * the current position. 521 */ 522 #define list_for_each_entry_continue(pos, head, member) \ 523 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 524 prefetch(pos->member.next), &pos->member != (head); \ 525 pos = list_entry(pos->member.next, typeof(*pos), member)) 526 527 /** 528 * list_for_each_entry_from - iterate over list of given type from the current point 529 * @pos: the type * to use as a loop cursor. 530 * @head: the head for your list. 531 * @member: the name of the list_struct within the struct. 532 * 533 * Iterate over list of given type, continuing from current position. 534 */ 535 #define list_for_each_entry_from(pos, head, member) \ 536 for (; prefetch(pos->member.next), &pos->member != (head); \ 537 pos = list_entry(pos->member.next, typeof(*pos), member)) 538 539 /** 540 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 541 * @pos: the type * to use as a loop cursor. 542 * @n: another type * to use as temporary storage 543 * @head: the head for your list. 544 * @member: the name of the list_struct within the struct. 545 */ 546 #define list_for_each_entry_safe(pos, n, head, member) \ 547 for (pos = list_entry((head)->next, typeof(*pos), member), \ 548 n = list_entry(pos->member.next, typeof(*pos), member); \ 549 &pos->member != (head); \ 550 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 551 552 /** 553 * list_for_each_entry_safe_continue 554 * @pos: the type * to use as a loop cursor. 555 * @n: another type * to use as temporary storage 556 * @head: the head for your list. 557 * @member: the name of the list_struct within the struct. 558 * 559 * Iterate over list of given type, continuing after current point, 560 * safe against removal of list entry. 561 */ 562 #define list_for_each_entry_safe_continue(pos, n, head, member) \ 563 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 564 n = list_entry(pos->member.next, typeof(*pos), member); \ 565 &pos->member != (head); \ 566 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 567 568 /** 569 * list_for_each_entry_safe_from 570 * @pos: the type * to use as a loop cursor. 571 * @n: another type * to use as temporary storage 572 * @head: the head for your list. 573 * @member: the name of the list_struct within the struct. 574 * 575 * Iterate over list of given type from current point, safe against 576 * removal of list entry. 577 */ 578 #define list_for_each_entry_safe_from(pos, n, head, member) \ 579 for (n = list_entry(pos->member.next, typeof(*pos), member); \ 580 &pos->member != (head); \ 581 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 582 583 /** 584 * list_for_each_entry_safe_reverse 585 * @pos: the type * to use as a loop cursor. 586 * @n: another type * to use as temporary storage 587 * @head: the head for your list. 588 * @member: the name of the list_struct within the struct. 589 * 590 * Iterate backwards over list of given type, safe against removal 591 * of list entry. 592 */ 593 #define list_for_each_entry_safe_reverse(pos, n, head, member) \ 594 for (pos = list_entry((head)->prev, typeof(*pos), member), \ 595 n = list_entry(pos->member.prev, typeof(*pos), member); \ 596 &pos->member != (head); \ 597 pos = n, n = list_entry(n->member.prev, typeof(*n), member)) 598 599 /** 600 * list_for_each_rcu - iterate over an rcu-protected list 601 * @pos: the &struct list_head to use as a loop cursor. 602 * @head: the head for your list. 603 * 604 * This list-traversal primitive may safely run concurrently with 605 * the _rcu list-mutation primitives such as list_add_rcu() 606 * as long as the traversal is guarded by rcu_read_lock(). 607 */ 608 #define list_for_each_rcu(pos, head) \ 609 for (pos = (head)->next; \ 610 prefetch(rcu_dereference(pos)->next), pos != (head); \ 611 pos = pos->next) 612 613 #define __list_for_each_rcu(pos, head) \ 614 for (pos = (head)->next; \ 615 rcu_dereference(pos) != (head); \ 616 pos = pos->next) 617 618 /** 619 * list_for_each_safe_rcu 620 * @pos: the &struct list_head to use as a loop cursor. 621 * @n: another &struct list_head to use as temporary storage 622 * @head: the head for your list. 623 * 624 * Iterate over an rcu-protected list, safe against removal of list entry. 625 * 626 * This list-traversal primitive may safely run concurrently with 627 * the _rcu list-mutation primitives such as list_add_rcu() 628 * as long as the traversal is guarded by rcu_read_lock(). 629 */ 630 #define list_for_each_safe_rcu(pos, n, head) \ 631 for (pos = (head)->next; \ 632 n = rcu_dereference(pos)->next, pos != (head); \ 633 pos = n) 634 635 /** 636 * list_for_each_entry_rcu - iterate over rcu list of given type 637 * @pos: the type * to use as a loop cursor. 638 * @head: the head for your list. 639 * @member: the name of the list_struct within the struct. 640 * 641 * This list-traversal primitive may safely run concurrently with 642 * the _rcu list-mutation primitives such as list_add_rcu() 643 * as long as the traversal is guarded by rcu_read_lock(). 644 */ 645 #define list_for_each_entry_rcu(pos, head, member) \ 646 for (pos = list_entry((head)->next, typeof(*pos), member); \ 647 prefetch(rcu_dereference(pos)->member.next), \ 648 &pos->member != (head); \ 649 pos = list_entry(pos->member.next, typeof(*pos), member)) 650 651 652 /** 653 * list_for_each_continue_rcu 654 * @pos: the &struct list_head to use as a loop cursor. 655 * @head: the head for your list. 656 * 657 * Iterate over an rcu-protected list, continuing after current point. 658 * 659 * This list-traversal primitive may safely run concurrently with 660 * the _rcu list-mutation primitives such as list_add_rcu() 661 * as long as the traversal is guarded by rcu_read_lock(). 662 */ 663 #define list_for_each_continue_rcu(pos, head) \ 664 for ((pos) = (pos)->next; \ 665 prefetch(rcu_dereference((pos))->next), (pos) != (head); \ 666 (pos) = (pos)->next) 667 668 /* 669 * Double linked lists with a single pointer list head. 670 * Mostly useful for hash tables where the two pointer list head is 671 * too wasteful. 672 * You lose the ability to access the tail in O(1). 673 */ 674 675 struct hlist_head { 676 struct hlist_node *first; 677 }; 678 679 struct hlist_node { 680 struct hlist_node *next, **pprev; 681 }; 682 683 #define HLIST_HEAD_INIT { .first = NULL } 684 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 685 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 686 static inline void INIT_HLIST_NODE(struct hlist_node *h) 687 { 688 h->next = NULL; 689 h->pprev = NULL; 690 } 691 692 static inline int hlist_unhashed(const struct hlist_node *h) 693 { 694 return !h->pprev; 695 } 696 697 static inline int hlist_empty(const struct hlist_head *h) 698 { 699 return !h->first; 700 } 701 702 static inline void __hlist_del(struct hlist_node *n) 703 { 704 struct hlist_node *next = n->next; 705 struct hlist_node **pprev = n->pprev; 706 *pprev = next; 707 if (next) 708 next->pprev = pprev; 709 } 710 711 static inline void hlist_del(struct hlist_node *n) 712 { 713 __hlist_del(n); 714 n->next = LIST_POISON1; 715 n->pprev = LIST_POISON2; 716 } 717 718 /** 719 * hlist_del_rcu - deletes entry from hash list without re-initialization 720 * @n: the element to delete from the hash list. 721 * 722 * Note: list_unhashed() on entry does not return true after this, 723 * the entry is in an undefined state. It is useful for RCU based 724 * lockfree traversal. 725 * 726 * In particular, it means that we can not poison the forward 727 * pointers that may still be used for walking the hash list. 728 * 729 * The caller must take whatever precautions are necessary 730 * (such as holding appropriate locks) to avoid racing 731 * with another list-mutation primitive, such as hlist_add_head_rcu() 732 * or hlist_del_rcu(), running on this same list. 733 * However, it is perfectly legal to run concurrently with 734 * the _rcu list-traversal primitives, such as 735 * hlist_for_each_entry(). 736 */ 737 static inline void hlist_del_rcu(struct hlist_node *n) 738 { 739 __hlist_del(n); 740 n->pprev = LIST_POISON2; 741 } 742 743 static inline void hlist_del_init(struct hlist_node *n) 744 { 745 if (!hlist_unhashed(n)) { 746 __hlist_del(n); 747 INIT_HLIST_NODE(n); 748 } 749 } 750 751 /** 752 * hlist_replace_rcu - replace old entry by new one 753 * @old : the element to be replaced 754 * @new : the new element to insert 755 * 756 * The @old entry will be replaced with the @new entry atomically. 757 */ 758 static inline void hlist_replace_rcu(struct hlist_node *old, 759 struct hlist_node *new) 760 { 761 struct hlist_node *next = old->next; 762 763 new->next = next; 764 new->pprev = old->pprev; 765 smp_wmb(); 766 if (next) 767 new->next->pprev = &new->next; 768 *new->pprev = new; 769 old->pprev = LIST_POISON2; 770 } 771 772 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 773 { 774 struct hlist_node *first = h->first; 775 n->next = first; 776 if (first) 777 first->pprev = &n->next; 778 h->first = n; 779 n->pprev = &h->first; 780 } 781 782 783 /** 784 * hlist_add_head_rcu 785 * @n: the element to add to the hash list. 786 * @h: the list to add to. 787 * 788 * Description: 789 * Adds the specified element to the specified hlist, 790 * while permitting racing traversals. 791 * 792 * The caller must take whatever precautions are necessary 793 * (such as holding appropriate locks) to avoid racing 794 * with another list-mutation primitive, such as hlist_add_head_rcu() 795 * or hlist_del_rcu(), running on this same list. 796 * However, it is perfectly legal to run concurrently with 797 * the _rcu list-traversal primitives, such as 798 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 799 * problems on Alpha CPUs. Regardless of the type of CPU, the 800 * list-traversal primitive must be guarded by rcu_read_lock(). 801 */ 802 static inline void hlist_add_head_rcu(struct hlist_node *n, 803 struct hlist_head *h) 804 { 805 struct hlist_node *first = h->first; 806 n->next = first; 807 n->pprev = &h->first; 808 smp_wmb(); 809 if (first) 810 first->pprev = &n->next; 811 h->first = n; 812 } 813 814 /* next must be != NULL */ 815 static inline void hlist_add_before(struct hlist_node *n, 816 struct hlist_node *next) 817 { 818 n->pprev = next->pprev; 819 n->next = next; 820 next->pprev = &n->next; 821 *(n->pprev) = n; 822 } 823 824 static inline void hlist_add_after(struct hlist_node *n, 825 struct hlist_node *next) 826 { 827 next->next = n->next; 828 n->next = next; 829 next->pprev = &n->next; 830 831 if(next->next) 832 next->next->pprev = &next->next; 833 } 834 835 /** 836 * hlist_add_before_rcu 837 * @n: the new element to add to the hash list. 838 * @next: the existing element to add the new element before. 839 * 840 * Description: 841 * Adds the specified element to the specified hlist 842 * before the specified node while permitting racing traversals. 843 * 844 * The caller must take whatever precautions are necessary 845 * (such as holding appropriate locks) to avoid racing 846 * with another list-mutation primitive, such as hlist_add_head_rcu() 847 * or hlist_del_rcu(), running on this same list. 848 * However, it is perfectly legal to run concurrently with 849 * the _rcu list-traversal primitives, such as 850 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 851 * problems on Alpha CPUs. 852 */ 853 static inline void hlist_add_before_rcu(struct hlist_node *n, 854 struct hlist_node *next) 855 { 856 n->pprev = next->pprev; 857 n->next = next; 858 smp_wmb(); 859 next->pprev = &n->next; 860 *(n->pprev) = n; 861 } 862 863 /** 864 * hlist_add_after_rcu 865 * @prev: the existing element to add the new element after. 866 * @n: the new element to add to the hash list. 867 * 868 * Description: 869 * Adds the specified element to the specified hlist 870 * after the specified node while permitting racing traversals. 871 * 872 * The caller must take whatever precautions are necessary 873 * (such as holding appropriate locks) to avoid racing 874 * with another list-mutation primitive, such as hlist_add_head_rcu() 875 * or hlist_del_rcu(), running on this same list. 876 * However, it is perfectly legal to run concurrently with 877 * the _rcu list-traversal primitives, such as 878 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 879 * problems on Alpha CPUs. 880 */ 881 static inline void hlist_add_after_rcu(struct hlist_node *prev, 882 struct hlist_node *n) 883 { 884 n->next = prev->next; 885 n->pprev = &prev->next; 886 smp_wmb(); 887 prev->next = n; 888 if (n->next) 889 n->next->pprev = &n->next; 890 } 891 892 #define hlist_entry(ptr, type, member) container_of(ptr,type,member) 893 894 #define hlist_for_each(pos, head) \ 895 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 896 pos = pos->next) 897 898 #define hlist_for_each_safe(pos, n, head) \ 899 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 900 pos = n) 901 902 /** 903 * hlist_for_each_entry - iterate over list of given type 904 * @tpos: the type * to use as a loop cursor. 905 * @pos: the &struct hlist_node to use as a loop cursor. 906 * @head: the head for your list. 907 * @member: the name of the hlist_node within the struct. 908 */ 909 #define hlist_for_each_entry(tpos, pos, head, member) \ 910 for (pos = (head)->first; \ 911 pos && ({ prefetch(pos->next); 1;}) && \ 912 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 913 pos = pos->next) 914 915 /** 916 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point 917 * @tpos: the type * to use as a loop cursor. 918 * @pos: the &struct hlist_node to use as a loop cursor. 919 * @member: the name of the hlist_node within the struct. 920 */ 921 #define hlist_for_each_entry_continue(tpos, pos, member) \ 922 for (pos = (pos)->next; \ 923 pos && ({ prefetch(pos->next); 1;}) && \ 924 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 925 pos = pos->next) 926 927 /** 928 * hlist_for_each_entry_from - iterate over a hlist continuing from current point 929 * @tpos: the type * to use as a loop cursor. 930 * @pos: the &struct hlist_node to use as a loop cursor. 931 * @member: the name of the hlist_node within the struct. 932 */ 933 #define hlist_for_each_entry_from(tpos, pos, member) \ 934 for (; pos && ({ prefetch(pos->next); 1;}) && \ 935 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 936 pos = pos->next) 937 938 /** 939 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 940 * @tpos: the type * to use as a loop cursor. 941 * @pos: the &struct hlist_node to use as a loop cursor. 942 * @n: another &struct hlist_node to use as temporary storage 943 * @head: the head for your list. 944 * @member: the name of the hlist_node within the struct. 945 */ 946 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 947 for (pos = (head)->first; \ 948 pos && ({ n = pos->next; 1; }) && \ 949 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 950 pos = n) 951 952 /** 953 * hlist_for_each_entry_rcu - iterate over rcu list of given type 954 * @tpos: the type * to use as a loop cursor. 955 * @pos: the &struct hlist_node to use as a loop cursor. 956 * @head: the head for your list. 957 * @member: the name of the hlist_node within the struct. 958 * 959 * This list-traversal primitive may safely run concurrently with 960 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 961 * as long as the traversal is guarded by rcu_read_lock(). 962 */ 963 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 964 for (pos = (head)->first; \ 965 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \ 966 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 967 pos = pos->next) 968 969 #else 970 #warning "don't include kernel headers in userspace" 971 #endif /* __KERNEL__ */ 972 #endif 973