1 #ifndef _LINUX_LIST_H 2 #define _LINUX_LIST_H 3 4 #ifdef __KERNEL__ 5 6 #include <linux/stddef.h> 7 #include <linux/prefetch.h> 8 #include <asm/system.h> 9 10 /* 11 * These are non-NULL pointers that will result in page faults 12 * under normal circumstances, used to verify that nobody uses 13 * non-initialized list entries. 14 */ 15 #define LIST_POISON1 ((void *) 0x00100100) 16 #define LIST_POISON2 ((void *) 0x00200200) 17 18 /* 19 * Simple doubly linked list implementation. 20 * 21 * Some of the internal functions ("__xxx") are useful when 22 * manipulating whole lists rather than single entries, as 23 * sometimes we already know the next/prev entries and we can 24 * generate better code by using them directly rather than 25 * using the generic single-entry routines. 26 */ 27 28 struct list_head { 29 struct list_head *next, *prev; 30 }; 31 32 #define LIST_HEAD_INIT(name) { &(name), &(name) } 33 34 #define LIST_HEAD(name) \ 35 struct list_head name = LIST_HEAD_INIT(name) 36 37 #define INIT_LIST_HEAD(ptr) do { \ 38 (ptr)->next = (ptr); (ptr)->prev = (ptr); \ 39 } while (0) 40 41 /* 42 * Insert a new entry between two known consecutive entries. 43 * 44 * This is only for internal list manipulation where we know 45 * the prev/next entries already! 46 */ 47 static inline void __list_add(struct list_head *new, 48 struct list_head *prev, 49 struct list_head *next) 50 { 51 next->prev = new; 52 new->next = next; 53 new->prev = prev; 54 prev->next = new; 55 } 56 57 /** 58 * list_add - add a new entry 59 * @new: new entry to be added 60 * @head: list head to add it after 61 * 62 * Insert a new entry after the specified head. 63 * This is good for implementing stacks. 64 */ 65 static inline void list_add(struct list_head *new, struct list_head *head) 66 { 67 __list_add(new, head, head->next); 68 } 69 70 /** 71 * list_add_tail - add a new entry 72 * @new: new entry to be added 73 * @head: list head to add it before 74 * 75 * Insert a new entry before the specified head. 76 * This is useful for implementing queues. 77 */ 78 static inline void list_add_tail(struct list_head *new, struct list_head *head) 79 { 80 __list_add(new, head->prev, head); 81 } 82 83 /* 84 * Insert a new entry between two known consecutive entries. 85 * 86 * This is only for internal list manipulation where we know 87 * the prev/next entries already! 88 */ 89 static inline void __list_add_rcu(struct list_head * new, 90 struct list_head * prev, struct list_head * next) 91 { 92 new->next = next; 93 new->prev = prev; 94 smp_wmb(); 95 next->prev = new; 96 prev->next = new; 97 } 98 99 /** 100 * list_add_rcu - add a new entry to rcu-protected list 101 * @new: new entry to be added 102 * @head: list head to add it after 103 * 104 * Insert a new entry after the specified head. 105 * This is good for implementing stacks. 106 * 107 * The caller must take whatever precautions are necessary 108 * (such as holding appropriate locks) to avoid racing 109 * with another list-mutation primitive, such as list_add_rcu() 110 * or list_del_rcu(), running on this same list. 111 * However, it is perfectly legal to run concurrently with 112 * the _rcu list-traversal primitives, such as 113 * list_for_each_entry_rcu(). 114 */ 115 static inline void list_add_rcu(struct list_head *new, struct list_head *head) 116 { 117 __list_add_rcu(new, head, head->next); 118 } 119 120 /** 121 * list_add_tail_rcu - add a new entry to rcu-protected list 122 * @new: new entry to be added 123 * @head: list head to add it before 124 * 125 * Insert a new entry before the specified head. 126 * This is useful for implementing queues. 127 * 128 * The caller must take whatever precautions are necessary 129 * (such as holding appropriate locks) to avoid racing 130 * with another list-mutation primitive, such as list_add_tail_rcu() 131 * or list_del_rcu(), running on this same list. 132 * However, it is perfectly legal to run concurrently with 133 * the _rcu list-traversal primitives, such as 134 * list_for_each_entry_rcu(). 135 */ 136 static inline void list_add_tail_rcu(struct list_head *new, 137 struct list_head *head) 138 { 139 __list_add_rcu(new, head->prev, head); 140 } 141 142 /* 143 * Delete a list entry by making the prev/next entries 144 * point to each other. 145 * 146 * This is only for internal list manipulation where we know 147 * the prev/next entries already! 148 */ 149 static inline void __list_del(struct list_head * prev, struct list_head * next) 150 { 151 next->prev = prev; 152 prev->next = next; 153 } 154 155 /** 156 * list_del - deletes entry from list. 157 * @entry: the element to delete from the list. 158 * Note: list_empty on entry does not return true after this, the entry is 159 * in an undefined state. 160 */ 161 static inline void list_del(struct list_head *entry) 162 { 163 __list_del(entry->prev, entry->next); 164 entry->next = LIST_POISON1; 165 entry->prev = LIST_POISON2; 166 } 167 168 /** 169 * list_del_rcu - deletes entry from list without re-initialization 170 * @entry: the element to delete from the list. 171 * 172 * Note: list_empty on entry does not return true after this, 173 * the entry is in an undefined state. It is useful for RCU based 174 * lockfree traversal. 175 * 176 * In particular, it means that we can not poison the forward 177 * pointers that may still be used for walking the list. 178 * 179 * The caller must take whatever precautions are necessary 180 * (such as holding appropriate locks) to avoid racing 181 * with another list-mutation primitive, such as list_del_rcu() 182 * or list_add_rcu(), running on this same list. 183 * However, it is perfectly legal to run concurrently with 184 * the _rcu list-traversal primitives, such as 185 * list_for_each_entry_rcu(). 186 * 187 * Note that the caller is not permitted to immediately free 188 * the newly deleted entry. Instead, either synchronize_kernel() 189 * or call_rcu() must be used to defer freeing until an RCU 190 * grace period has elapsed. 191 */ 192 static inline void list_del_rcu(struct list_head *entry) 193 { 194 __list_del(entry->prev, entry->next); 195 entry->prev = LIST_POISON2; 196 } 197 198 /* 199 * list_replace_rcu - replace old entry by new one 200 * @old : the element to be replaced 201 * @new : the new element to insert 202 * 203 * The old entry will be replaced with the new entry atomically. 204 */ 205 static inline void list_replace_rcu(struct list_head *old, struct list_head *new){ 206 new->next = old->next; 207 new->prev = old->prev; 208 smp_wmb(); 209 new->next->prev = new; 210 new->prev->next = new; 211 } 212 213 /** 214 * list_del_init - deletes entry from list and reinitialize it. 215 * @entry: the element to delete from the list. 216 */ 217 static inline void list_del_init(struct list_head *entry) 218 { 219 __list_del(entry->prev, entry->next); 220 INIT_LIST_HEAD(entry); 221 } 222 223 /** 224 * list_move - delete from one list and add as another's head 225 * @list: the entry to move 226 * @head: the head that will precede our entry 227 */ 228 static inline void list_move(struct list_head *list, struct list_head *head) 229 { 230 __list_del(list->prev, list->next); 231 list_add(list, head); 232 } 233 234 /** 235 * list_move_tail - delete from one list and add as another's tail 236 * @list: the entry to move 237 * @head: the head that will follow our entry 238 */ 239 static inline void list_move_tail(struct list_head *list, 240 struct list_head *head) 241 { 242 __list_del(list->prev, list->next); 243 list_add_tail(list, head); 244 } 245 246 /** 247 * list_empty - tests whether a list is empty 248 * @head: the list to test. 249 */ 250 static inline int list_empty(const struct list_head *head) 251 { 252 return head->next == head; 253 } 254 255 /** 256 * list_empty_careful - tests whether a list is 257 * empty _and_ checks that no other CPU might be 258 * in the process of still modifying either member 259 * 260 * NOTE: using list_empty_careful() without synchronization 261 * can only be safe if the only activity that can happen 262 * to the list entry is list_del_init(). Eg. it cannot be used 263 * if another CPU could re-list_add() it. 264 * 265 * @head: the list to test. 266 */ 267 static inline int list_empty_careful(const struct list_head *head) 268 { 269 struct list_head *next = head->next; 270 return (next == head) && (next == head->prev); 271 } 272 273 static inline void __list_splice(struct list_head *list, 274 struct list_head *head) 275 { 276 struct list_head *first = list->next; 277 struct list_head *last = list->prev; 278 struct list_head *at = head->next; 279 280 first->prev = head; 281 head->next = first; 282 283 last->next = at; 284 at->prev = last; 285 } 286 287 /** 288 * list_splice - join two lists 289 * @list: the new list to add. 290 * @head: the place to add it in the first list. 291 */ 292 static inline void list_splice(struct list_head *list, struct list_head *head) 293 { 294 if (!list_empty(list)) 295 __list_splice(list, head); 296 } 297 298 /** 299 * list_splice_init - join two lists and reinitialise the emptied list. 300 * @list: the new list to add. 301 * @head: the place to add it in the first list. 302 * 303 * The list at @list is reinitialised 304 */ 305 static inline void list_splice_init(struct list_head *list, 306 struct list_head *head) 307 { 308 if (!list_empty(list)) { 309 __list_splice(list, head); 310 INIT_LIST_HEAD(list); 311 } 312 } 313 314 /** 315 * list_entry - get the struct for this entry 316 * @ptr: the &struct list_head pointer. 317 * @type: the type of the struct this is embedded in. 318 * @member: the name of the list_struct within the struct. 319 */ 320 #define list_entry(ptr, type, member) \ 321 container_of(ptr, type, member) 322 323 /** 324 * list_for_each - iterate over a list 325 * @pos: the &struct list_head to use as a loop counter. 326 * @head: the head for your list. 327 */ 328 #define list_for_each(pos, head) \ 329 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 330 pos = pos->next) 331 332 /** 333 * __list_for_each - iterate over a list 334 * @pos: the &struct list_head to use as a loop counter. 335 * @head: the head for your list. 336 * 337 * This variant differs from list_for_each() in that it's the 338 * simplest possible list iteration code, no prefetching is done. 339 * Use this for code that knows the list to be very short (empty 340 * or 1 entry) most of the time. 341 */ 342 #define __list_for_each(pos, head) \ 343 for (pos = (head)->next; pos != (head); pos = pos->next) 344 345 /** 346 * list_for_each_prev - iterate over a list backwards 347 * @pos: the &struct list_head to use as a loop counter. 348 * @head: the head for your list. 349 */ 350 #define list_for_each_prev(pos, head) \ 351 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 352 pos = pos->prev) 353 354 /** 355 * list_for_each_safe - iterate over a list safe against removal of list entry 356 * @pos: the &struct list_head to use as a loop counter. 357 * @n: another &struct list_head to use as temporary storage 358 * @head: the head for your list. 359 */ 360 #define list_for_each_safe(pos, n, head) \ 361 for (pos = (head)->next, n = pos->next; pos != (head); \ 362 pos = n, n = pos->next) 363 364 /** 365 * list_for_each_entry - iterate over list of given type 366 * @pos: the type * to use as a loop counter. 367 * @head: the head for your list. 368 * @member: the name of the list_struct within the struct. 369 */ 370 #define list_for_each_entry(pos, head, member) \ 371 for (pos = list_entry((head)->next, typeof(*pos), member); \ 372 prefetch(pos->member.next), &pos->member != (head); \ 373 pos = list_entry(pos->member.next, typeof(*pos), member)) 374 375 /** 376 * list_for_each_entry_reverse - iterate backwards over list of given type. 377 * @pos: the type * to use as a loop counter. 378 * @head: the head for your list. 379 * @member: the name of the list_struct within the struct. 380 */ 381 #define list_for_each_entry_reverse(pos, head, member) \ 382 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 383 prefetch(pos->member.prev), &pos->member != (head); \ 384 pos = list_entry(pos->member.prev, typeof(*pos), member)) 385 386 /** 387 * list_prepare_entry - prepare a pos entry for use as a start point in 388 * list_for_each_entry_continue 389 * @pos: the type * to use as a start point 390 * @head: the head of the list 391 * @member: the name of the list_struct within the struct. 392 */ 393 #define list_prepare_entry(pos, head, member) \ 394 ((pos) ? : list_entry(head, typeof(*pos), member)) 395 396 /** 397 * list_for_each_entry_continue - iterate over list of given type 398 * continuing after existing point 399 * @pos: the type * to use as a loop counter. 400 * @head: the head for your list. 401 * @member: the name of the list_struct within the struct. 402 */ 403 #define list_for_each_entry_continue(pos, head, member) \ 404 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 405 prefetch(pos->member.next), &pos->member != (head); \ 406 pos = list_entry(pos->member.next, typeof(*pos), member)) 407 408 /** 409 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 410 * @pos: the type * to use as a loop counter. 411 * @n: another type * to use as temporary storage 412 * @head: the head for your list. 413 * @member: the name of the list_struct within the struct. 414 */ 415 #define list_for_each_entry_safe(pos, n, head, member) \ 416 for (pos = list_entry((head)->next, typeof(*pos), member), \ 417 n = list_entry(pos->member.next, typeof(*pos), member); \ 418 &pos->member != (head); \ 419 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 420 421 /** 422 * list_for_each_rcu - iterate over an rcu-protected list 423 * @pos: the &struct list_head to use as a loop counter. 424 * @head: the head for your list. 425 * 426 * This list-traversal primitive may safely run concurrently with 427 * the _rcu list-mutation primitives such as list_add_rcu() 428 * as long as the traversal is guarded by rcu_read_lock(). 429 */ 430 #define list_for_each_rcu(pos, head) \ 431 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 432 pos = rcu_dereference(pos->next)) 433 434 #define __list_for_each_rcu(pos, head) \ 435 for (pos = (head)->next; pos != (head); \ 436 pos = rcu_dereference(pos->next)) 437 438 /** 439 * list_for_each_safe_rcu - iterate over an rcu-protected list safe 440 * against removal of list entry 441 * @pos: the &struct list_head to use as a loop counter. 442 * @n: another &struct list_head to use as temporary storage 443 * @head: the head for your list. 444 * 445 * This list-traversal primitive may safely run concurrently with 446 * the _rcu list-mutation primitives such as list_add_rcu() 447 * as long as the traversal is guarded by rcu_read_lock(). 448 */ 449 #define list_for_each_safe_rcu(pos, n, head) \ 450 for (pos = (head)->next, n = pos->next; pos != (head); \ 451 pos = rcu_dereference(n), n = pos->next) 452 453 /** 454 * list_for_each_entry_rcu - iterate over rcu list of given type 455 * @pos: the type * to use as a loop counter. 456 * @head: the head for your list. 457 * @member: the name of the list_struct within the struct. 458 * 459 * This list-traversal primitive may safely run concurrently with 460 * the _rcu list-mutation primitives such as list_add_rcu() 461 * as long as the traversal is guarded by rcu_read_lock(). 462 */ 463 #define list_for_each_entry_rcu(pos, head, member) \ 464 for (pos = list_entry((head)->next, typeof(*pos), member); \ 465 prefetch(pos->member.next), &pos->member != (head); \ 466 pos = rcu_dereference(list_entry(pos->member.next, \ 467 typeof(*pos), member))) 468 469 470 /** 471 * list_for_each_continue_rcu - iterate over an rcu-protected list 472 * continuing after existing point. 473 * @pos: the &struct list_head to use as a loop counter. 474 * @head: the head for your list. 475 * 476 * This list-traversal primitive may safely run concurrently with 477 * the _rcu list-mutation primitives such as list_add_rcu() 478 * as long as the traversal is guarded by rcu_read_lock(). 479 */ 480 #define list_for_each_continue_rcu(pos, head) \ 481 for ((pos) = (pos)->next; prefetch((pos)->next), (pos) != (head); \ 482 (pos) = rcu_dereference((pos)->next)) 483 484 /* 485 * Double linked lists with a single pointer list head. 486 * Mostly useful for hash tables where the two pointer list head is 487 * too wasteful. 488 * You lose the ability to access the tail in O(1). 489 */ 490 491 struct hlist_head { 492 struct hlist_node *first; 493 }; 494 495 struct hlist_node { 496 struct hlist_node *next, **pprev; 497 }; 498 499 #define HLIST_HEAD_INIT { .first = NULL } 500 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 501 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 502 #define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL) 503 504 static inline int hlist_unhashed(const struct hlist_node *h) 505 { 506 return !h->pprev; 507 } 508 509 static inline int hlist_empty(const struct hlist_head *h) 510 { 511 return !h->first; 512 } 513 514 static inline void __hlist_del(struct hlist_node *n) 515 { 516 struct hlist_node *next = n->next; 517 struct hlist_node **pprev = n->pprev; 518 *pprev = next; 519 if (next) 520 next->pprev = pprev; 521 } 522 523 static inline void hlist_del(struct hlist_node *n) 524 { 525 __hlist_del(n); 526 n->next = LIST_POISON1; 527 n->pprev = LIST_POISON2; 528 } 529 530 /** 531 * hlist_del_rcu - deletes entry from hash list without re-initialization 532 * @n: the element to delete from the hash list. 533 * 534 * Note: list_unhashed() on entry does not return true after this, 535 * the entry is in an undefined state. It is useful for RCU based 536 * lockfree traversal. 537 * 538 * In particular, it means that we can not poison the forward 539 * pointers that may still be used for walking the hash list. 540 * 541 * The caller must take whatever precautions are necessary 542 * (such as holding appropriate locks) to avoid racing 543 * with another list-mutation primitive, such as hlist_add_head_rcu() 544 * or hlist_del_rcu(), running on this same list. 545 * However, it is perfectly legal to run concurrently with 546 * the _rcu list-traversal primitives, such as 547 * hlist_for_each_entry(). 548 */ 549 static inline void hlist_del_rcu(struct hlist_node *n) 550 { 551 __hlist_del(n); 552 n->pprev = LIST_POISON2; 553 } 554 555 static inline void hlist_del_init(struct hlist_node *n) 556 { 557 if (n->pprev) { 558 __hlist_del(n); 559 INIT_HLIST_NODE(n); 560 } 561 } 562 563 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 564 { 565 struct hlist_node *first = h->first; 566 n->next = first; 567 if (first) 568 first->pprev = &n->next; 569 h->first = n; 570 n->pprev = &h->first; 571 } 572 573 574 /** 575 * hlist_add_head_rcu - adds the specified element to the specified hlist, 576 * while permitting racing traversals. 577 * @n: the element to add to the hash list. 578 * @h: the list to add to. 579 * 580 * The caller must take whatever precautions are necessary 581 * (such as holding appropriate locks) to avoid racing 582 * with another list-mutation primitive, such as hlist_add_head_rcu() 583 * or hlist_del_rcu(), running on this same list. 584 * However, it is perfectly legal to run concurrently with 585 * the _rcu list-traversal primitives, such as 586 * hlist_for_each_rcu(), used to prevent memory-consistency 587 * problems on Alpha CPUs. Regardless of the type of CPU, the 588 * list-traversal primitive must be guarded by rcu_read_lock(). 589 */ 590 static inline void hlist_add_head_rcu(struct hlist_node *n, 591 struct hlist_head *h) 592 { 593 struct hlist_node *first = h->first; 594 n->next = first; 595 n->pprev = &h->first; 596 smp_wmb(); 597 if (first) 598 first->pprev = &n->next; 599 h->first = n; 600 } 601 602 /* next must be != NULL */ 603 static inline void hlist_add_before(struct hlist_node *n, 604 struct hlist_node *next) 605 { 606 n->pprev = next->pprev; 607 n->next = next; 608 next->pprev = &n->next; 609 *(n->pprev) = n; 610 } 611 612 static inline void hlist_add_after(struct hlist_node *n, 613 struct hlist_node *next) 614 { 615 next->next = n->next; 616 n->next = next; 617 next->pprev = &n->next; 618 619 if(next->next) 620 next->next->pprev = &next->next; 621 } 622 623 #define hlist_entry(ptr, type, member) container_of(ptr,type,member) 624 625 #define hlist_for_each(pos, head) \ 626 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 627 pos = pos->next) 628 629 #define hlist_for_each_safe(pos, n, head) \ 630 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 631 pos = n) 632 633 #define hlist_for_each_rcu(pos, head) \ 634 for ((pos) = (head)->first; pos && ({ prefetch((pos)->next); 1; }); \ 635 (pos) = rcu_dereference((pos)->next)) 636 637 /** 638 * hlist_for_each_entry - iterate over list of given type 639 * @tpos: the type * to use as a loop counter. 640 * @pos: the &struct hlist_node to use as a loop counter. 641 * @head: the head for your list. 642 * @member: the name of the hlist_node within the struct. 643 */ 644 #define hlist_for_each_entry(tpos, pos, head, member) \ 645 for (pos = (head)->first; \ 646 pos && ({ prefetch(pos->next); 1;}) && \ 647 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 648 pos = pos->next) 649 650 /** 651 * hlist_for_each_entry_continue - iterate over a hlist continuing after existing point 652 * @tpos: the type * to use as a loop counter. 653 * @pos: the &struct hlist_node to use as a loop counter. 654 * @member: the name of the hlist_node within the struct. 655 */ 656 #define hlist_for_each_entry_continue(tpos, pos, member) \ 657 for (pos = (pos)->next; \ 658 pos && ({ prefetch(pos->next); 1;}) && \ 659 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 660 pos = pos->next) 661 662 /** 663 * hlist_for_each_entry_from - iterate over a hlist continuing from existing point 664 * @tpos: the type * to use as a loop counter. 665 * @pos: the &struct hlist_node to use as a loop counter. 666 * @member: the name of the hlist_node within the struct. 667 */ 668 #define hlist_for_each_entry_from(tpos, pos, member) \ 669 for (; pos && ({ prefetch(pos->next); 1;}) && \ 670 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 671 pos = pos->next) 672 673 /** 674 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 675 * @tpos: the type * to use as a loop counter. 676 * @pos: the &struct hlist_node to use as a loop counter. 677 * @n: another &struct hlist_node to use as temporary storage 678 * @head: the head for your list. 679 * @member: the name of the hlist_node within the struct. 680 */ 681 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 682 for (pos = (head)->first; \ 683 pos && ({ n = pos->next; 1; }) && \ 684 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 685 pos = n) 686 687 /** 688 * hlist_for_each_entry_rcu - iterate over rcu list of given type 689 * @pos: the type * to use as a loop counter. 690 * @pos: the &struct hlist_node to use as a loop counter. 691 * @head: the head for your list. 692 * @member: the name of the hlist_node within the struct. 693 * 694 * This list-traversal primitive may safely run concurrently with 695 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 696 * as long as the traversal is guarded by rcu_read_lock(). 697 */ 698 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 699 for (pos = (head)->first; \ 700 pos && ({ prefetch(pos->next); 1;}) && \ 701 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 702 pos = rcu_dereference(pos->next)) 703 704 #else 705 #warning "don't include kernel headers in userspace" 706 #endif /* __KERNEL__ */ 707 #endif 708