xref: /linux-6.15/include/linux/list.h (revision 46deb744)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_LIST_H
3 #define _LINUX_LIST_H
4 
5 #include <linux/types.h>
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/const.h>
9 #include <linux/kernel.h>
10 
11 /*
12  * Simple doubly linked list implementation.
13  *
14  * Some of the internal functions ("__xxx") are useful when
15  * manipulating whole lists rather than single entries, as
16  * sometimes we already know the next/prev entries and we can
17  * generate better code by using them directly rather than
18  * using the generic single-entry routines.
19  */
20 
21 #define LIST_HEAD_INIT(name) { &(name), &(name) }
22 
23 #define LIST_HEAD(name) \
24 	struct list_head name = LIST_HEAD_INIT(name)
25 
26 /**
27  * INIT_LIST_HEAD - Initialize a list_head structure
28  * @list: list_head structure to be initialized.
29  *
30  * Initializes the list_head to point to itself.  If it is a list header,
31  * the result is an empty list.
32  */
33 static inline void INIT_LIST_HEAD(struct list_head *list)
34 {
35 	WRITE_ONCE(list->next, list);
36 	list->prev = list;
37 }
38 
39 #ifdef CONFIG_DEBUG_LIST
40 extern bool __list_add_valid(struct list_head *new,
41 			      struct list_head *prev,
42 			      struct list_head *next);
43 extern bool __list_del_entry_valid(struct list_head *entry);
44 #else
45 static inline bool __list_add_valid(struct list_head *new,
46 				struct list_head *prev,
47 				struct list_head *next)
48 {
49 	return true;
50 }
51 static inline bool __list_del_entry_valid(struct list_head *entry)
52 {
53 	return true;
54 }
55 #endif
56 
57 /*
58  * Insert a new entry between two known consecutive entries.
59  *
60  * This is only for internal list manipulation where we know
61  * the prev/next entries already!
62  */
63 static inline void __list_add(struct list_head *new,
64 			      struct list_head *prev,
65 			      struct list_head *next)
66 {
67 	if (!__list_add_valid(new, prev, next))
68 		return;
69 
70 	next->prev = new;
71 	new->next = next;
72 	new->prev = prev;
73 	WRITE_ONCE(prev->next, new);
74 }
75 
76 /**
77  * list_add - add a new entry
78  * @new: new entry to be added
79  * @head: list head to add it after
80  *
81  * Insert a new entry after the specified head.
82  * This is good for implementing stacks.
83  */
84 static inline void list_add(struct list_head *new, struct list_head *head)
85 {
86 	__list_add(new, head, head->next);
87 }
88 
89 
90 /**
91  * list_add_tail - add a new entry
92  * @new: new entry to be added
93  * @head: list head to add it before
94  *
95  * Insert a new entry before the specified head.
96  * This is useful for implementing queues.
97  */
98 static inline void list_add_tail(struct list_head *new, struct list_head *head)
99 {
100 	__list_add(new, head->prev, head);
101 }
102 
103 /*
104  * Delete a list entry by making the prev/next entries
105  * point to each other.
106  *
107  * This is only for internal list manipulation where we know
108  * the prev/next entries already!
109  */
110 static inline void __list_del(struct list_head * prev, struct list_head * next)
111 {
112 	next->prev = prev;
113 	WRITE_ONCE(prev->next, next);
114 }
115 
116 /*
117  * Delete a list entry and clear the 'prev' pointer.
118  *
119  * This is a special-purpose list clearing method used in the networking code
120  * for lists allocated as per-cpu, where we don't want to incur the extra
121  * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
122  * needs to check the node 'prev' pointer instead of calling list_empty().
123  */
124 static inline void __list_del_clearprev(struct list_head *entry)
125 {
126 	__list_del(entry->prev, entry->next);
127 	entry->prev = NULL;
128 }
129 
130 static inline void __list_del_entry(struct list_head *entry)
131 {
132 	if (!__list_del_entry_valid(entry))
133 		return;
134 
135 	__list_del(entry->prev, entry->next);
136 }
137 
138 /**
139  * list_del - deletes entry from list.
140  * @entry: the element to delete from the list.
141  * Note: list_empty() on entry does not return true after this, the entry is
142  * in an undefined state.
143  */
144 static inline void list_del(struct list_head *entry)
145 {
146 	__list_del_entry(entry);
147 	entry->next = LIST_POISON1;
148 	entry->prev = LIST_POISON2;
149 }
150 
151 /**
152  * list_replace - replace old entry by new one
153  * @old : the element to be replaced
154  * @new : the new element to insert
155  *
156  * If @old was empty, it will be overwritten.
157  */
158 static inline void list_replace(struct list_head *old,
159 				struct list_head *new)
160 {
161 	new->next = old->next;
162 	new->next->prev = new;
163 	new->prev = old->prev;
164 	new->prev->next = new;
165 }
166 
167 /**
168  * list_replace_init - replace old entry by new one and initialize the old one
169  * @old : the element to be replaced
170  * @new : the new element to insert
171  *
172  * If @old was empty, it will be overwritten.
173  */
174 static inline void list_replace_init(struct list_head *old,
175 				     struct list_head *new)
176 {
177 	list_replace(old, new);
178 	INIT_LIST_HEAD(old);
179 }
180 
181 /**
182  * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
183  * @entry1: the location to place entry2
184  * @entry2: the location to place entry1
185  */
186 static inline void list_swap(struct list_head *entry1,
187 			     struct list_head *entry2)
188 {
189 	struct list_head *pos = entry2->prev;
190 
191 	list_del(entry2);
192 	list_replace(entry1, entry2);
193 	if (pos == entry1)
194 		pos = entry2;
195 	list_add(entry1, pos);
196 }
197 
198 /**
199  * list_del_init - deletes entry from list and reinitialize it.
200  * @entry: the element to delete from the list.
201  */
202 static inline void list_del_init(struct list_head *entry)
203 {
204 	__list_del_entry(entry);
205 	INIT_LIST_HEAD(entry);
206 }
207 
208 /**
209  * list_move - delete from one list and add as another's head
210  * @list: the entry to move
211  * @head: the head that will precede our entry
212  */
213 static inline void list_move(struct list_head *list, struct list_head *head)
214 {
215 	__list_del_entry(list);
216 	list_add(list, head);
217 }
218 
219 /**
220  * list_move_tail - delete from one list and add as another's tail
221  * @list: the entry to move
222  * @head: the head that will follow our entry
223  */
224 static inline void list_move_tail(struct list_head *list,
225 				  struct list_head *head)
226 {
227 	__list_del_entry(list);
228 	list_add_tail(list, head);
229 }
230 
231 /**
232  * list_bulk_move_tail - move a subsection of a list to its tail
233  * @head: the head that will follow our entry
234  * @first: first entry to move
235  * @last: last entry to move, can be the same as first
236  *
237  * Move all entries between @first and including @last before @head.
238  * All three entries must belong to the same linked list.
239  */
240 static inline void list_bulk_move_tail(struct list_head *head,
241 				       struct list_head *first,
242 				       struct list_head *last)
243 {
244 	first->prev->next = last->next;
245 	last->next->prev = first->prev;
246 
247 	head->prev->next = first;
248 	first->prev = head->prev;
249 
250 	last->next = head;
251 	head->prev = last;
252 }
253 
254 /**
255  * list_is_first -- tests whether @list is the first entry in list @head
256  * @list: the entry to test
257  * @head: the head of the list
258  */
259 static inline int list_is_first(const struct list_head *list,
260 					const struct list_head *head)
261 {
262 	return list->prev == head;
263 }
264 
265 /**
266  * list_is_last - tests whether @list is the last entry in list @head
267  * @list: the entry to test
268  * @head: the head of the list
269  */
270 static inline int list_is_last(const struct list_head *list,
271 				const struct list_head *head)
272 {
273 	return list->next == head;
274 }
275 
276 /**
277  * list_empty - tests whether a list is empty
278  * @head: the list to test.
279  */
280 static inline int list_empty(const struct list_head *head)
281 {
282 	return READ_ONCE(head->next) == head;
283 }
284 
285 /**
286  * list_empty_careful - tests whether a list is empty and not being modified
287  * @head: the list to test
288  *
289  * Description:
290  * tests whether a list is empty _and_ checks that no other CPU might be
291  * in the process of modifying either member (next or prev)
292  *
293  * NOTE: using list_empty_careful() without synchronization
294  * can only be safe if the only activity that can happen
295  * to the list entry is list_del_init(). Eg. it cannot be used
296  * if another CPU could re-list_add() it.
297  */
298 static inline int list_empty_careful(const struct list_head *head)
299 {
300 	struct list_head *next = head->next;
301 	return (next == head) && (next == head->prev);
302 }
303 
304 /**
305  * list_rotate_left - rotate the list to the left
306  * @head: the head of the list
307  */
308 static inline void list_rotate_left(struct list_head *head)
309 {
310 	struct list_head *first;
311 
312 	if (!list_empty(head)) {
313 		first = head->next;
314 		list_move_tail(first, head);
315 	}
316 }
317 
318 /**
319  * list_rotate_to_front() - Rotate list to specific item.
320  * @list: The desired new front of the list.
321  * @head: The head of the list.
322  *
323  * Rotates list so that @list becomes the new front of the list.
324  */
325 static inline void list_rotate_to_front(struct list_head *list,
326 					struct list_head *head)
327 {
328 	/*
329 	 * Deletes the list head from the list denoted by @head and
330 	 * places it as the tail of @list, this effectively rotates the
331 	 * list so that @list is at the front.
332 	 */
333 	list_move_tail(head, list);
334 }
335 
336 /**
337  * list_is_singular - tests whether a list has just one entry.
338  * @head: the list to test.
339  */
340 static inline int list_is_singular(const struct list_head *head)
341 {
342 	return !list_empty(head) && (head->next == head->prev);
343 }
344 
345 static inline void __list_cut_position(struct list_head *list,
346 		struct list_head *head, struct list_head *entry)
347 {
348 	struct list_head *new_first = entry->next;
349 	list->next = head->next;
350 	list->next->prev = list;
351 	list->prev = entry;
352 	entry->next = list;
353 	head->next = new_first;
354 	new_first->prev = head;
355 }
356 
357 /**
358  * list_cut_position - cut a list into two
359  * @list: a new list to add all removed entries
360  * @head: a list with entries
361  * @entry: an entry within head, could be the head itself
362  *	and if so we won't cut the list
363  *
364  * This helper moves the initial part of @head, up to and
365  * including @entry, from @head to @list. You should
366  * pass on @entry an element you know is on @head. @list
367  * should be an empty list or a list you do not care about
368  * losing its data.
369  *
370  */
371 static inline void list_cut_position(struct list_head *list,
372 		struct list_head *head, struct list_head *entry)
373 {
374 	if (list_empty(head))
375 		return;
376 	if (list_is_singular(head) &&
377 		(head->next != entry && head != entry))
378 		return;
379 	if (entry == head)
380 		INIT_LIST_HEAD(list);
381 	else
382 		__list_cut_position(list, head, entry);
383 }
384 
385 /**
386  * list_cut_before - cut a list into two, before given entry
387  * @list: a new list to add all removed entries
388  * @head: a list with entries
389  * @entry: an entry within head, could be the head itself
390  *
391  * This helper moves the initial part of @head, up to but
392  * excluding @entry, from @head to @list.  You should pass
393  * in @entry an element you know is on @head.  @list should
394  * be an empty list or a list you do not care about losing
395  * its data.
396  * If @entry == @head, all entries on @head are moved to
397  * @list.
398  */
399 static inline void list_cut_before(struct list_head *list,
400 				   struct list_head *head,
401 				   struct list_head *entry)
402 {
403 	if (head->next == entry) {
404 		INIT_LIST_HEAD(list);
405 		return;
406 	}
407 	list->next = head->next;
408 	list->next->prev = list;
409 	list->prev = entry->prev;
410 	list->prev->next = list;
411 	head->next = entry;
412 	entry->prev = head;
413 }
414 
415 static inline void __list_splice(const struct list_head *list,
416 				 struct list_head *prev,
417 				 struct list_head *next)
418 {
419 	struct list_head *first = list->next;
420 	struct list_head *last = list->prev;
421 
422 	first->prev = prev;
423 	prev->next = first;
424 
425 	last->next = next;
426 	next->prev = last;
427 }
428 
429 /**
430  * list_splice - join two lists, this is designed for stacks
431  * @list: the new list to add.
432  * @head: the place to add it in the first list.
433  */
434 static inline void list_splice(const struct list_head *list,
435 				struct list_head *head)
436 {
437 	if (!list_empty(list))
438 		__list_splice(list, head, head->next);
439 }
440 
441 /**
442  * list_splice_tail - join two lists, each list being a queue
443  * @list: the new list to add.
444  * @head: the place to add it in the first list.
445  */
446 static inline void list_splice_tail(struct list_head *list,
447 				struct list_head *head)
448 {
449 	if (!list_empty(list))
450 		__list_splice(list, head->prev, head);
451 }
452 
453 /**
454  * list_splice_init - join two lists and reinitialise the emptied list.
455  * @list: the new list to add.
456  * @head: the place to add it in the first list.
457  *
458  * The list at @list is reinitialised
459  */
460 static inline void list_splice_init(struct list_head *list,
461 				    struct list_head *head)
462 {
463 	if (!list_empty(list)) {
464 		__list_splice(list, head, head->next);
465 		INIT_LIST_HEAD(list);
466 	}
467 }
468 
469 /**
470  * list_splice_tail_init - join two lists and reinitialise the emptied list
471  * @list: the new list to add.
472  * @head: the place to add it in the first list.
473  *
474  * Each of the lists is a queue.
475  * The list at @list is reinitialised
476  */
477 static inline void list_splice_tail_init(struct list_head *list,
478 					 struct list_head *head)
479 {
480 	if (!list_empty(list)) {
481 		__list_splice(list, head->prev, head);
482 		INIT_LIST_HEAD(list);
483 	}
484 }
485 
486 /**
487  * list_entry - get the struct for this entry
488  * @ptr:	the &struct list_head pointer.
489  * @type:	the type of the struct this is embedded in.
490  * @member:	the name of the list_head within the struct.
491  */
492 #define list_entry(ptr, type, member) \
493 	container_of(ptr, type, member)
494 
495 /**
496  * list_first_entry - get the first element from a list
497  * @ptr:	the list head to take the element from.
498  * @type:	the type of the struct this is embedded in.
499  * @member:	the name of the list_head within the struct.
500  *
501  * Note, that list is expected to be not empty.
502  */
503 #define list_first_entry(ptr, type, member) \
504 	list_entry((ptr)->next, type, member)
505 
506 /**
507  * list_last_entry - get the last element from a list
508  * @ptr:	the list head to take the element from.
509  * @type:	the type of the struct this is embedded in.
510  * @member:	the name of the list_head within the struct.
511  *
512  * Note, that list is expected to be not empty.
513  */
514 #define list_last_entry(ptr, type, member) \
515 	list_entry((ptr)->prev, type, member)
516 
517 /**
518  * list_first_entry_or_null - get the first element from a list
519  * @ptr:	the list head to take the element from.
520  * @type:	the type of the struct this is embedded in.
521  * @member:	the name of the list_head within the struct.
522  *
523  * Note that if the list is empty, it returns NULL.
524  */
525 #define list_first_entry_or_null(ptr, type, member) ({ \
526 	struct list_head *head__ = (ptr); \
527 	struct list_head *pos__ = READ_ONCE(head__->next); \
528 	pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
529 })
530 
531 /**
532  * list_next_entry - get the next element in list
533  * @pos:	the type * to cursor
534  * @member:	the name of the list_head within the struct.
535  */
536 #define list_next_entry(pos, member) \
537 	list_entry((pos)->member.next, typeof(*(pos)), member)
538 
539 /**
540  * list_prev_entry - get the prev element in list
541  * @pos:	the type * to cursor
542  * @member:	the name of the list_head within the struct.
543  */
544 #define list_prev_entry(pos, member) \
545 	list_entry((pos)->member.prev, typeof(*(pos)), member)
546 
547 /**
548  * list_for_each	-	iterate over a list
549  * @pos:	the &struct list_head to use as a loop cursor.
550  * @head:	the head for your list.
551  */
552 #define list_for_each(pos, head) \
553 	for (pos = (head)->next; pos != (head); pos = pos->next)
554 
555 /**
556  * list_for_each_prev	-	iterate over a list backwards
557  * @pos:	the &struct list_head to use as a loop cursor.
558  * @head:	the head for your list.
559  */
560 #define list_for_each_prev(pos, head) \
561 	for (pos = (head)->prev; pos != (head); pos = pos->prev)
562 
563 /**
564  * list_for_each_safe - iterate over a list safe against removal of list entry
565  * @pos:	the &struct list_head to use as a loop cursor.
566  * @n:		another &struct list_head to use as temporary storage
567  * @head:	the head for your list.
568  */
569 #define list_for_each_safe(pos, n, head) \
570 	for (pos = (head)->next, n = pos->next; pos != (head); \
571 		pos = n, n = pos->next)
572 
573 /**
574  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
575  * @pos:	the &struct list_head to use as a loop cursor.
576  * @n:		another &struct list_head to use as temporary storage
577  * @head:	the head for your list.
578  */
579 #define list_for_each_prev_safe(pos, n, head) \
580 	for (pos = (head)->prev, n = pos->prev; \
581 	     pos != (head); \
582 	     pos = n, n = pos->prev)
583 
584 /**
585  * list_for_each_entry	-	iterate over list of given type
586  * @pos:	the type * to use as a loop cursor.
587  * @head:	the head for your list.
588  * @member:	the name of the list_head within the struct.
589  */
590 #define list_for_each_entry(pos, head, member)				\
591 	for (pos = list_first_entry(head, typeof(*pos), member);	\
592 	     &pos->member != (head);					\
593 	     pos = list_next_entry(pos, member))
594 
595 /**
596  * list_for_each_entry_reverse - iterate backwards over list of given type.
597  * @pos:	the type * to use as a loop cursor.
598  * @head:	the head for your list.
599  * @member:	the name of the list_head within the struct.
600  */
601 #define list_for_each_entry_reverse(pos, head, member)			\
602 	for (pos = list_last_entry(head, typeof(*pos), member);		\
603 	     &pos->member != (head); 					\
604 	     pos = list_prev_entry(pos, member))
605 
606 /**
607  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
608  * @pos:	the type * to use as a start point
609  * @head:	the head of the list
610  * @member:	the name of the list_head within the struct.
611  *
612  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
613  */
614 #define list_prepare_entry(pos, head, member) \
615 	((pos) ? : list_entry(head, typeof(*pos), member))
616 
617 /**
618  * list_for_each_entry_continue - continue iteration over list of given type
619  * @pos:	the type * to use as a loop cursor.
620  * @head:	the head for your list.
621  * @member:	the name of the list_head within the struct.
622  *
623  * Continue to iterate over list of given type, continuing after
624  * the current position.
625  */
626 #define list_for_each_entry_continue(pos, head, member) 		\
627 	for (pos = list_next_entry(pos, member);			\
628 	     &pos->member != (head);					\
629 	     pos = list_next_entry(pos, member))
630 
631 /**
632  * list_for_each_entry_continue_reverse - iterate backwards from the given point
633  * @pos:	the type * to use as a loop cursor.
634  * @head:	the head for your list.
635  * @member:	the name of the list_head within the struct.
636  *
637  * Start to iterate over list of given type backwards, continuing after
638  * the current position.
639  */
640 #define list_for_each_entry_continue_reverse(pos, head, member)		\
641 	for (pos = list_prev_entry(pos, member);			\
642 	     &pos->member != (head);					\
643 	     pos = list_prev_entry(pos, member))
644 
645 /**
646  * list_for_each_entry_from - iterate over list of given type from the current point
647  * @pos:	the type * to use as a loop cursor.
648  * @head:	the head for your list.
649  * @member:	the name of the list_head within the struct.
650  *
651  * Iterate over list of given type, continuing from current position.
652  */
653 #define list_for_each_entry_from(pos, head, member) 			\
654 	for (; &pos->member != (head);					\
655 	     pos = list_next_entry(pos, member))
656 
657 /**
658  * list_for_each_entry_from_reverse - iterate backwards over list of given type
659  *                                    from the current point
660  * @pos:	the type * to use as a loop cursor.
661  * @head:	the head for your list.
662  * @member:	the name of the list_head within the struct.
663  *
664  * Iterate backwards over list of given type, continuing from current position.
665  */
666 #define list_for_each_entry_from_reverse(pos, head, member)		\
667 	for (; &pos->member != (head);					\
668 	     pos = list_prev_entry(pos, member))
669 
670 /**
671  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
672  * @pos:	the type * to use as a loop cursor.
673  * @n:		another type * to use as temporary storage
674  * @head:	the head for your list.
675  * @member:	the name of the list_head within the struct.
676  */
677 #define list_for_each_entry_safe(pos, n, head, member)			\
678 	for (pos = list_first_entry(head, typeof(*pos), member),	\
679 		n = list_next_entry(pos, member);			\
680 	     &pos->member != (head); 					\
681 	     pos = n, n = list_next_entry(n, member))
682 
683 /**
684  * list_for_each_entry_safe_continue - continue list iteration safe against removal
685  * @pos:	the type * to use as a loop cursor.
686  * @n:		another type * to use as temporary storage
687  * @head:	the head for your list.
688  * @member:	the name of the list_head within the struct.
689  *
690  * Iterate over list of given type, continuing after current point,
691  * safe against removal of list entry.
692  */
693 #define list_for_each_entry_safe_continue(pos, n, head, member) 		\
694 	for (pos = list_next_entry(pos, member), 				\
695 		n = list_next_entry(pos, member);				\
696 	     &pos->member != (head);						\
697 	     pos = n, n = list_next_entry(n, member))
698 
699 /**
700  * list_for_each_entry_safe_from - iterate over list from current point safe against removal
701  * @pos:	the type * to use as a loop cursor.
702  * @n:		another type * to use as temporary storage
703  * @head:	the head for your list.
704  * @member:	the name of the list_head within the struct.
705  *
706  * Iterate over list of given type from current point, safe against
707  * removal of list entry.
708  */
709 #define list_for_each_entry_safe_from(pos, n, head, member) 			\
710 	for (n = list_next_entry(pos, member);					\
711 	     &pos->member != (head);						\
712 	     pos = n, n = list_next_entry(n, member))
713 
714 /**
715  * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
716  * @pos:	the type * to use as a loop cursor.
717  * @n:		another type * to use as temporary storage
718  * @head:	the head for your list.
719  * @member:	the name of the list_head within the struct.
720  *
721  * Iterate backwards over list of given type, safe against removal
722  * of list entry.
723  */
724 #define list_for_each_entry_safe_reverse(pos, n, head, member)		\
725 	for (pos = list_last_entry(head, typeof(*pos), member),		\
726 		n = list_prev_entry(pos, member);			\
727 	     &pos->member != (head); 					\
728 	     pos = n, n = list_prev_entry(n, member))
729 
730 /**
731  * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
732  * @pos:	the loop cursor used in the list_for_each_entry_safe loop
733  * @n:		temporary storage used in list_for_each_entry_safe
734  * @member:	the name of the list_head within the struct.
735  *
736  * list_safe_reset_next is not safe to use in general if the list may be
737  * modified concurrently (eg. the lock is dropped in the loop body). An
738  * exception to this is if the cursor element (pos) is pinned in the list,
739  * and list_safe_reset_next is called after re-taking the lock and before
740  * completing the current iteration of the loop body.
741  */
742 #define list_safe_reset_next(pos, n, member)				\
743 	n = list_next_entry(pos, member)
744 
745 /*
746  * Double linked lists with a single pointer list head.
747  * Mostly useful for hash tables where the two pointer list head is
748  * too wasteful.
749  * You lose the ability to access the tail in O(1).
750  */
751 
752 #define HLIST_HEAD_INIT { .first = NULL }
753 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
754 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
755 static inline void INIT_HLIST_NODE(struct hlist_node *h)
756 {
757 	h->next = NULL;
758 	h->pprev = NULL;
759 }
760 
761 /**
762  * hlist_unhashed - Has node been removed from list and reinitialized?
763  * @h: Node to be checked
764  *
765  * Not that not all removal functions will leave a node in unhashed
766  * state.  For example, hlist_nulls_del_init_rcu() does leave the
767  * node in unhashed state, but hlist_nulls_del() does not.
768  */
769 static inline int hlist_unhashed(const struct hlist_node *h)
770 {
771 	return !h->pprev;
772 }
773 
774 /**
775  * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
776  * @h: Node to be checked
777  *
778  * This variant of hlist_unhashed() must be used in lockless contexts
779  * to avoid potential load-tearing.  The READ_ONCE() is paired with the
780  * various WRITE_ONCE() in hlist helpers that are defined below.
781  */
782 static inline int hlist_unhashed_lockless(const struct hlist_node *h)
783 {
784 	return !READ_ONCE(h->pprev);
785 }
786 
787 /**
788  * hlist_empty - Is the specified hlist_head structure an empty hlist?
789  * @h: Structure to check.
790  */
791 static inline int hlist_empty(const struct hlist_head *h)
792 {
793 	return !READ_ONCE(h->first);
794 }
795 
796 static inline void __hlist_del(struct hlist_node *n)
797 {
798 	struct hlist_node *next = n->next;
799 	struct hlist_node **pprev = n->pprev;
800 
801 	WRITE_ONCE(*pprev, next);
802 	if (next)
803 		WRITE_ONCE(next->pprev, pprev);
804 }
805 
806 /**
807  * hlist_del - Delete the specified hlist_node from its list
808  * @n: Node to delete.
809  *
810  * Note that this function leaves the node in hashed state.  Use
811  * hlist_del_init() or similar instead to unhash @n.
812  */
813 static inline void hlist_del(struct hlist_node *n)
814 {
815 	__hlist_del(n);
816 	n->next = LIST_POISON1;
817 	n->pprev = LIST_POISON2;
818 }
819 
820 /**
821  * hlist_del_init - Delete the specified hlist_node from its list and initialize
822  * @n: Node to delete.
823  *
824  * Note that this function leaves the node in unhashed state.
825  */
826 static inline void hlist_del_init(struct hlist_node *n)
827 {
828 	if (!hlist_unhashed(n)) {
829 		__hlist_del(n);
830 		INIT_HLIST_NODE(n);
831 	}
832 }
833 
834 /**
835  * hlist_add_head - add a new entry at the beginning of the hlist
836  * @n: new entry to be added
837  * @h: hlist head to add it after
838  *
839  * Insert a new entry after the specified head.
840  * This is good for implementing stacks.
841  */
842 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
843 {
844 	struct hlist_node *first = h->first;
845 	WRITE_ONCE(n->next, first);
846 	if (first)
847 		WRITE_ONCE(first->pprev, &n->next);
848 	WRITE_ONCE(h->first, n);
849 	WRITE_ONCE(n->pprev, &h->first);
850 }
851 
852 /**
853  * hlist_add_before - add a new entry before the one specified
854  * @n: new entry to be added
855  * @next: hlist node to add it before, which must be non-NULL
856  */
857 static inline void hlist_add_before(struct hlist_node *n,
858 				    struct hlist_node *next)
859 {
860 	WRITE_ONCE(n->pprev, next->pprev);
861 	WRITE_ONCE(n->next, next);
862 	WRITE_ONCE(next->pprev, &n->next);
863 	WRITE_ONCE(*(n->pprev), n);
864 }
865 
866 /**
867  * hlist_add_behing - add a new entry after the one specified
868  * @n: new entry to be added
869  * @prev: hlist node to add it after, which must be non-NULL
870  */
871 static inline void hlist_add_behind(struct hlist_node *n,
872 				    struct hlist_node *prev)
873 {
874 	WRITE_ONCE(n->next, prev->next);
875 	WRITE_ONCE(prev->next, n);
876 	WRITE_ONCE(n->pprev, &prev->next);
877 
878 	if (n->next)
879 		WRITE_ONCE(n->next->pprev, &n->next);
880 }
881 
882 /**
883  * hlist_add_fake - create a fake hlist consisting of a single headless node
884  * @n: Node to make a fake list out of
885  *
886  * This makes @n appear to be its own predecessor on a headless hlist.
887  * The point of this is to allow things like hlist_del() to work correctly
888  * in cases where there is no list.
889  */
890 static inline void hlist_add_fake(struct hlist_node *n)
891 {
892 	n->pprev = &n->next;
893 }
894 
895 /**
896  * hlist_fake: Is this node a fake hlist?
897  * @h: Node to check for being a self-referential fake hlist.
898  */
899 static inline bool hlist_fake(struct hlist_node *h)
900 {
901 	return h->pprev == &h->next;
902 }
903 
904 /**
905  * hlist_is_singular_node - is node the only element of the specified hlist?
906  * @n: Node to check for singularity.
907  * @h: Header for potentially singular list.
908  *
909  * Check whether the node is the only node of the head without
910  * accessing head, thus avoiding unnecessary cache misses.
911  */
912 static inline bool
913 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
914 {
915 	return !n->next && n->pprev == &h->first;
916 }
917 
918 /**
919  * hlist_move_list - Move an hlist
920  * @old: hlist_head for old list.
921  * @new: hlist_head for new list.
922  *
923  * Move a list from one list head to another. Fixup the pprev
924  * reference of the first entry if it exists.
925  */
926 static inline void hlist_move_list(struct hlist_head *old,
927 				   struct hlist_head *new)
928 {
929 	new->first = old->first;
930 	if (new->first)
931 		new->first->pprev = &new->first;
932 	old->first = NULL;
933 }
934 
935 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
936 
937 #define hlist_for_each(pos, head) \
938 	for (pos = (head)->first; pos ; pos = pos->next)
939 
940 #define hlist_for_each_safe(pos, n, head) \
941 	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
942 	     pos = n)
943 
944 #define hlist_entry_safe(ptr, type, member) \
945 	({ typeof(ptr) ____ptr = (ptr); \
946 	   ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
947 	})
948 
949 /**
950  * hlist_for_each_entry	- iterate over list of given type
951  * @pos:	the type * to use as a loop cursor.
952  * @head:	the head for your list.
953  * @member:	the name of the hlist_node within the struct.
954  */
955 #define hlist_for_each_entry(pos, head, member)				\
956 	for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
957 	     pos;							\
958 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
959 
960 /**
961  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
962  * @pos:	the type * to use as a loop cursor.
963  * @member:	the name of the hlist_node within the struct.
964  */
965 #define hlist_for_each_entry_continue(pos, member)			\
966 	for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
967 	     pos;							\
968 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
969 
970 /**
971  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
972  * @pos:	the type * to use as a loop cursor.
973  * @member:	the name of the hlist_node within the struct.
974  */
975 #define hlist_for_each_entry_from(pos, member)				\
976 	for (; pos;							\
977 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
978 
979 /**
980  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
981  * @pos:	the type * to use as a loop cursor.
982  * @n:		another &struct hlist_node to use as temporary storage
983  * @head:	the head for your list.
984  * @member:	the name of the hlist_node within the struct.
985  */
986 #define hlist_for_each_entry_safe(pos, n, head, member) 		\
987 	for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
988 	     pos && ({ n = pos->member.next; 1; });			\
989 	     pos = hlist_entry_safe(n, typeof(*pos), member))
990 
991 #endif
992