1 #ifndef _LINUX_LIST_H 2 #define _LINUX_LIST_H 3 4 #ifdef __KERNEL__ 5 6 #include <linux/stddef.h> 7 #include <linux/poison.h> 8 #include <linux/prefetch.h> 9 #include <asm/system.h> 10 11 /* 12 * Simple doubly linked list implementation. 13 * 14 * Some of the internal functions ("__xxx") are useful when 15 * manipulating whole lists rather than single entries, as 16 * sometimes we already know the next/prev entries and we can 17 * generate better code by using them directly rather than 18 * using the generic single-entry routines. 19 */ 20 21 struct list_head { 22 struct list_head *next, *prev; 23 }; 24 25 #define LIST_HEAD_INIT(name) { &(name), &(name) } 26 27 #define LIST_HEAD(name) \ 28 struct list_head name = LIST_HEAD_INIT(name) 29 30 static inline void INIT_LIST_HEAD(struct list_head *list) 31 { 32 list->next = list; 33 list->prev = list; 34 } 35 36 /* 37 * Insert a new entry between two known consecutive entries. 38 * 39 * This is only for internal list manipulation where we know 40 * the prev/next entries already! 41 */ 42 #ifndef CONFIG_DEBUG_LIST 43 static inline void __list_add(struct list_head *new, 44 struct list_head *prev, 45 struct list_head *next) 46 { 47 next->prev = new; 48 new->next = next; 49 new->prev = prev; 50 prev->next = new; 51 } 52 #else 53 extern void __list_add(struct list_head *new, 54 struct list_head *prev, 55 struct list_head *next); 56 #endif 57 58 /** 59 * list_add - add a new entry 60 * @new: new entry to be added 61 * @head: list head to add it after 62 * 63 * Insert a new entry after the specified head. 64 * This is good for implementing stacks. 65 */ 66 #ifndef CONFIG_DEBUG_LIST 67 static inline void list_add(struct list_head *new, struct list_head *head) 68 { 69 __list_add(new, head, head->next); 70 } 71 #else 72 extern void list_add(struct list_head *new, struct list_head *head); 73 #endif 74 75 76 /** 77 * list_add_tail - add a new entry 78 * @new: new entry to be added 79 * @head: list head to add it before 80 * 81 * Insert a new entry before the specified head. 82 * This is useful for implementing queues. 83 */ 84 static inline void list_add_tail(struct list_head *new, struct list_head *head) 85 { 86 __list_add(new, head->prev, head); 87 } 88 89 /* 90 * Insert a new entry between two known consecutive entries. 91 * 92 * This is only for internal list manipulation where we know 93 * the prev/next entries already! 94 */ 95 static inline void __list_add_rcu(struct list_head * new, 96 struct list_head * prev, struct list_head * next) 97 { 98 new->next = next; 99 new->prev = prev; 100 smp_wmb(); 101 next->prev = new; 102 prev->next = new; 103 } 104 105 /** 106 * list_add_rcu - add a new entry to rcu-protected list 107 * @new: new entry to be added 108 * @head: list head to add it after 109 * 110 * Insert a new entry after the specified head. 111 * This is good for implementing stacks. 112 * 113 * The caller must take whatever precautions are necessary 114 * (such as holding appropriate locks) to avoid racing 115 * with another list-mutation primitive, such as list_add_rcu() 116 * or list_del_rcu(), running on this same list. 117 * However, it is perfectly legal to run concurrently with 118 * the _rcu list-traversal primitives, such as 119 * list_for_each_entry_rcu(). 120 */ 121 static inline void list_add_rcu(struct list_head *new, struct list_head *head) 122 { 123 __list_add_rcu(new, head, head->next); 124 } 125 126 /** 127 * list_add_tail_rcu - add a new entry to rcu-protected list 128 * @new: new entry to be added 129 * @head: list head to add it before 130 * 131 * Insert a new entry before the specified head. 132 * This is useful for implementing queues. 133 * 134 * The caller must take whatever precautions are necessary 135 * (such as holding appropriate locks) to avoid racing 136 * with another list-mutation primitive, such as list_add_tail_rcu() 137 * or list_del_rcu(), running on this same list. 138 * However, it is perfectly legal to run concurrently with 139 * the _rcu list-traversal primitives, such as 140 * list_for_each_entry_rcu(). 141 */ 142 static inline void list_add_tail_rcu(struct list_head *new, 143 struct list_head *head) 144 { 145 __list_add_rcu(new, head->prev, head); 146 } 147 148 /* 149 * Delete a list entry by making the prev/next entries 150 * point to each other. 151 * 152 * This is only for internal list manipulation where we know 153 * the prev/next entries already! 154 */ 155 static inline void __list_del(struct list_head * prev, struct list_head * next) 156 { 157 next->prev = prev; 158 prev->next = next; 159 } 160 161 /** 162 * list_del - deletes entry from list. 163 * @entry: the element to delete from the list. 164 * Note: list_empty() on entry does not return true after this, the entry is 165 * in an undefined state. 166 */ 167 #ifndef CONFIG_DEBUG_LIST 168 static inline void list_del(struct list_head *entry) 169 { 170 __list_del(entry->prev, entry->next); 171 entry->next = LIST_POISON1; 172 entry->prev = LIST_POISON2; 173 } 174 #else 175 extern void list_del(struct list_head *entry); 176 #endif 177 178 /** 179 * list_del_rcu - deletes entry from list without re-initialization 180 * @entry: the element to delete from the list. 181 * 182 * Note: list_empty() on entry does not return true after this, 183 * the entry is in an undefined state. It is useful for RCU based 184 * lockfree traversal. 185 * 186 * In particular, it means that we can not poison the forward 187 * pointers that may still be used for walking the list. 188 * 189 * The caller must take whatever precautions are necessary 190 * (such as holding appropriate locks) to avoid racing 191 * with another list-mutation primitive, such as list_del_rcu() 192 * or list_add_rcu(), running on this same list. 193 * However, it is perfectly legal to run concurrently with 194 * the _rcu list-traversal primitives, such as 195 * list_for_each_entry_rcu(). 196 * 197 * Note that the caller is not permitted to immediately free 198 * the newly deleted entry. Instead, either synchronize_rcu() 199 * or call_rcu() must be used to defer freeing until an RCU 200 * grace period has elapsed. 201 */ 202 static inline void list_del_rcu(struct list_head *entry) 203 { 204 __list_del(entry->prev, entry->next); 205 entry->prev = LIST_POISON2; 206 } 207 208 /** 209 * list_replace - replace old entry by new one 210 * @old : the element to be replaced 211 * @new : the new element to insert 212 * 213 * If @old was empty, it will be overwritten. 214 */ 215 static inline void list_replace(struct list_head *old, 216 struct list_head *new) 217 { 218 new->next = old->next; 219 new->next->prev = new; 220 new->prev = old->prev; 221 new->prev->next = new; 222 } 223 224 static inline void list_replace_init(struct list_head *old, 225 struct list_head *new) 226 { 227 list_replace(old, new); 228 INIT_LIST_HEAD(old); 229 } 230 231 /** 232 * list_replace_rcu - replace old entry by new one 233 * @old : the element to be replaced 234 * @new : the new element to insert 235 * 236 * The @old entry will be replaced with the @new entry atomically. 237 * Note: @old should not be empty. 238 */ 239 static inline void list_replace_rcu(struct list_head *old, 240 struct list_head *new) 241 { 242 new->next = old->next; 243 new->prev = old->prev; 244 smp_wmb(); 245 new->next->prev = new; 246 new->prev->next = new; 247 old->prev = LIST_POISON2; 248 } 249 250 /** 251 * list_del_init - deletes entry from list and reinitialize it. 252 * @entry: the element to delete from the list. 253 */ 254 static inline void list_del_init(struct list_head *entry) 255 { 256 __list_del(entry->prev, entry->next); 257 INIT_LIST_HEAD(entry); 258 } 259 260 /** 261 * list_move - delete from one list and add as another's head 262 * @list: the entry to move 263 * @head: the head that will precede our entry 264 */ 265 static inline void list_move(struct list_head *list, struct list_head *head) 266 { 267 __list_del(list->prev, list->next); 268 list_add(list, head); 269 } 270 271 /** 272 * list_move_tail - delete from one list and add as another's tail 273 * @list: the entry to move 274 * @head: the head that will follow our entry 275 */ 276 static inline void list_move_tail(struct list_head *list, 277 struct list_head *head) 278 { 279 __list_del(list->prev, list->next); 280 list_add_tail(list, head); 281 } 282 283 /** 284 * list_is_last - tests whether @list is the last entry in list @head 285 * @list: the entry to test 286 * @head: the head of the list 287 */ 288 static inline int list_is_last(const struct list_head *list, 289 const struct list_head *head) 290 { 291 return list->next == head; 292 } 293 294 /** 295 * list_empty - tests whether a list is empty 296 * @head: the list to test. 297 */ 298 static inline int list_empty(const struct list_head *head) 299 { 300 return head->next == head; 301 } 302 303 /** 304 * list_empty_careful - tests whether a list is empty and not being modified 305 * @head: the list to test 306 * 307 * Description: 308 * tests whether a list is empty _and_ checks that no other CPU might be 309 * in the process of modifying either member (next or prev) 310 * 311 * NOTE: using list_empty_careful() without synchronization 312 * can only be safe if the only activity that can happen 313 * to the list entry is list_del_init(). Eg. it cannot be used 314 * if another CPU could re-list_add() it. 315 */ 316 static inline int list_empty_careful(const struct list_head *head) 317 { 318 struct list_head *next = head->next; 319 return (next == head) && (next == head->prev); 320 } 321 322 static inline void __list_splice(struct list_head *list, 323 struct list_head *head) 324 { 325 struct list_head *first = list->next; 326 struct list_head *last = list->prev; 327 struct list_head *at = head->next; 328 329 first->prev = head; 330 head->next = first; 331 332 last->next = at; 333 at->prev = last; 334 } 335 336 /** 337 * list_splice - join two lists 338 * @list: the new list to add. 339 * @head: the place to add it in the first list. 340 */ 341 static inline void list_splice(struct list_head *list, struct list_head *head) 342 { 343 if (!list_empty(list)) 344 __list_splice(list, head); 345 } 346 347 /** 348 * list_splice_init - join two lists and reinitialise the emptied list. 349 * @list: the new list to add. 350 * @head: the place to add it in the first list. 351 * 352 * The list at @list is reinitialised 353 */ 354 static inline void list_splice_init(struct list_head *list, 355 struct list_head *head) 356 { 357 if (!list_empty(list)) { 358 __list_splice(list, head); 359 INIT_LIST_HEAD(list); 360 } 361 } 362 363 /** 364 * list_splice_init_rcu - splice an RCU-protected list into an existing list. 365 * @list: the RCU-protected list to splice 366 * @head: the place in the list to splice the first list into 367 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ... 368 * 369 * @head can be RCU-read traversed concurrently with this function. 370 * 371 * Note that this function blocks. 372 * 373 * Important note: the caller must take whatever action is necessary to 374 * prevent any other updates to @head. In principle, it is possible 375 * to modify the list as soon as sync() begins execution. 376 * If this sort of thing becomes necessary, an alternative version 377 * based on call_rcu() could be created. But only if -really- 378 * needed -- there is no shortage of RCU API members. 379 */ 380 static inline void list_splice_init_rcu(struct list_head *list, 381 struct list_head *head, 382 void (*sync)(void)) 383 { 384 struct list_head *first = list->next; 385 struct list_head *last = list->prev; 386 struct list_head *at = head->next; 387 388 if (list_empty(head)) 389 return; 390 391 /* "first" and "last" tracking list, so initialize it. */ 392 393 INIT_LIST_HEAD(list); 394 395 /* 396 * At this point, the list body still points to the source list. 397 * Wait for any readers to finish using the list before splicing 398 * the list body into the new list. Any new readers will see 399 * an empty list. 400 */ 401 402 sync(); 403 404 /* 405 * Readers are finished with the source list, so perform splice. 406 * The order is important if the new list is global and accessible 407 * to concurrent RCU readers. Note that RCU readers are not 408 * permitted to traverse the prev pointers without excluding 409 * this function. 410 */ 411 412 last->next = at; 413 smp_wmb(); 414 head->next = first; 415 first->prev = head; 416 at->prev = last; 417 } 418 419 /** 420 * list_entry - get the struct for this entry 421 * @ptr: the &struct list_head pointer. 422 * @type: the type of the struct this is embedded in. 423 * @member: the name of the list_struct within the struct. 424 */ 425 #define list_entry(ptr, type, member) \ 426 container_of(ptr, type, member) 427 428 /** 429 * list_first_entry - get the first element from a list 430 * @ptr: the list head to take the element from. 431 * @type: the type of the struct this is embedded in. 432 * @member: the name of the list_struct within the struct. 433 * 434 * Note, that list is expected to be not empty. 435 */ 436 #define list_first_entry(ptr, type, member) \ 437 list_entry((ptr)->next, type, member) 438 439 /** 440 * list_for_each - iterate over a list 441 * @pos: the &struct list_head to use as a loop cursor. 442 * @head: the head for your list. 443 */ 444 #define list_for_each(pos, head) \ 445 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 446 pos = pos->next) 447 448 /** 449 * __list_for_each - iterate over a list 450 * @pos: the &struct list_head to use as a loop cursor. 451 * @head: the head for your list. 452 * 453 * This variant differs from list_for_each() in that it's the 454 * simplest possible list iteration code, no prefetching is done. 455 * Use this for code that knows the list to be very short (empty 456 * or 1 entry) most of the time. 457 */ 458 #define __list_for_each(pos, head) \ 459 for (pos = (head)->next; pos != (head); pos = pos->next) 460 461 /** 462 * list_for_each_prev - iterate over a list backwards 463 * @pos: the &struct list_head to use as a loop cursor. 464 * @head: the head for your list. 465 */ 466 #define list_for_each_prev(pos, head) \ 467 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 468 pos = pos->prev) 469 470 /** 471 * list_for_each_safe - iterate over a list safe against removal of list entry 472 * @pos: the &struct list_head to use as a loop cursor. 473 * @n: another &struct list_head to use as temporary storage 474 * @head: the head for your list. 475 */ 476 #define list_for_each_safe(pos, n, head) \ 477 for (pos = (head)->next, n = pos->next; pos != (head); \ 478 pos = n, n = pos->next) 479 480 /** 481 * list_for_each_entry - iterate over list of given type 482 * @pos: the type * to use as a loop cursor. 483 * @head: the head for your list. 484 * @member: the name of the list_struct within the struct. 485 */ 486 #define list_for_each_entry(pos, head, member) \ 487 for (pos = list_entry((head)->next, typeof(*pos), member); \ 488 prefetch(pos->member.next), &pos->member != (head); \ 489 pos = list_entry(pos->member.next, typeof(*pos), member)) 490 491 /** 492 * list_for_each_entry_reverse - iterate backwards over list of given type. 493 * @pos: the type * to use as a loop cursor. 494 * @head: the head for your list. 495 * @member: the name of the list_struct within the struct. 496 */ 497 #define list_for_each_entry_reverse(pos, head, member) \ 498 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 499 prefetch(pos->member.prev), &pos->member != (head); \ 500 pos = list_entry(pos->member.prev, typeof(*pos), member)) 501 502 /** 503 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 504 * @pos: the type * to use as a start point 505 * @head: the head of the list 506 * @member: the name of the list_struct within the struct. 507 * 508 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 509 */ 510 #define list_prepare_entry(pos, head, member) \ 511 ((pos) ? : list_entry(head, typeof(*pos), member)) 512 513 /** 514 * list_for_each_entry_continue - continue iteration over list of given type 515 * @pos: the type * to use as a loop cursor. 516 * @head: the head for your list. 517 * @member: the name of the list_struct within the struct. 518 * 519 * Continue to iterate over list of given type, continuing after 520 * the current position. 521 */ 522 #define list_for_each_entry_continue(pos, head, member) \ 523 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 524 prefetch(pos->member.next), &pos->member != (head); \ 525 pos = list_entry(pos->member.next, typeof(*pos), member)) 526 527 /** 528 * list_for_each_entry_continue_reverse - iterate backwards from the given point 529 * @pos: the type * to use as a loop cursor. 530 * @head: the head for your list. 531 * @member: the name of the list_struct within the struct. 532 * 533 * Start to iterate over list of given type backwards, continuing after 534 * the current position. 535 */ 536 #define list_for_each_entry_continue_reverse(pos, head, member) \ 537 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \ 538 prefetch(pos->member.prev), &pos->member != (head); \ 539 pos = list_entry(pos->member.prev, typeof(*pos), member)) 540 541 /** 542 * list_for_each_entry_from - iterate over list of given type from the current point 543 * @pos: the type * to use as a loop cursor. 544 * @head: the head for your list. 545 * @member: the name of the list_struct within the struct. 546 * 547 * Iterate over list of given type, continuing from current position. 548 */ 549 #define list_for_each_entry_from(pos, head, member) \ 550 for (; prefetch(pos->member.next), &pos->member != (head); \ 551 pos = list_entry(pos->member.next, typeof(*pos), member)) 552 553 /** 554 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 555 * @pos: the type * to use as a loop cursor. 556 * @n: another type * to use as temporary storage 557 * @head: the head for your list. 558 * @member: the name of the list_struct within the struct. 559 */ 560 #define list_for_each_entry_safe(pos, n, head, member) \ 561 for (pos = list_entry((head)->next, typeof(*pos), member), \ 562 n = list_entry(pos->member.next, typeof(*pos), member); \ 563 &pos->member != (head); \ 564 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 565 566 /** 567 * list_for_each_entry_safe_continue 568 * @pos: the type * to use as a loop cursor. 569 * @n: another type * to use as temporary storage 570 * @head: the head for your list. 571 * @member: the name of the list_struct within the struct. 572 * 573 * Iterate over list of given type, continuing after current point, 574 * safe against removal of list entry. 575 */ 576 #define list_for_each_entry_safe_continue(pos, n, head, member) \ 577 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 578 n = list_entry(pos->member.next, typeof(*pos), member); \ 579 &pos->member != (head); \ 580 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 581 582 /** 583 * list_for_each_entry_safe_from 584 * @pos: the type * to use as a loop cursor. 585 * @n: another type * to use as temporary storage 586 * @head: the head for your list. 587 * @member: the name of the list_struct within the struct. 588 * 589 * Iterate over list of given type from current point, safe against 590 * removal of list entry. 591 */ 592 #define list_for_each_entry_safe_from(pos, n, head, member) \ 593 for (n = list_entry(pos->member.next, typeof(*pos), member); \ 594 &pos->member != (head); \ 595 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 596 597 /** 598 * list_for_each_entry_safe_reverse 599 * @pos: the type * to use as a loop cursor. 600 * @n: another type * to use as temporary storage 601 * @head: the head for your list. 602 * @member: the name of the list_struct within the struct. 603 * 604 * Iterate backwards over list of given type, safe against removal 605 * of list entry. 606 */ 607 #define list_for_each_entry_safe_reverse(pos, n, head, member) \ 608 for (pos = list_entry((head)->prev, typeof(*pos), member), \ 609 n = list_entry(pos->member.prev, typeof(*pos), member); \ 610 &pos->member != (head); \ 611 pos = n, n = list_entry(n->member.prev, typeof(*n), member)) 612 613 /** 614 * list_for_each_rcu - iterate over an rcu-protected list 615 * @pos: the &struct list_head to use as a loop cursor. 616 * @head: the head for your list. 617 * 618 * This list-traversal primitive may safely run concurrently with 619 * the _rcu list-mutation primitives such as list_add_rcu() 620 * as long as the traversal is guarded by rcu_read_lock(). 621 */ 622 #define list_for_each_rcu(pos, head) \ 623 for (pos = (head)->next; \ 624 prefetch(rcu_dereference(pos)->next), pos != (head); \ 625 pos = pos->next) 626 627 #define __list_for_each_rcu(pos, head) \ 628 for (pos = (head)->next; \ 629 rcu_dereference(pos) != (head); \ 630 pos = pos->next) 631 632 /** 633 * list_for_each_safe_rcu 634 * @pos: the &struct list_head to use as a loop cursor. 635 * @n: another &struct list_head to use as temporary storage 636 * @head: the head for your list. 637 * 638 * Iterate over an rcu-protected list, safe against removal of list entry. 639 * 640 * This list-traversal primitive may safely run concurrently with 641 * the _rcu list-mutation primitives such as list_add_rcu() 642 * as long as the traversal is guarded by rcu_read_lock(). 643 */ 644 #define list_for_each_safe_rcu(pos, n, head) \ 645 for (pos = (head)->next; \ 646 n = rcu_dereference(pos)->next, pos != (head); \ 647 pos = n) 648 649 /** 650 * list_for_each_entry_rcu - iterate over rcu list of given type 651 * @pos: the type * to use as a loop cursor. 652 * @head: the head for your list. 653 * @member: the name of the list_struct within the struct. 654 * 655 * This list-traversal primitive may safely run concurrently with 656 * the _rcu list-mutation primitives such as list_add_rcu() 657 * as long as the traversal is guarded by rcu_read_lock(). 658 */ 659 #define list_for_each_entry_rcu(pos, head, member) \ 660 for (pos = list_entry((head)->next, typeof(*pos), member); \ 661 prefetch(rcu_dereference(pos)->member.next), \ 662 &pos->member != (head); \ 663 pos = list_entry(pos->member.next, typeof(*pos), member)) 664 665 666 /** 667 * list_for_each_continue_rcu 668 * @pos: the &struct list_head to use as a loop cursor. 669 * @head: the head for your list. 670 * 671 * Iterate over an rcu-protected list, continuing after current point. 672 * 673 * This list-traversal primitive may safely run concurrently with 674 * the _rcu list-mutation primitives such as list_add_rcu() 675 * as long as the traversal is guarded by rcu_read_lock(). 676 */ 677 #define list_for_each_continue_rcu(pos, head) \ 678 for ((pos) = (pos)->next; \ 679 prefetch(rcu_dereference((pos))->next), (pos) != (head); \ 680 (pos) = (pos)->next) 681 682 /* 683 * Double linked lists with a single pointer list head. 684 * Mostly useful for hash tables where the two pointer list head is 685 * too wasteful. 686 * You lose the ability to access the tail in O(1). 687 */ 688 689 struct hlist_head { 690 struct hlist_node *first; 691 }; 692 693 struct hlist_node { 694 struct hlist_node *next, **pprev; 695 }; 696 697 #define HLIST_HEAD_INIT { .first = NULL } 698 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 699 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 700 static inline void INIT_HLIST_NODE(struct hlist_node *h) 701 { 702 h->next = NULL; 703 h->pprev = NULL; 704 } 705 706 static inline int hlist_unhashed(const struct hlist_node *h) 707 { 708 return !h->pprev; 709 } 710 711 static inline int hlist_empty(const struct hlist_head *h) 712 { 713 return !h->first; 714 } 715 716 static inline void __hlist_del(struct hlist_node *n) 717 { 718 struct hlist_node *next = n->next; 719 struct hlist_node **pprev = n->pprev; 720 *pprev = next; 721 if (next) 722 next->pprev = pprev; 723 } 724 725 static inline void hlist_del(struct hlist_node *n) 726 { 727 __hlist_del(n); 728 n->next = LIST_POISON1; 729 n->pprev = LIST_POISON2; 730 } 731 732 /** 733 * hlist_del_rcu - deletes entry from hash list without re-initialization 734 * @n: the element to delete from the hash list. 735 * 736 * Note: list_unhashed() on entry does not return true after this, 737 * the entry is in an undefined state. It is useful for RCU based 738 * lockfree traversal. 739 * 740 * In particular, it means that we can not poison the forward 741 * pointers that may still be used for walking the hash list. 742 * 743 * The caller must take whatever precautions are necessary 744 * (such as holding appropriate locks) to avoid racing 745 * with another list-mutation primitive, such as hlist_add_head_rcu() 746 * or hlist_del_rcu(), running on this same list. 747 * However, it is perfectly legal to run concurrently with 748 * the _rcu list-traversal primitives, such as 749 * hlist_for_each_entry(). 750 */ 751 static inline void hlist_del_rcu(struct hlist_node *n) 752 { 753 __hlist_del(n); 754 n->pprev = LIST_POISON2; 755 } 756 757 static inline void hlist_del_init(struct hlist_node *n) 758 { 759 if (!hlist_unhashed(n)) { 760 __hlist_del(n); 761 INIT_HLIST_NODE(n); 762 } 763 } 764 765 /** 766 * hlist_replace_rcu - replace old entry by new one 767 * @old : the element to be replaced 768 * @new : the new element to insert 769 * 770 * The @old entry will be replaced with the @new entry atomically. 771 */ 772 static inline void hlist_replace_rcu(struct hlist_node *old, 773 struct hlist_node *new) 774 { 775 struct hlist_node *next = old->next; 776 777 new->next = next; 778 new->pprev = old->pprev; 779 smp_wmb(); 780 if (next) 781 new->next->pprev = &new->next; 782 *new->pprev = new; 783 old->pprev = LIST_POISON2; 784 } 785 786 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 787 { 788 struct hlist_node *first = h->first; 789 n->next = first; 790 if (first) 791 first->pprev = &n->next; 792 h->first = n; 793 n->pprev = &h->first; 794 } 795 796 797 /** 798 * hlist_add_head_rcu 799 * @n: the element to add to the hash list. 800 * @h: the list to add to. 801 * 802 * Description: 803 * Adds the specified element to the specified hlist, 804 * while permitting racing traversals. 805 * 806 * The caller must take whatever precautions are necessary 807 * (such as holding appropriate locks) to avoid racing 808 * with another list-mutation primitive, such as hlist_add_head_rcu() 809 * or hlist_del_rcu(), running on this same list. 810 * However, it is perfectly legal to run concurrently with 811 * the _rcu list-traversal primitives, such as 812 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 813 * problems on Alpha CPUs. Regardless of the type of CPU, the 814 * list-traversal primitive must be guarded by rcu_read_lock(). 815 */ 816 static inline void hlist_add_head_rcu(struct hlist_node *n, 817 struct hlist_head *h) 818 { 819 struct hlist_node *first = h->first; 820 n->next = first; 821 n->pprev = &h->first; 822 smp_wmb(); 823 if (first) 824 first->pprev = &n->next; 825 h->first = n; 826 } 827 828 /* next must be != NULL */ 829 static inline void hlist_add_before(struct hlist_node *n, 830 struct hlist_node *next) 831 { 832 n->pprev = next->pprev; 833 n->next = next; 834 next->pprev = &n->next; 835 *(n->pprev) = n; 836 } 837 838 static inline void hlist_add_after(struct hlist_node *n, 839 struct hlist_node *next) 840 { 841 next->next = n->next; 842 n->next = next; 843 next->pprev = &n->next; 844 845 if(next->next) 846 next->next->pprev = &next->next; 847 } 848 849 /** 850 * hlist_add_before_rcu 851 * @n: the new element to add to the hash list. 852 * @next: the existing element to add the new element before. 853 * 854 * Description: 855 * Adds the specified element to the specified hlist 856 * before the specified node while permitting racing traversals. 857 * 858 * The caller must take whatever precautions are necessary 859 * (such as holding appropriate locks) to avoid racing 860 * with another list-mutation primitive, such as hlist_add_head_rcu() 861 * or hlist_del_rcu(), running on this same list. 862 * However, it is perfectly legal to run concurrently with 863 * the _rcu list-traversal primitives, such as 864 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 865 * problems on Alpha CPUs. 866 */ 867 static inline void hlist_add_before_rcu(struct hlist_node *n, 868 struct hlist_node *next) 869 { 870 n->pprev = next->pprev; 871 n->next = next; 872 smp_wmb(); 873 next->pprev = &n->next; 874 *(n->pprev) = n; 875 } 876 877 /** 878 * hlist_add_after_rcu 879 * @prev: the existing element to add the new element after. 880 * @n: the new element to add to the hash list. 881 * 882 * Description: 883 * Adds the specified element to the specified hlist 884 * after the specified node while permitting racing traversals. 885 * 886 * The caller must take whatever precautions are necessary 887 * (such as holding appropriate locks) to avoid racing 888 * with another list-mutation primitive, such as hlist_add_head_rcu() 889 * or hlist_del_rcu(), running on this same list. 890 * However, it is perfectly legal to run concurrently with 891 * the _rcu list-traversal primitives, such as 892 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 893 * problems on Alpha CPUs. 894 */ 895 static inline void hlist_add_after_rcu(struct hlist_node *prev, 896 struct hlist_node *n) 897 { 898 n->next = prev->next; 899 n->pprev = &prev->next; 900 smp_wmb(); 901 prev->next = n; 902 if (n->next) 903 n->next->pprev = &n->next; 904 } 905 906 #define hlist_entry(ptr, type, member) container_of(ptr,type,member) 907 908 #define hlist_for_each(pos, head) \ 909 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 910 pos = pos->next) 911 912 #define hlist_for_each_safe(pos, n, head) \ 913 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 914 pos = n) 915 916 /** 917 * hlist_for_each_entry - iterate over list of given type 918 * @tpos: the type * to use as a loop cursor. 919 * @pos: the &struct hlist_node to use as a loop cursor. 920 * @head: the head for your list. 921 * @member: the name of the hlist_node within the struct. 922 */ 923 #define hlist_for_each_entry(tpos, pos, head, member) \ 924 for (pos = (head)->first; \ 925 pos && ({ prefetch(pos->next); 1;}) && \ 926 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 927 pos = pos->next) 928 929 /** 930 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point 931 * @tpos: the type * to use as a loop cursor. 932 * @pos: the &struct hlist_node to use as a loop cursor. 933 * @member: the name of the hlist_node within the struct. 934 */ 935 #define hlist_for_each_entry_continue(tpos, pos, member) \ 936 for (pos = (pos)->next; \ 937 pos && ({ prefetch(pos->next); 1;}) && \ 938 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 939 pos = pos->next) 940 941 /** 942 * hlist_for_each_entry_from - iterate over a hlist continuing from current point 943 * @tpos: the type * to use as a loop cursor. 944 * @pos: the &struct hlist_node to use as a loop cursor. 945 * @member: the name of the hlist_node within the struct. 946 */ 947 #define hlist_for_each_entry_from(tpos, pos, member) \ 948 for (; pos && ({ prefetch(pos->next); 1;}) && \ 949 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 950 pos = pos->next) 951 952 /** 953 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 954 * @tpos: the type * to use as a loop cursor. 955 * @pos: the &struct hlist_node to use as a loop cursor. 956 * @n: another &struct hlist_node to use as temporary storage 957 * @head: the head for your list. 958 * @member: the name of the hlist_node within the struct. 959 */ 960 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 961 for (pos = (head)->first; \ 962 pos && ({ n = pos->next; 1; }) && \ 963 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 964 pos = n) 965 966 /** 967 * hlist_for_each_entry_rcu - iterate over rcu list of given type 968 * @tpos: the type * to use as a loop cursor. 969 * @pos: the &struct hlist_node to use as a loop cursor. 970 * @head: the head for your list. 971 * @member: the name of the hlist_node within the struct. 972 * 973 * This list-traversal primitive may safely run concurrently with 974 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 975 * as long as the traversal is guarded by rcu_read_lock(). 976 */ 977 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 978 for (pos = (head)->first; \ 979 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \ 980 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 981 pos = pos->next) 982 983 #else 984 #warning "don't include kernel headers in userspace" 985 #endif /* __KERNEL__ */ 986 #endif 987