xref: /linux-6.15/include/linux/list.h (revision c4399016)
1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
3 
4 #ifdef __KERNEL__
5 
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/prefetch.h>
9 #include <asm/system.h>
10 
11 /*
12  * Simple doubly linked list implementation.
13  *
14  * Some of the internal functions ("__xxx") are useful when
15  * manipulating whole lists rather than single entries, as
16  * sometimes we already know the next/prev entries and we can
17  * generate better code by using them directly rather than
18  * using the generic single-entry routines.
19  */
20 
21 struct list_head {
22 	struct list_head *next, *prev;
23 };
24 
25 #define LIST_HEAD_INIT(name) { &(name), &(name) }
26 
27 #define LIST_HEAD(name) \
28 	struct list_head name = LIST_HEAD_INIT(name)
29 
30 static inline void INIT_LIST_HEAD(struct list_head *list)
31 {
32 	list->next = list;
33 	list->prev = list;
34 }
35 
36 /*
37  * Insert a new entry between two known consecutive entries.
38  *
39  * This is only for internal list manipulation where we know
40  * the prev/next entries already!
41  */
42 #ifndef CONFIG_DEBUG_LIST
43 static inline void __list_add(struct list_head *new,
44 			      struct list_head *prev,
45 			      struct list_head *next)
46 {
47 	next->prev = new;
48 	new->next = next;
49 	new->prev = prev;
50 	prev->next = new;
51 }
52 #else
53 extern void __list_add(struct list_head *new,
54 			      struct list_head *prev,
55 			      struct list_head *next);
56 #endif
57 
58 /**
59  * list_add - add a new entry
60  * @new: new entry to be added
61  * @head: list head to add it after
62  *
63  * Insert a new entry after the specified head.
64  * This is good for implementing stacks.
65  */
66 #ifndef CONFIG_DEBUG_LIST
67 static inline void list_add(struct list_head *new, struct list_head *head)
68 {
69 	__list_add(new, head, head->next);
70 }
71 #else
72 extern void list_add(struct list_head *new, struct list_head *head);
73 #endif
74 
75 
76 /**
77  * list_add_tail - add a new entry
78  * @new: new entry to be added
79  * @head: list head to add it before
80  *
81  * Insert a new entry before the specified head.
82  * This is useful for implementing queues.
83  */
84 static inline void list_add_tail(struct list_head *new, struct list_head *head)
85 {
86 	__list_add(new, head->prev, head);
87 }
88 
89 /*
90  * Insert a new entry between two known consecutive entries.
91  *
92  * This is only for internal list manipulation where we know
93  * the prev/next entries already!
94  */
95 static inline void __list_add_rcu(struct list_head * new,
96 		struct list_head * prev, struct list_head * next)
97 {
98 	new->next = next;
99 	new->prev = prev;
100 	smp_wmb();
101 	next->prev = new;
102 	prev->next = new;
103 }
104 
105 /**
106  * list_add_rcu - add a new entry to rcu-protected list
107  * @new: new entry to be added
108  * @head: list head to add it after
109  *
110  * Insert a new entry after the specified head.
111  * This is good for implementing stacks.
112  *
113  * The caller must take whatever precautions are necessary
114  * (such as holding appropriate locks) to avoid racing
115  * with another list-mutation primitive, such as list_add_rcu()
116  * or list_del_rcu(), running on this same list.
117  * However, it is perfectly legal to run concurrently with
118  * the _rcu list-traversal primitives, such as
119  * list_for_each_entry_rcu().
120  */
121 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
122 {
123 	__list_add_rcu(new, head, head->next);
124 }
125 
126 /**
127  * list_add_tail_rcu - add a new entry to rcu-protected list
128  * @new: new entry to be added
129  * @head: list head to add it before
130  *
131  * Insert a new entry before the specified head.
132  * This is useful for implementing queues.
133  *
134  * The caller must take whatever precautions are necessary
135  * (such as holding appropriate locks) to avoid racing
136  * with another list-mutation primitive, such as list_add_tail_rcu()
137  * or list_del_rcu(), running on this same list.
138  * However, it is perfectly legal to run concurrently with
139  * the _rcu list-traversal primitives, such as
140  * list_for_each_entry_rcu().
141  */
142 static inline void list_add_tail_rcu(struct list_head *new,
143 					struct list_head *head)
144 {
145 	__list_add_rcu(new, head->prev, head);
146 }
147 
148 /*
149  * Delete a list entry by making the prev/next entries
150  * point to each other.
151  *
152  * This is only for internal list manipulation where we know
153  * the prev/next entries already!
154  */
155 static inline void __list_del(struct list_head * prev, struct list_head * next)
156 {
157 	next->prev = prev;
158 	prev->next = next;
159 }
160 
161 /**
162  * list_del - deletes entry from list.
163  * @entry: the element to delete from the list.
164  * Note: list_empty() on entry does not return true after this, the entry is
165  * in an undefined state.
166  */
167 #ifndef CONFIG_DEBUG_LIST
168 static inline void list_del(struct list_head *entry)
169 {
170 	__list_del(entry->prev, entry->next);
171 	entry->next = LIST_POISON1;
172 	entry->prev = LIST_POISON2;
173 }
174 #else
175 extern void list_del(struct list_head *entry);
176 #endif
177 
178 /**
179  * list_del_rcu - deletes entry from list without re-initialization
180  * @entry: the element to delete from the list.
181  *
182  * Note: list_empty() on entry does not return true after this,
183  * the entry is in an undefined state. It is useful for RCU based
184  * lockfree traversal.
185  *
186  * In particular, it means that we can not poison the forward
187  * pointers that may still be used for walking the list.
188  *
189  * The caller must take whatever precautions are necessary
190  * (such as holding appropriate locks) to avoid racing
191  * with another list-mutation primitive, such as list_del_rcu()
192  * or list_add_rcu(), running on this same list.
193  * However, it is perfectly legal to run concurrently with
194  * the _rcu list-traversal primitives, such as
195  * list_for_each_entry_rcu().
196  *
197  * Note that the caller is not permitted to immediately free
198  * the newly deleted entry.  Instead, either synchronize_rcu()
199  * or call_rcu() must be used to defer freeing until an RCU
200  * grace period has elapsed.
201  */
202 static inline void list_del_rcu(struct list_head *entry)
203 {
204 	__list_del(entry->prev, entry->next);
205 	entry->prev = LIST_POISON2;
206 }
207 
208 /**
209  * list_replace - replace old entry by new one
210  * @old : the element to be replaced
211  * @new : the new element to insert
212  *
213  * If @old was empty, it will be overwritten.
214  */
215 static inline void list_replace(struct list_head *old,
216 				struct list_head *new)
217 {
218 	new->next = old->next;
219 	new->next->prev = new;
220 	new->prev = old->prev;
221 	new->prev->next = new;
222 }
223 
224 static inline void list_replace_init(struct list_head *old,
225 					struct list_head *new)
226 {
227 	list_replace(old, new);
228 	INIT_LIST_HEAD(old);
229 }
230 
231 /**
232  * list_replace_rcu - replace old entry by new one
233  * @old : the element to be replaced
234  * @new : the new element to insert
235  *
236  * The @old entry will be replaced with the @new entry atomically.
237  * Note: @old should not be empty.
238  */
239 static inline void list_replace_rcu(struct list_head *old,
240 				struct list_head *new)
241 {
242 	new->next = old->next;
243 	new->prev = old->prev;
244 	smp_wmb();
245 	new->next->prev = new;
246 	new->prev->next = new;
247 	old->prev = LIST_POISON2;
248 }
249 
250 /**
251  * list_del_init - deletes entry from list and reinitialize it.
252  * @entry: the element to delete from the list.
253  */
254 static inline void list_del_init(struct list_head *entry)
255 {
256 	__list_del(entry->prev, entry->next);
257 	INIT_LIST_HEAD(entry);
258 }
259 
260 /**
261  * list_move - delete from one list and add as another's head
262  * @list: the entry to move
263  * @head: the head that will precede our entry
264  */
265 static inline void list_move(struct list_head *list, struct list_head *head)
266 {
267 	__list_del(list->prev, list->next);
268 	list_add(list, head);
269 }
270 
271 /**
272  * list_move_tail - delete from one list and add as another's tail
273  * @list: the entry to move
274  * @head: the head that will follow our entry
275  */
276 static inline void list_move_tail(struct list_head *list,
277 				  struct list_head *head)
278 {
279 	__list_del(list->prev, list->next);
280 	list_add_tail(list, head);
281 }
282 
283 /**
284  * list_is_last - tests whether @list is the last entry in list @head
285  * @list: the entry to test
286  * @head: the head of the list
287  */
288 static inline int list_is_last(const struct list_head *list,
289 				const struct list_head *head)
290 {
291 	return list->next == head;
292 }
293 
294 /**
295  * list_empty - tests whether a list is empty
296  * @head: the list to test.
297  */
298 static inline int list_empty(const struct list_head *head)
299 {
300 	return head->next == head;
301 }
302 
303 /**
304  * list_empty_careful - tests whether a list is empty and not being modified
305  * @head: the list to test
306  *
307  * Description:
308  * tests whether a list is empty _and_ checks that no other CPU might be
309  * in the process of modifying either member (next or prev)
310  *
311  * NOTE: using list_empty_careful() without synchronization
312  * can only be safe if the only activity that can happen
313  * to the list entry is list_del_init(). Eg. it cannot be used
314  * if another CPU could re-list_add() it.
315  */
316 static inline int list_empty_careful(const struct list_head *head)
317 {
318 	struct list_head *next = head->next;
319 	return (next == head) && (next == head->prev);
320 }
321 
322 static inline void __list_splice(struct list_head *list,
323 				 struct list_head *head)
324 {
325 	struct list_head *first = list->next;
326 	struct list_head *last = list->prev;
327 	struct list_head *at = head->next;
328 
329 	first->prev = head;
330 	head->next = first;
331 
332 	last->next = at;
333 	at->prev = last;
334 }
335 
336 /**
337  * list_splice - join two lists
338  * @list: the new list to add.
339  * @head: the place to add it in the first list.
340  */
341 static inline void list_splice(struct list_head *list, struct list_head *head)
342 {
343 	if (!list_empty(list))
344 		__list_splice(list, head);
345 }
346 
347 /**
348  * list_splice_init - join two lists and reinitialise the emptied list.
349  * @list: the new list to add.
350  * @head: the place to add it in the first list.
351  *
352  * The list at @list is reinitialised
353  */
354 static inline void list_splice_init(struct list_head *list,
355 				    struct list_head *head)
356 {
357 	if (!list_empty(list)) {
358 		__list_splice(list, head);
359 		INIT_LIST_HEAD(list);
360 	}
361 }
362 
363 /**
364  * list_splice_init_rcu - splice an RCU-protected list into an existing list.
365  * @list:	the RCU-protected list to splice
366  * @head:	the place in the list to splice the first list into
367  * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
368  *
369  * @head can be RCU-read traversed concurrently with this function.
370  *
371  * Note that this function blocks.
372  *
373  * Important note: the caller must take whatever action is necessary to
374  *	prevent any other updates to @head.  In principle, it is possible
375  *	to modify the list as soon as sync() begins execution.
376  *	If this sort of thing becomes necessary, an alternative version
377  *	based on call_rcu() could be created.  But only if -really-
378  *	needed -- there is no shortage of RCU API members.
379  */
380 static inline void list_splice_init_rcu(struct list_head *list,
381 					struct list_head *head,
382 					void (*sync)(void))
383 {
384 	struct list_head *first = list->next;
385 	struct list_head *last = list->prev;
386 	struct list_head *at = head->next;
387 
388 	if (list_empty(head))
389 		return;
390 
391 	/* "first" and "last" tracking list, so initialize it. */
392 
393 	INIT_LIST_HEAD(list);
394 
395 	/*
396 	 * At this point, the list body still points to the source list.
397 	 * Wait for any readers to finish using the list before splicing
398 	 * the list body into the new list.  Any new readers will see
399 	 * an empty list.
400 	 */
401 
402 	sync();
403 
404 	/*
405 	 * Readers are finished with the source list, so perform splice.
406 	 * The order is important if the new list is global and accessible
407 	 * to concurrent RCU readers.  Note that RCU readers are not
408 	 * permitted to traverse the prev pointers without excluding
409 	 * this function.
410 	 */
411 
412 	last->next = at;
413 	smp_wmb();
414 	head->next = first;
415 	first->prev = head;
416 	at->prev = last;
417 }
418 
419 /**
420  * list_entry - get the struct for this entry
421  * @ptr:	the &struct list_head pointer.
422  * @type:	the type of the struct this is embedded in.
423  * @member:	the name of the list_struct within the struct.
424  */
425 #define list_entry(ptr, type, member) \
426 	container_of(ptr, type, member)
427 
428 /**
429  * list_first_entry - get the first element from a list
430  * @ptr:	the list head to take the element from.
431  * @type:	the type of the struct this is embedded in.
432  * @member:	the name of the list_struct within the struct.
433  *
434  * Note, that list is expected to be not empty.
435  */
436 #define list_first_entry(ptr, type, member) \
437 	list_entry((ptr)->next, type, member)
438 
439 /**
440  * list_for_each	-	iterate over a list
441  * @pos:	the &struct list_head to use as a loop cursor.
442  * @head:	the head for your list.
443  */
444 #define list_for_each(pos, head) \
445 	for (pos = (head)->next; prefetch(pos->next), pos != (head); \
446         	pos = pos->next)
447 
448 /**
449  * __list_for_each	-	iterate over a list
450  * @pos:	the &struct list_head to use as a loop cursor.
451  * @head:	the head for your list.
452  *
453  * This variant differs from list_for_each() in that it's the
454  * simplest possible list iteration code, no prefetching is done.
455  * Use this for code that knows the list to be very short (empty
456  * or 1 entry) most of the time.
457  */
458 #define __list_for_each(pos, head) \
459 	for (pos = (head)->next; pos != (head); pos = pos->next)
460 
461 /**
462  * list_for_each_prev	-	iterate over a list backwards
463  * @pos:	the &struct list_head to use as a loop cursor.
464  * @head:	the head for your list.
465  */
466 #define list_for_each_prev(pos, head) \
467 	for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
468         	pos = pos->prev)
469 
470 /**
471  * list_for_each_safe - iterate over a list safe against removal of list entry
472  * @pos:	the &struct list_head to use as a loop cursor.
473  * @n:		another &struct list_head to use as temporary storage
474  * @head:	the head for your list.
475  */
476 #define list_for_each_safe(pos, n, head) \
477 	for (pos = (head)->next, n = pos->next; pos != (head); \
478 		pos = n, n = pos->next)
479 
480 /**
481  * list_for_each_entry	-	iterate over list of given type
482  * @pos:	the type * to use as a loop cursor.
483  * @head:	the head for your list.
484  * @member:	the name of the list_struct within the struct.
485  */
486 #define list_for_each_entry(pos, head, member)				\
487 	for (pos = list_entry((head)->next, typeof(*pos), member);	\
488 	     prefetch(pos->member.next), &pos->member != (head); 	\
489 	     pos = list_entry(pos->member.next, typeof(*pos), member))
490 
491 /**
492  * list_for_each_entry_reverse - iterate backwards over list of given type.
493  * @pos:	the type * to use as a loop cursor.
494  * @head:	the head for your list.
495  * @member:	the name of the list_struct within the struct.
496  */
497 #define list_for_each_entry_reverse(pos, head, member)			\
498 	for (pos = list_entry((head)->prev, typeof(*pos), member);	\
499 	     prefetch(pos->member.prev), &pos->member != (head); 	\
500 	     pos = list_entry(pos->member.prev, typeof(*pos), member))
501 
502 /**
503  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
504  * @pos:	the type * to use as a start point
505  * @head:	the head of the list
506  * @member:	the name of the list_struct within the struct.
507  *
508  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
509  */
510 #define list_prepare_entry(pos, head, member) \
511 	((pos) ? : list_entry(head, typeof(*pos), member))
512 
513 /**
514  * list_for_each_entry_continue - continue iteration over list of given type
515  * @pos:	the type * to use as a loop cursor.
516  * @head:	the head for your list.
517  * @member:	the name of the list_struct within the struct.
518  *
519  * Continue to iterate over list of given type, continuing after
520  * the current position.
521  */
522 #define list_for_each_entry_continue(pos, head, member) 		\
523 	for (pos = list_entry(pos->member.next, typeof(*pos), member);	\
524 	     prefetch(pos->member.next), &pos->member != (head);	\
525 	     pos = list_entry(pos->member.next, typeof(*pos), member))
526 
527 /**
528  * list_for_each_entry_from - iterate over list of given type from the current point
529  * @pos:	the type * to use as a loop cursor.
530  * @head:	the head for your list.
531  * @member:	the name of the list_struct within the struct.
532  *
533  * Iterate over list of given type, continuing from current position.
534  */
535 #define list_for_each_entry_from(pos, head, member) 			\
536 	for (; prefetch(pos->member.next), &pos->member != (head);	\
537 	     pos = list_entry(pos->member.next, typeof(*pos), member))
538 
539 /**
540  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
541  * @pos:	the type * to use as a loop cursor.
542  * @n:		another type * to use as temporary storage
543  * @head:	the head for your list.
544  * @member:	the name of the list_struct within the struct.
545  */
546 #define list_for_each_entry_safe(pos, n, head, member)			\
547 	for (pos = list_entry((head)->next, typeof(*pos), member),	\
548 		n = list_entry(pos->member.next, typeof(*pos), member);	\
549 	     &pos->member != (head); 					\
550 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
551 
552 /**
553  * list_for_each_entry_safe_continue
554  * @pos:	the type * to use as a loop cursor.
555  * @n:		another type * to use as temporary storage
556  * @head:	the head for your list.
557  * @member:	the name of the list_struct within the struct.
558  *
559  * Iterate over list of given type, continuing after current point,
560  * safe against removal of list entry.
561  */
562 #define list_for_each_entry_safe_continue(pos, n, head, member) 		\
563 	for (pos = list_entry(pos->member.next, typeof(*pos), member), 		\
564 		n = list_entry(pos->member.next, typeof(*pos), member);		\
565 	     &pos->member != (head);						\
566 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
567 
568 /**
569  * list_for_each_entry_safe_from
570  * @pos:	the type * to use as a loop cursor.
571  * @n:		another type * to use as temporary storage
572  * @head:	the head for your list.
573  * @member:	the name of the list_struct within the struct.
574  *
575  * Iterate over list of given type from current point, safe against
576  * removal of list entry.
577  */
578 #define list_for_each_entry_safe_from(pos, n, head, member) 			\
579 	for (n = list_entry(pos->member.next, typeof(*pos), member);		\
580 	     &pos->member != (head);						\
581 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
582 
583 /**
584  * list_for_each_entry_safe_reverse
585  * @pos:	the type * to use as a loop cursor.
586  * @n:		another type * to use as temporary storage
587  * @head:	the head for your list.
588  * @member:	the name of the list_struct within the struct.
589  *
590  * Iterate backwards over list of given type, safe against removal
591  * of list entry.
592  */
593 #define list_for_each_entry_safe_reverse(pos, n, head, member)		\
594 	for (pos = list_entry((head)->prev, typeof(*pos), member),	\
595 		n = list_entry(pos->member.prev, typeof(*pos), member);	\
596 	     &pos->member != (head); 					\
597 	     pos = n, n = list_entry(n->member.prev, typeof(*n), member))
598 
599 /**
600  * list_for_each_rcu	-	iterate over an rcu-protected list
601  * @pos:	the &struct list_head to use as a loop cursor.
602  * @head:	the head for your list.
603  *
604  * This list-traversal primitive may safely run concurrently with
605  * the _rcu list-mutation primitives such as list_add_rcu()
606  * as long as the traversal is guarded by rcu_read_lock().
607  */
608 #define list_for_each_rcu(pos, head) \
609 	for (pos = (head)->next; \
610 		prefetch(rcu_dereference(pos)->next), pos != (head); \
611         	pos = pos->next)
612 
613 #define __list_for_each_rcu(pos, head) \
614 	for (pos = (head)->next; \
615 		rcu_dereference(pos) != (head); \
616         	pos = pos->next)
617 
618 /**
619  * list_for_each_safe_rcu
620  * @pos:	the &struct list_head to use as a loop cursor.
621  * @n:		another &struct list_head to use as temporary storage
622  * @head:	the head for your list.
623  *
624  * Iterate over an rcu-protected list, safe against removal of list entry.
625  *
626  * This list-traversal primitive may safely run concurrently with
627  * the _rcu list-mutation primitives such as list_add_rcu()
628  * as long as the traversal is guarded by rcu_read_lock().
629  */
630 #define list_for_each_safe_rcu(pos, n, head) \
631 	for (pos = (head)->next; \
632 		n = rcu_dereference(pos)->next, pos != (head); \
633 		pos = n)
634 
635 /**
636  * list_for_each_entry_rcu	-	iterate over rcu list of given type
637  * @pos:	the type * to use as a loop cursor.
638  * @head:	the head for your list.
639  * @member:	the name of the list_struct within the struct.
640  *
641  * This list-traversal primitive may safely run concurrently with
642  * the _rcu list-mutation primitives such as list_add_rcu()
643  * as long as the traversal is guarded by rcu_read_lock().
644  */
645 #define list_for_each_entry_rcu(pos, head, member) \
646 	for (pos = list_entry((head)->next, typeof(*pos), member); \
647 		prefetch(rcu_dereference(pos)->member.next), \
648 			&pos->member != (head); \
649 		pos = list_entry(pos->member.next, typeof(*pos), member))
650 
651 
652 /**
653  * list_for_each_continue_rcu
654  * @pos:	the &struct list_head to use as a loop cursor.
655  * @head:	the head for your list.
656  *
657  * Iterate over an rcu-protected list, continuing after current point.
658  *
659  * This list-traversal primitive may safely run concurrently with
660  * the _rcu list-mutation primitives such as list_add_rcu()
661  * as long as the traversal is guarded by rcu_read_lock().
662  */
663 #define list_for_each_continue_rcu(pos, head) \
664 	for ((pos) = (pos)->next; \
665 		prefetch(rcu_dereference((pos))->next), (pos) != (head); \
666         	(pos) = (pos)->next)
667 
668 /*
669  * Double linked lists with a single pointer list head.
670  * Mostly useful for hash tables where the two pointer list head is
671  * too wasteful.
672  * You lose the ability to access the tail in O(1).
673  */
674 
675 struct hlist_head {
676 	struct hlist_node *first;
677 };
678 
679 struct hlist_node {
680 	struct hlist_node *next, **pprev;
681 };
682 
683 #define HLIST_HEAD_INIT { .first = NULL }
684 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
685 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
686 static inline void INIT_HLIST_NODE(struct hlist_node *h)
687 {
688 	h->next = NULL;
689 	h->pprev = NULL;
690 }
691 
692 static inline int hlist_unhashed(const struct hlist_node *h)
693 {
694 	return !h->pprev;
695 }
696 
697 static inline int hlist_empty(const struct hlist_head *h)
698 {
699 	return !h->first;
700 }
701 
702 static inline void __hlist_del(struct hlist_node *n)
703 {
704 	struct hlist_node *next = n->next;
705 	struct hlist_node **pprev = n->pprev;
706 	*pprev = next;
707 	if (next)
708 		next->pprev = pprev;
709 }
710 
711 static inline void hlist_del(struct hlist_node *n)
712 {
713 	__hlist_del(n);
714 	n->next = LIST_POISON1;
715 	n->pprev = LIST_POISON2;
716 }
717 
718 /**
719  * hlist_del_rcu - deletes entry from hash list without re-initialization
720  * @n: the element to delete from the hash list.
721  *
722  * Note: list_unhashed() on entry does not return true after this,
723  * the entry is in an undefined state. It is useful for RCU based
724  * lockfree traversal.
725  *
726  * In particular, it means that we can not poison the forward
727  * pointers that may still be used for walking the hash list.
728  *
729  * The caller must take whatever precautions are necessary
730  * (such as holding appropriate locks) to avoid racing
731  * with another list-mutation primitive, such as hlist_add_head_rcu()
732  * or hlist_del_rcu(), running on this same list.
733  * However, it is perfectly legal to run concurrently with
734  * the _rcu list-traversal primitives, such as
735  * hlist_for_each_entry().
736  */
737 static inline void hlist_del_rcu(struct hlist_node *n)
738 {
739 	__hlist_del(n);
740 	n->pprev = LIST_POISON2;
741 }
742 
743 static inline void hlist_del_init(struct hlist_node *n)
744 {
745 	if (!hlist_unhashed(n)) {
746 		__hlist_del(n);
747 		INIT_HLIST_NODE(n);
748 	}
749 }
750 
751 /**
752  * hlist_replace_rcu - replace old entry by new one
753  * @old : the element to be replaced
754  * @new : the new element to insert
755  *
756  * The @old entry will be replaced with the @new entry atomically.
757  */
758 static inline void hlist_replace_rcu(struct hlist_node *old,
759 					struct hlist_node *new)
760 {
761 	struct hlist_node *next = old->next;
762 
763 	new->next = next;
764 	new->pprev = old->pprev;
765 	smp_wmb();
766 	if (next)
767 		new->next->pprev = &new->next;
768 	*new->pprev = new;
769 	old->pprev = LIST_POISON2;
770 }
771 
772 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
773 {
774 	struct hlist_node *first = h->first;
775 	n->next = first;
776 	if (first)
777 		first->pprev = &n->next;
778 	h->first = n;
779 	n->pprev = &h->first;
780 }
781 
782 
783 /**
784  * hlist_add_head_rcu
785  * @n: the element to add to the hash list.
786  * @h: the list to add to.
787  *
788  * Description:
789  * Adds the specified element to the specified hlist,
790  * while permitting racing traversals.
791  *
792  * The caller must take whatever precautions are necessary
793  * (such as holding appropriate locks) to avoid racing
794  * with another list-mutation primitive, such as hlist_add_head_rcu()
795  * or hlist_del_rcu(), running on this same list.
796  * However, it is perfectly legal to run concurrently with
797  * the _rcu list-traversal primitives, such as
798  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
799  * problems on Alpha CPUs.  Regardless of the type of CPU, the
800  * list-traversal primitive must be guarded by rcu_read_lock().
801  */
802 static inline void hlist_add_head_rcu(struct hlist_node *n,
803 					struct hlist_head *h)
804 {
805 	struct hlist_node *first = h->first;
806 	n->next = first;
807 	n->pprev = &h->first;
808 	smp_wmb();
809 	if (first)
810 		first->pprev = &n->next;
811 	h->first = n;
812 }
813 
814 /* next must be != NULL */
815 static inline void hlist_add_before(struct hlist_node *n,
816 					struct hlist_node *next)
817 {
818 	n->pprev = next->pprev;
819 	n->next = next;
820 	next->pprev = &n->next;
821 	*(n->pprev) = n;
822 }
823 
824 static inline void hlist_add_after(struct hlist_node *n,
825 					struct hlist_node *next)
826 {
827 	next->next = n->next;
828 	n->next = next;
829 	next->pprev = &n->next;
830 
831 	if(next->next)
832 		next->next->pprev  = &next->next;
833 }
834 
835 /**
836  * hlist_add_before_rcu
837  * @n: the new element to add to the hash list.
838  * @next: the existing element to add the new element before.
839  *
840  * Description:
841  * Adds the specified element to the specified hlist
842  * before the specified node while permitting racing traversals.
843  *
844  * The caller must take whatever precautions are necessary
845  * (such as holding appropriate locks) to avoid racing
846  * with another list-mutation primitive, such as hlist_add_head_rcu()
847  * or hlist_del_rcu(), running on this same list.
848  * However, it is perfectly legal to run concurrently with
849  * the _rcu list-traversal primitives, such as
850  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
851  * problems on Alpha CPUs.
852  */
853 static inline void hlist_add_before_rcu(struct hlist_node *n,
854 					struct hlist_node *next)
855 {
856 	n->pprev = next->pprev;
857 	n->next = next;
858 	smp_wmb();
859 	next->pprev = &n->next;
860 	*(n->pprev) = n;
861 }
862 
863 /**
864  * hlist_add_after_rcu
865  * @prev: the existing element to add the new element after.
866  * @n: the new element to add to the hash list.
867  *
868  * Description:
869  * Adds the specified element to the specified hlist
870  * after the specified node while permitting racing traversals.
871  *
872  * The caller must take whatever precautions are necessary
873  * (such as holding appropriate locks) to avoid racing
874  * with another list-mutation primitive, such as hlist_add_head_rcu()
875  * or hlist_del_rcu(), running on this same list.
876  * However, it is perfectly legal to run concurrently with
877  * the _rcu list-traversal primitives, such as
878  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
879  * problems on Alpha CPUs.
880  */
881 static inline void hlist_add_after_rcu(struct hlist_node *prev,
882 				       struct hlist_node *n)
883 {
884 	n->next = prev->next;
885 	n->pprev = &prev->next;
886 	smp_wmb();
887 	prev->next = n;
888 	if (n->next)
889 		n->next->pprev = &n->next;
890 }
891 
892 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
893 
894 #define hlist_for_each(pos, head) \
895 	for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
896 	     pos = pos->next)
897 
898 #define hlist_for_each_safe(pos, n, head) \
899 	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
900 	     pos = n)
901 
902 /**
903  * hlist_for_each_entry	- iterate over list of given type
904  * @tpos:	the type * to use as a loop cursor.
905  * @pos:	the &struct hlist_node to use as a loop cursor.
906  * @head:	the head for your list.
907  * @member:	the name of the hlist_node within the struct.
908  */
909 #define hlist_for_each_entry(tpos, pos, head, member)			 \
910 	for (pos = (head)->first;					 \
911 	     pos && ({ prefetch(pos->next); 1;}) &&			 \
912 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
913 	     pos = pos->next)
914 
915 /**
916  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
917  * @tpos:	the type * to use as a loop cursor.
918  * @pos:	the &struct hlist_node to use as a loop cursor.
919  * @member:	the name of the hlist_node within the struct.
920  */
921 #define hlist_for_each_entry_continue(tpos, pos, member)		 \
922 	for (pos = (pos)->next;						 \
923 	     pos && ({ prefetch(pos->next); 1;}) &&			 \
924 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
925 	     pos = pos->next)
926 
927 /**
928  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
929  * @tpos:	the type * to use as a loop cursor.
930  * @pos:	the &struct hlist_node to use as a loop cursor.
931  * @member:	the name of the hlist_node within the struct.
932  */
933 #define hlist_for_each_entry_from(tpos, pos, member)			 \
934 	for (; pos && ({ prefetch(pos->next); 1;}) &&			 \
935 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
936 	     pos = pos->next)
937 
938 /**
939  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
940  * @tpos:	the type * to use as a loop cursor.
941  * @pos:	the &struct hlist_node to use as a loop cursor.
942  * @n:		another &struct hlist_node to use as temporary storage
943  * @head:	the head for your list.
944  * @member:	the name of the hlist_node within the struct.
945  */
946 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) 		 \
947 	for (pos = (head)->first;					 \
948 	     pos && ({ n = pos->next; 1; }) && 				 \
949 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
950 	     pos = n)
951 
952 /**
953  * hlist_for_each_entry_rcu - iterate over rcu list of given type
954  * @tpos:	the type * to use as a loop cursor.
955  * @pos:	the &struct hlist_node to use as a loop cursor.
956  * @head:	the head for your list.
957  * @member:	the name of the hlist_node within the struct.
958  *
959  * This list-traversal primitive may safely run concurrently with
960  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
961  * as long as the traversal is guarded by rcu_read_lock().
962  */
963 #define hlist_for_each_entry_rcu(tpos, pos, head, member)		 \
964 	for (pos = (head)->first;					 \
965 	     rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) &&	 \
966 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
967 	     pos = pos->next)
968 
969 #else
970 #warning "don't include kernel headers in userspace"
971 #endif /* __KERNEL__ */
972 #endif
973