xref: /linux-6.15/include/linux/list.h (revision 43f5b308)
1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
3 
4 #include <linux/stddef.h>
5 #include <linux/poison.h>
6 #include <linux/prefetch.h>
7 #include <asm/system.h>
8 
9 /*
10  * Simple doubly linked list implementation.
11  *
12  * Some of the internal functions ("__xxx") are useful when
13  * manipulating whole lists rather than single entries, as
14  * sometimes we already know the next/prev entries and we can
15  * generate better code by using them directly rather than
16  * using the generic single-entry routines.
17  */
18 
19 struct list_head {
20 	struct list_head *next, *prev;
21 };
22 
23 #define LIST_HEAD_INIT(name) { &(name), &(name) }
24 
25 #define LIST_HEAD(name) \
26 	struct list_head name = LIST_HEAD_INIT(name)
27 
28 static inline void INIT_LIST_HEAD(struct list_head *list)
29 {
30 	list->next = list;
31 	list->prev = list;
32 }
33 
34 /*
35  * Insert a new entry between two known consecutive entries.
36  *
37  * This is only for internal list manipulation where we know
38  * the prev/next entries already!
39  */
40 #ifndef CONFIG_DEBUG_LIST
41 static inline void __list_add(struct list_head *new,
42 			      struct list_head *prev,
43 			      struct list_head *next)
44 {
45 	next->prev = new;
46 	new->next = next;
47 	new->prev = prev;
48 	prev->next = new;
49 }
50 #else
51 extern void __list_add(struct list_head *new,
52 			      struct list_head *prev,
53 			      struct list_head *next);
54 #endif
55 
56 /**
57  * list_add - add a new entry
58  * @new: new entry to be added
59  * @head: list head to add it after
60  *
61  * Insert a new entry after the specified head.
62  * This is good for implementing stacks.
63  */
64 #ifndef CONFIG_DEBUG_LIST
65 static inline void list_add(struct list_head *new, struct list_head *head)
66 {
67 	__list_add(new, head, head->next);
68 }
69 #else
70 extern void list_add(struct list_head *new, struct list_head *head);
71 #endif
72 
73 
74 /**
75  * list_add_tail - add a new entry
76  * @new: new entry to be added
77  * @head: list head to add it before
78  *
79  * Insert a new entry before the specified head.
80  * This is useful for implementing queues.
81  */
82 static inline void list_add_tail(struct list_head *new, struct list_head *head)
83 {
84 	__list_add(new, head->prev, head);
85 }
86 
87 /*
88  * Insert a new entry between two known consecutive entries.
89  *
90  * This is only for internal list manipulation where we know
91  * the prev/next entries already!
92  */
93 static inline void __list_add_rcu(struct list_head * new,
94 		struct list_head * prev, struct list_head * next)
95 {
96 	new->next = next;
97 	new->prev = prev;
98 	smp_wmb();
99 	next->prev = new;
100 	prev->next = new;
101 }
102 
103 /**
104  * list_add_rcu - add a new entry to rcu-protected list
105  * @new: new entry to be added
106  * @head: list head to add it after
107  *
108  * Insert a new entry after the specified head.
109  * This is good for implementing stacks.
110  *
111  * The caller must take whatever precautions are necessary
112  * (such as holding appropriate locks) to avoid racing
113  * with another list-mutation primitive, such as list_add_rcu()
114  * or list_del_rcu(), running on this same list.
115  * However, it is perfectly legal to run concurrently with
116  * the _rcu list-traversal primitives, such as
117  * list_for_each_entry_rcu().
118  */
119 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
120 {
121 	__list_add_rcu(new, head, head->next);
122 }
123 
124 /**
125  * list_add_tail_rcu - add a new entry to rcu-protected list
126  * @new: new entry to be added
127  * @head: list head to add it before
128  *
129  * Insert a new entry before the specified head.
130  * This is useful for implementing queues.
131  *
132  * The caller must take whatever precautions are necessary
133  * (such as holding appropriate locks) to avoid racing
134  * with another list-mutation primitive, such as list_add_tail_rcu()
135  * or list_del_rcu(), running on this same list.
136  * However, it is perfectly legal to run concurrently with
137  * the _rcu list-traversal primitives, such as
138  * list_for_each_entry_rcu().
139  */
140 static inline void list_add_tail_rcu(struct list_head *new,
141 					struct list_head *head)
142 {
143 	__list_add_rcu(new, head->prev, head);
144 }
145 
146 /*
147  * Delete a list entry by making the prev/next entries
148  * point to each other.
149  *
150  * This is only for internal list manipulation where we know
151  * the prev/next entries already!
152  */
153 static inline void __list_del(struct list_head * prev, struct list_head * next)
154 {
155 	next->prev = prev;
156 	prev->next = next;
157 }
158 
159 /**
160  * list_del - deletes entry from list.
161  * @entry: the element to delete from the list.
162  * Note: list_empty() on entry does not return true after this, the entry is
163  * in an undefined state.
164  */
165 #ifndef CONFIG_DEBUG_LIST
166 static inline void list_del(struct list_head *entry)
167 {
168 	__list_del(entry->prev, entry->next);
169 	entry->next = LIST_POISON1;
170 	entry->prev = LIST_POISON2;
171 }
172 #else
173 extern void list_del(struct list_head *entry);
174 #endif
175 
176 /**
177  * list_del_rcu - deletes entry from list without re-initialization
178  * @entry: the element to delete from the list.
179  *
180  * Note: list_empty() on entry does not return true after this,
181  * the entry is in an undefined state. It is useful for RCU based
182  * lockfree traversal.
183  *
184  * In particular, it means that we can not poison the forward
185  * pointers that may still be used for walking the list.
186  *
187  * The caller must take whatever precautions are necessary
188  * (such as holding appropriate locks) to avoid racing
189  * with another list-mutation primitive, such as list_del_rcu()
190  * or list_add_rcu(), running on this same list.
191  * However, it is perfectly legal to run concurrently with
192  * the _rcu list-traversal primitives, such as
193  * list_for_each_entry_rcu().
194  *
195  * Note that the caller is not permitted to immediately free
196  * the newly deleted entry.  Instead, either synchronize_rcu()
197  * or call_rcu() must be used to defer freeing until an RCU
198  * grace period has elapsed.
199  */
200 static inline void list_del_rcu(struct list_head *entry)
201 {
202 	__list_del(entry->prev, entry->next);
203 	entry->prev = LIST_POISON2;
204 }
205 
206 /**
207  * list_replace - replace old entry by new one
208  * @old : the element to be replaced
209  * @new : the new element to insert
210  *
211  * If @old was empty, it will be overwritten.
212  */
213 static inline void list_replace(struct list_head *old,
214 				struct list_head *new)
215 {
216 	new->next = old->next;
217 	new->next->prev = new;
218 	new->prev = old->prev;
219 	new->prev->next = new;
220 }
221 
222 static inline void list_replace_init(struct list_head *old,
223 					struct list_head *new)
224 {
225 	list_replace(old, new);
226 	INIT_LIST_HEAD(old);
227 }
228 
229 /**
230  * list_replace_rcu - replace old entry by new one
231  * @old : the element to be replaced
232  * @new : the new element to insert
233  *
234  * The @old entry will be replaced with the @new entry atomically.
235  * Note: @old should not be empty.
236  */
237 static inline void list_replace_rcu(struct list_head *old,
238 				struct list_head *new)
239 {
240 	new->next = old->next;
241 	new->prev = old->prev;
242 	smp_wmb();
243 	new->next->prev = new;
244 	new->prev->next = new;
245 	old->prev = LIST_POISON2;
246 }
247 
248 /**
249  * list_del_init - deletes entry from list and reinitialize it.
250  * @entry: the element to delete from the list.
251  */
252 static inline void list_del_init(struct list_head *entry)
253 {
254 	__list_del(entry->prev, entry->next);
255 	INIT_LIST_HEAD(entry);
256 }
257 
258 /**
259  * list_move - delete from one list and add as another's head
260  * @list: the entry to move
261  * @head: the head that will precede our entry
262  */
263 static inline void list_move(struct list_head *list, struct list_head *head)
264 {
265 	__list_del(list->prev, list->next);
266 	list_add(list, head);
267 }
268 
269 /**
270  * list_move_tail - delete from one list and add as another's tail
271  * @list: the entry to move
272  * @head: the head that will follow our entry
273  */
274 static inline void list_move_tail(struct list_head *list,
275 				  struct list_head *head)
276 {
277 	__list_del(list->prev, list->next);
278 	list_add_tail(list, head);
279 }
280 
281 /**
282  * list_is_last - tests whether @list is the last entry in list @head
283  * @list: the entry to test
284  * @head: the head of the list
285  */
286 static inline int list_is_last(const struct list_head *list,
287 				const struct list_head *head)
288 {
289 	return list->next == head;
290 }
291 
292 /**
293  * list_empty - tests whether a list is empty
294  * @head: the list to test.
295  */
296 static inline int list_empty(const struct list_head *head)
297 {
298 	return head->next == head;
299 }
300 
301 /**
302  * list_empty_careful - tests whether a list is empty and not being modified
303  * @head: the list to test
304  *
305  * Description:
306  * tests whether a list is empty _and_ checks that no other CPU might be
307  * in the process of modifying either member (next or prev)
308  *
309  * NOTE: using list_empty_careful() without synchronization
310  * can only be safe if the only activity that can happen
311  * to the list entry is list_del_init(). Eg. it cannot be used
312  * if another CPU could re-list_add() it.
313  */
314 static inline int list_empty_careful(const struct list_head *head)
315 {
316 	struct list_head *next = head->next;
317 	return (next == head) && (next == head->prev);
318 }
319 
320 /**
321  * list_is_singular - tests whether a list has just one entry.
322  * @head: the list to test.
323  */
324 static inline int list_is_singular(const struct list_head *head)
325 {
326 	return !list_empty(head) && (head->next == head->prev);
327 }
328 
329 static inline void __list_splice(const struct list_head *list,
330 				 struct list_head *head)
331 {
332 	struct list_head *first = list->next;
333 	struct list_head *last = list->prev;
334 	struct list_head *at = head->next;
335 
336 	first->prev = head;
337 	head->next = first;
338 
339 	last->next = at;
340 	at->prev = last;
341 }
342 
343 /**
344  * list_splice - join two lists
345  * @list: the new list to add.
346  * @head: the place to add it in the first list.
347  */
348 static inline void list_splice(const struct list_head *list,
349 				struct list_head *head)
350 {
351 	if (!list_empty(list))
352 		__list_splice(list, head);
353 }
354 
355 /**
356  * list_splice_init - join two lists and reinitialise the emptied list.
357  * @list: the new list to add.
358  * @head: the place to add it in the first list.
359  *
360  * The list at @list is reinitialised
361  */
362 static inline void list_splice_init(struct list_head *list,
363 				    struct list_head *head)
364 {
365 	if (!list_empty(list)) {
366 		__list_splice(list, head);
367 		INIT_LIST_HEAD(list);
368 	}
369 }
370 
371 /**
372  * list_splice_init_rcu - splice an RCU-protected list into an existing list.
373  * @list:	the RCU-protected list to splice
374  * @head:	the place in the list to splice the first list into
375  * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
376  *
377  * @head can be RCU-read traversed concurrently with this function.
378  *
379  * Note that this function blocks.
380  *
381  * Important note: the caller must take whatever action is necessary to
382  *	prevent any other updates to @head.  In principle, it is possible
383  *	to modify the list as soon as sync() begins execution.
384  *	If this sort of thing becomes necessary, an alternative version
385  *	based on call_rcu() could be created.  But only if -really-
386  *	needed -- there is no shortage of RCU API members.
387  */
388 static inline void list_splice_init_rcu(struct list_head *list,
389 					struct list_head *head,
390 					void (*sync)(void))
391 {
392 	struct list_head *first = list->next;
393 	struct list_head *last = list->prev;
394 	struct list_head *at = head->next;
395 
396 	if (list_empty(head))
397 		return;
398 
399 	/* "first" and "last" tracking list, so initialize it. */
400 
401 	INIT_LIST_HEAD(list);
402 
403 	/*
404 	 * At this point, the list body still points to the source list.
405 	 * Wait for any readers to finish using the list before splicing
406 	 * the list body into the new list.  Any new readers will see
407 	 * an empty list.
408 	 */
409 
410 	sync();
411 
412 	/*
413 	 * Readers are finished with the source list, so perform splice.
414 	 * The order is important if the new list is global and accessible
415 	 * to concurrent RCU readers.  Note that RCU readers are not
416 	 * permitted to traverse the prev pointers without excluding
417 	 * this function.
418 	 */
419 
420 	last->next = at;
421 	smp_wmb();
422 	head->next = first;
423 	first->prev = head;
424 	at->prev = last;
425 }
426 
427 /**
428  * list_entry - get the struct for this entry
429  * @ptr:	the &struct list_head pointer.
430  * @type:	the type of the struct this is embedded in.
431  * @member:	the name of the list_struct within the struct.
432  */
433 #define list_entry(ptr, type, member) \
434 	container_of(ptr, type, member)
435 
436 /**
437  * list_first_entry - get the first element from a list
438  * @ptr:	the list head to take the element from.
439  * @type:	the type of the struct this is embedded in.
440  * @member:	the name of the list_struct within the struct.
441  *
442  * Note, that list is expected to be not empty.
443  */
444 #define list_first_entry(ptr, type, member) \
445 	list_entry((ptr)->next, type, member)
446 
447 /**
448  * list_for_each	-	iterate over a list
449  * @pos:	the &struct list_head to use as a loop cursor.
450  * @head:	the head for your list.
451  */
452 #define list_for_each(pos, head) \
453 	for (pos = (head)->next; prefetch(pos->next), pos != (head); \
454         	pos = pos->next)
455 
456 /**
457  * __list_for_each	-	iterate over a list
458  * @pos:	the &struct list_head to use as a loop cursor.
459  * @head:	the head for your list.
460  *
461  * This variant differs from list_for_each() in that it's the
462  * simplest possible list iteration code, no prefetching is done.
463  * Use this for code that knows the list to be very short (empty
464  * or 1 entry) most of the time.
465  */
466 #define __list_for_each(pos, head) \
467 	for (pos = (head)->next; pos != (head); pos = pos->next)
468 
469 /**
470  * list_for_each_prev	-	iterate over a list backwards
471  * @pos:	the &struct list_head to use as a loop cursor.
472  * @head:	the head for your list.
473  */
474 #define list_for_each_prev(pos, head) \
475 	for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
476         	pos = pos->prev)
477 
478 /**
479  * list_for_each_safe - iterate over a list safe against removal of list entry
480  * @pos:	the &struct list_head to use as a loop cursor.
481  * @n:		another &struct list_head to use as temporary storage
482  * @head:	the head for your list.
483  */
484 #define list_for_each_safe(pos, n, head) \
485 	for (pos = (head)->next, n = pos->next; pos != (head); \
486 		pos = n, n = pos->next)
487 
488 /**
489  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
490  * @pos:	the &struct list_head to use as a loop cursor.
491  * @n:		another &struct list_head to use as temporary storage
492  * @head:	the head for your list.
493  */
494 #define list_for_each_prev_safe(pos, n, head) \
495 	for (pos = (head)->prev, n = pos->prev; \
496 	     prefetch(pos->prev), pos != (head); \
497 	     pos = n, n = pos->prev)
498 
499 /**
500  * list_for_each_entry	-	iterate over list of given type
501  * @pos:	the type * to use as a loop cursor.
502  * @head:	the head for your list.
503  * @member:	the name of the list_struct within the struct.
504  */
505 #define list_for_each_entry(pos, head, member)				\
506 	for (pos = list_entry((head)->next, typeof(*pos), member);	\
507 	     prefetch(pos->member.next), &pos->member != (head); 	\
508 	     pos = list_entry(pos->member.next, typeof(*pos), member))
509 
510 /**
511  * list_for_each_entry_reverse - iterate backwards over list of given type.
512  * @pos:	the type * to use as a loop cursor.
513  * @head:	the head for your list.
514  * @member:	the name of the list_struct within the struct.
515  */
516 #define list_for_each_entry_reverse(pos, head, member)			\
517 	for (pos = list_entry((head)->prev, typeof(*pos), member);	\
518 	     prefetch(pos->member.prev), &pos->member != (head); 	\
519 	     pos = list_entry(pos->member.prev, typeof(*pos), member))
520 
521 /**
522  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
523  * @pos:	the type * to use as a start point
524  * @head:	the head of the list
525  * @member:	the name of the list_struct within the struct.
526  *
527  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
528  */
529 #define list_prepare_entry(pos, head, member) \
530 	((pos) ? : list_entry(head, typeof(*pos), member))
531 
532 /**
533  * list_for_each_entry_continue - continue iteration over list of given type
534  * @pos:	the type * to use as a loop cursor.
535  * @head:	the head for your list.
536  * @member:	the name of the list_struct within the struct.
537  *
538  * Continue to iterate over list of given type, continuing after
539  * the current position.
540  */
541 #define list_for_each_entry_continue(pos, head, member) 		\
542 	for (pos = list_entry(pos->member.next, typeof(*pos), member);	\
543 	     prefetch(pos->member.next), &pos->member != (head);	\
544 	     pos = list_entry(pos->member.next, typeof(*pos), member))
545 
546 /**
547  * list_for_each_entry_continue_reverse - iterate backwards from the given point
548  * @pos:	the type * to use as a loop cursor.
549  * @head:	the head for your list.
550  * @member:	the name of the list_struct within the struct.
551  *
552  * Start to iterate over list of given type backwards, continuing after
553  * the current position.
554  */
555 #define list_for_each_entry_continue_reverse(pos, head, member)		\
556 	for (pos = list_entry(pos->member.prev, typeof(*pos), member);	\
557 	     prefetch(pos->member.prev), &pos->member != (head);	\
558 	     pos = list_entry(pos->member.prev, typeof(*pos), member))
559 
560 /**
561  * list_for_each_entry_from - iterate over list of given type from the current point
562  * @pos:	the type * to use as a loop cursor.
563  * @head:	the head for your list.
564  * @member:	the name of the list_struct within the struct.
565  *
566  * Iterate over list of given type, continuing from current position.
567  */
568 #define list_for_each_entry_from(pos, head, member) 			\
569 	for (; prefetch(pos->member.next), &pos->member != (head);	\
570 	     pos = list_entry(pos->member.next, typeof(*pos), member))
571 
572 /**
573  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
574  * @pos:	the type * to use as a loop cursor.
575  * @n:		another type * to use as temporary storage
576  * @head:	the head for your list.
577  * @member:	the name of the list_struct within the struct.
578  */
579 #define list_for_each_entry_safe(pos, n, head, member)			\
580 	for (pos = list_entry((head)->next, typeof(*pos), member),	\
581 		n = list_entry(pos->member.next, typeof(*pos), member);	\
582 	     &pos->member != (head); 					\
583 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
584 
585 /**
586  * list_for_each_entry_safe_continue
587  * @pos:	the type * to use as a loop cursor.
588  * @n:		another type * to use as temporary storage
589  * @head:	the head for your list.
590  * @member:	the name of the list_struct within the struct.
591  *
592  * Iterate over list of given type, continuing after current point,
593  * safe against removal of list entry.
594  */
595 #define list_for_each_entry_safe_continue(pos, n, head, member) 		\
596 	for (pos = list_entry(pos->member.next, typeof(*pos), member), 		\
597 		n = list_entry(pos->member.next, typeof(*pos), member);		\
598 	     &pos->member != (head);						\
599 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
600 
601 /**
602  * list_for_each_entry_safe_from
603  * @pos:	the type * to use as a loop cursor.
604  * @n:		another type * to use as temporary storage
605  * @head:	the head for your list.
606  * @member:	the name of the list_struct within the struct.
607  *
608  * Iterate over list of given type from current point, safe against
609  * removal of list entry.
610  */
611 #define list_for_each_entry_safe_from(pos, n, head, member) 			\
612 	for (n = list_entry(pos->member.next, typeof(*pos), member);		\
613 	     &pos->member != (head);						\
614 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
615 
616 /**
617  * list_for_each_entry_safe_reverse
618  * @pos:	the type * to use as a loop cursor.
619  * @n:		another type * to use as temporary storage
620  * @head:	the head for your list.
621  * @member:	the name of the list_struct within the struct.
622  *
623  * Iterate backwards over list of given type, safe against removal
624  * of list entry.
625  */
626 #define list_for_each_entry_safe_reverse(pos, n, head, member)		\
627 	for (pos = list_entry((head)->prev, typeof(*pos), member),	\
628 		n = list_entry(pos->member.prev, typeof(*pos), member);	\
629 	     &pos->member != (head); 					\
630 	     pos = n, n = list_entry(n->member.prev, typeof(*n), member))
631 
632 /**
633  * list_for_each_rcu	-	iterate over an rcu-protected list
634  * @pos:	the &struct list_head to use as a loop cursor.
635  * @head:	the head for your list.
636  *
637  * This list-traversal primitive may safely run concurrently with
638  * the _rcu list-mutation primitives such as list_add_rcu()
639  * as long as the traversal is guarded by rcu_read_lock().
640  */
641 #define list_for_each_rcu(pos, head) \
642 	for (pos = rcu_dereference((head)->next); \
643 		prefetch(pos->next), pos != (head); \
644 		pos = rcu_dereference(pos->next))
645 
646 #define __list_for_each_rcu(pos, head) \
647 	for (pos = rcu_dereference((head)->next); \
648 		pos != (head); \
649 		pos = rcu_dereference(pos->next))
650 
651 /**
652  * list_for_each_entry_rcu	-	iterate over rcu list of given type
653  * @pos:	the type * to use as a loop cursor.
654  * @head:	the head for your list.
655  * @member:	the name of the list_struct within the struct.
656  *
657  * This list-traversal primitive may safely run concurrently with
658  * the _rcu list-mutation primitives such as list_add_rcu()
659  * as long as the traversal is guarded by rcu_read_lock().
660  */
661 #define list_for_each_entry_rcu(pos, head, member) \
662 	for (pos = list_entry(rcu_dereference((head)->next), typeof(*pos), member); \
663 		prefetch(pos->member.next), &pos->member != (head); \
664 		pos = list_entry(rcu_dereference(pos->member.next), typeof(*pos), member))
665 
666 
667 /**
668  * list_for_each_continue_rcu
669  * @pos:	the &struct list_head to use as a loop cursor.
670  * @head:	the head for your list.
671  *
672  * Iterate over an rcu-protected list, continuing after current point.
673  *
674  * This list-traversal primitive may safely run concurrently with
675  * the _rcu list-mutation primitives such as list_add_rcu()
676  * as long as the traversal is guarded by rcu_read_lock().
677  */
678 #define list_for_each_continue_rcu(pos, head) \
679 	for ((pos) = rcu_dereference((pos)->next); \
680 		prefetch((pos)->next), (pos) != (head); \
681 		(pos) = rcu_dereference((pos)->next))
682 
683 /*
684  * Double linked lists with a single pointer list head.
685  * Mostly useful for hash tables where the two pointer list head is
686  * too wasteful.
687  * You lose the ability to access the tail in O(1).
688  */
689 
690 struct hlist_head {
691 	struct hlist_node *first;
692 };
693 
694 struct hlist_node {
695 	struct hlist_node *next, **pprev;
696 };
697 
698 #define HLIST_HEAD_INIT { .first = NULL }
699 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
700 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
701 static inline void INIT_HLIST_NODE(struct hlist_node *h)
702 {
703 	h->next = NULL;
704 	h->pprev = NULL;
705 }
706 
707 static inline int hlist_unhashed(const struct hlist_node *h)
708 {
709 	return !h->pprev;
710 }
711 
712 static inline int hlist_empty(const struct hlist_head *h)
713 {
714 	return !h->first;
715 }
716 
717 static inline void __hlist_del(struct hlist_node *n)
718 {
719 	struct hlist_node *next = n->next;
720 	struct hlist_node **pprev = n->pprev;
721 	*pprev = next;
722 	if (next)
723 		next->pprev = pprev;
724 }
725 
726 static inline void hlist_del(struct hlist_node *n)
727 {
728 	__hlist_del(n);
729 	n->next = LIST_POISON1;
730 	n->pprev = LIST_POISON2;
731 }
732 
733 /**
734  * hlist_del_rcu - deletes entry from hash list without re-initialization
735  * @n: the element to delete from the hash list.
736  *
737  * Note: list_unhashed() on entry does not return true after this,
738  * the entry is in an undefined state. It is useful for RCU based
739  * lockfree traversal.
740  *
741  * In particular, it means that we can not poison the forward
742  * pointers that may still be used for walking the hash list.
743  *
744  * The caller must take whatever precautions are necessary
745  * (such as holding appropriate locks) to avoid racing
746  * with another list-mutation primitive, such as hlist_add_head_rcu()
747  * or hlist_del_rcu(), running on this same list.
748  * However, it is perfectly legal to run concurrently with
749  * the _rcu list-traversal primitives, such as
750  * hlist_for_each_entry().
751  */
752 static inline void hlist_del_rcu(struct hlist_node *n)
753 {
754 	__hlist_del(n);
755 	n->pprev = LIST_POISON2;
756 }
757 
758 static inline void hlist_del_init(struct hlist_node *n)
759 {
760 	if (!hlist_unhashed(n)) {
761 		__hlist_del(n);
762 		INIT_HLIST_NODE(n);
763 	}
764 }
765 
766 /**
767  * hlist_replace_rcu - replace old entry by new one
768  * @old : the element to be replaced
769  * @new : the new element to insert
770  *
771  * The @old entry will be replaced with the @new entry atomically.
772  */
773 static inline void hlist_replace_rcu(struct hlist_node *old,
774 					struct hlist_node *new)
775 {
776 	struct hlist_node *next = old->next;
777 
778 	new->next = next;
779 	new->pprev = old->pprev;
780 	smp_wmb();
781 	if (next)
782 		new->next->pprev = &new->next;
783 	*new->pprev = new;
784 	old->pprev = LIST_POISON2;
785 }
786 
787 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
788 {
789 	struct hlist_node *first = h->first;
790 	n->next = first;
791 	if (first)
792 		first->pprev = &n->next;
793 	h->first = n;
794 	n->pprev = &h->first;
795 }
796 
797 
798 /**
799  * hlist_add_head_rcu
800  * @n: the element to add to the hash list.
801  * @h: the list to add to.
802  *
803  * Description:
804  * Adds the specified element to the specified hlist,
805  * while permitting racing traversals.
806  *
807  * The caller must take whatever precautions are necessary
808  * (such as holding appropriate locks) to avoid racing
809  * with another list-mutation primitive, such as hlist_add_head_rcu()
810  * or hlist_del_rcu(), running on this same list.
811  * However, it is perfectly legal to run concurrently with
812  * the _rcu list-traversal primitives, such as
813  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
814  * problems on Alpha CPUs.  Regardless of the type of CPU, the
815  * list-traversal primitive must be guarded by rcu_read_lock().
816  */
817 static inline void hlist_add_head_rcu(struct hlist_node *n,
818 					struct hlist_head *h)
819 {
820 	struct hlist_node *first = h->first;
821 	n->next = first;
822 	n->pprev = &h->first;
823 	smp_wmb();
824 	if (first)
825 		first->pprev = &n->next;
826 	h->first = n;
827 }
828 
829 /* next must be != NULL */
830 static inline void hlist_add_before(struct hlist_node *n,
831 					struct hlist_node *next)
832 {
833 	n->pprev = next->pprev;
834 	n->next = next;
835 	next->pprev = &n->next;
836 	*(n->pprev) = n;
837 }
838 
839 static inline void hlist_add_after(struct hlist_node *n,
840 					struct hlist_node *next)
841 {
842 	next->next = n->next;
843 	n->next = next;
844 	next->pprev = &n->next;
845 
846 	if(next->next)
847 		next->next->pprev  = &next->next;
848 }
849 
850 /**
851  * hlist_add_before_rcu
852  * @n: the new element to add to the hash list.
853  * @next: the existing element to add the new element before.
854  *
855  * Description:
856  * Adds the specified element to the specified hlist
857  * before the specified node while permitting racing traversals.
858  *
859  * The caller must take whatever precautions are necessary
860  * (such as holding appropriate locks) to avoid racing
861  * with another list-mutation primitive, such as hlist_add_head_rcu()
862  * or hlist_del_rcu(), running on this same list.
863  * However, it is perfectly legal to run concurrently with
864  * the _rcu list-traversal primitives, such as
865  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
866  * problems on Alpha CPUs.
867  */
868 static inline void hlist_add_before_rcu(struct hlist_node *n,
869 					struct hlist_node *next)
870 {
871 	n->pprev = next->pprev;
872 	n->next = next;
873 	smp_wmb();
874 	next->pprev = &n->next;
875 	*(n->pprev) = n;
876 }
877 
878 /**
879  * hlist_add_after_rcu
880  * @prev: the existing element to add the new element after.
881  * @n: the new element to add to the hash list.
882  *
883  * Description:
884  * Adds the specified element to the specified hlist
885  * after the specified node while permitting racing traversals.
886  *
887  * The caller must take whatever precautions are necessary
888  * (such as holding appropriate locks) to avoid racing
889  * with another list-mutation primitive, such as hlist_add_head_rcu()
890  * or hlist_del_rcu(), running on this same list.
891  * However, it is perfectly legal to run concurrently with
892  * the _rcu list-traversal primitives, such as
893  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
894  * problems on Alpha CPUs.
895  */
896 static inline void hlist_add_after_rcu(struct hlist_node *prev,
897 				       struct hlist_node *n)
898 {
899 	n->next = prev->next;
900 	n->pprev = &prev->next;
901 	smp_wmb();
902 	prev->next = n;
903 	if (n->next)
904 		n->next->pprev = &n->next;
905 }
906 
907 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
908 
909 #define hlist_for_each(pos, head) \
910 	for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
911 	     pos = pos->next)
912 
913 #define hlist_for_each_safe(pos, n, head) \
914 	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
915 	     pos = n)
916 
917 /**
918  * hlist_for_each_entry	- iterate over list of given type
919  * @tpos:	the type * to use as a loop cursor.
920  * @pos:	the &struct hlist_node to use as a loop cursor.
921  * @head:	the head for your list.
922  * @member:	the name of the hlist_node within the struct.
923  */
924 #define hlist_for_each_entry(tpos, pos, head, member)			 \
925 	for (pos = (head)->first;					 \
926 	     pos && ({ prefetch(pos->next); 1;}) &&			 \
927 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
928 	     pos = pos->next)
929 
930 /**
931  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
932  * @tpos:	the type * to use as a loop cursor.
933  * @pos:	the &struct hlist_node to use as a loop cursor.
934  * @member:	the name of the hlist_node within the struct.
935  */
936 #define hlist_for_each_entry_continue(tpos, pos, member)		 \
937 	for (pos = (pos)->next;						 \
938 	     pos && ({ prefetch(pos->next); 1;}) &&			 \
939 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
940 	     pos = pos->next)
941 
942 /**
943  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
944  * @tpos:	the type * to use as a loop cursor.
945  * @pos:	the &struct hlist_node to use as a loop cursor.
946  * @member:	the name of the hlist_node within the struct.
947  */
948 #define hlist_for_each_entry_from(tpos, pos, member)			 \
949 	for (; pos && ({ prefetch(pos->next); 1;}) &&			 \
950 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
951 	     pos = pos->next)
952 
953 /**
954  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
955  * @tpos:	the type * to use as a loop cursor.
956  * @pos:	the &struct hlist_node to use as a loop cursor.
957  * @n:		another &struct hlist_node to use as temporary storage
958  * @head:	the head for your list.
959  * @member:	the name of the hlist_node within the struct.
960  */
961 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) 		 \
962 	for (pos = (head)->first;					 \
963 	     pos && ({ n = pos->next; 1; }) && 				 \
964 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
965 	     pos = n)
966 
967 /**
968  * hlist_for_each_entry_rcu - iterate over rcu list of given type
969  * @tpos:	the type * to use as a loop cursor.
970  * @pos:	the &struct hlist_node to use as a loop cursor.
971  * @head:	the head for your list.
972  * @member:	the name of the hlist_node within the struct.
973  *
974  * This list-traversal primitive may safely run concurrently with
975  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
976  * as long as the traversal is guarded by rcu_read_lock().
977  */
978 #define hlist_for_each_entry_rcu(tpos, pos, head, member)		 \
979 	for (pos = rcu_dereference((head)->first);			 \
980 	        pos && ({ prefetch(pos->next); 1;}) &&			 \
981 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
982 	     pos = rcu_dereference(pos->next))
983 
984 #endif
985