1 #ifndef _LINUX_LIST_H 2 #define _LINUX_LIST_H 3 4 #ifdef __KERNEL__ 5 6 #include <linux/stddef.h> 7 #include <linux/prefetch.h> 8 #include <asm/system.h> 9 10 /* 11 * These are non-NULL pointers that will result in page faults 12 * under normal circumstances, used to verify that nobody uses 13 * non-initialized list entries. 14 */ 15 #define LIST_POISON1 ((void *) 0x00100100) 16 #define LIST_POISON2 ((void *) 0x00200200) 17 18 /* 19 * Simple doubly linked list implementation. 20 * 21 * Some of the internal functions ("__xxx") are useful when 22 * manipulating whole lists rather than single entries, as 23 * sometimes we already know the next/prev entries and we can 24 * generate better code by using them directly rather than 25 * using the generic single-entry routines. 26 */ 27 28 struct list_head { 29 struct list_head *next, *prev; 30 }; 31 32 #define LIST_HEAD_INIT(name) { &(name), &(name) } 33 34 #define LIST_HEAD(name) \ 35 struct list_head name = LIST_HEAD_INIT(name) 36 37 #define INIT_LIST_HEAD(ptr) do { \ 38 (ptr)->next = (ptr); (ptr)->prev = (ptr); \ 39 } while (0) 40 41 /* 42 * Insert a new entry between two known consecutive entries. 43 * 44 * This is only for internal list manipulation where we know 45 * the prev/next entries already! 46 */ 47 static inline void __list_add(struct list_head *new, 48 struct list_head *prev, 49 struct list_head *next) 50 { 51 next->prev = new; 52 new->next = next; 53 new->prev = prev; 54 prev->next = new; 55 } 56 57 /** 58 * list_add - add a new entry 59 * @new: new entry to be added 60 * @head: list head to add it after 61 * 62 * Insert a new entry after the specified head. 63 * This is good for implementing stacks. 64 */ 65 static inline void list_add(struct list_head *new, struct list_head *head) 66 { 67 __list_add(new, head, head->next); 68 } 69 70 /** 71 * list_add_tail - add a new entry 72 * @new: new entry to be added 73 * @head: list head to add it before 74 * 75 * Insert a new entry before the specified head. 76 * This is useful for implementing queues. 77 */ 78 static inline void list_add_tail(struct list_head *new, struct list_head *head) 79 { 80 __list_add(new, head->prev, head); 81 } 82 83 /* 84 * Insert a new entry between two known consecutive entries. 85 * 86 * This is only for internal list manipulation where we know 87 * the prev/next entries already! 88 */ 89 static inline void __list_add_rcu(struct list_head * new, 90 struct list_head * prev, struct list_head * next) 91 { 92 new->next = next; 93 new->prev = prev; 94 smp_wmb(); 95 next->prev = new; 96 prev->next = new; 97 } 98 99 /** 100 * list_add_rcu - add a new entry to rcu-protected list 101 * @new: new entry to be added 102 * @head: list head to add it after 103 * 104 * Insert a new entry after the specified head. 105 * This is good for implementing stacks. 106 * 107 * The caller must take whatever precautions are necessary 108 * (such as holding appropriate locks) to avoid racing 109 * with another list-mutation primitive, such as list_add_rcu() 110 * or list_del_rcu(), running on this same list. 111 * However, it is perfectly legal to run concurrently with 112 * the _rcu list-traversal primitives, such as 113 * list_for_each_entry_rcu(). 114 */ 115 static inline void list_add_rcu(struct list_head *new, struct list_head *head) 116 { 117 __list_add_rcu(new, head, head->next); 118 } 119 120 /** 121 * list_add_tail_rcu - add a new entry to rcu-protected list 122 * @new: new entry to be added 123 * @head: list head to add it before 124 * 125 * Insert a new entry before the specified head. 126 * This is useful for implementing queues. 127 * 128 * The caller must take whatever precautions are necessary 129 * (such as holding appropriate locks) to avoid racing 130 * with another list-mutation primitive, such as list_add_tail_rcu() 131 * or list_del_rcu(), running on this same list. 132 * However, it is perfectly legal to run concurrently with 133 * the _rcu list-traversal primitives, such as 134 * list_for_each_entry_rcu(). 135 */ 136 static inline void list_add_tail_rcu(struct list_head *new, 137 struct list_head *head) 138 { 139 __list_add_rcu(new, head->prev, head); 140 } 141 142 /* 143 * Delete a list entry by making the prev/next entries 144 * point to each other. 145 * 146 * This is only for internal list manipulation where we know 147 * the prev/next entries already! 148 */ 149 static inline void __list_del(struct list_head * prev, struct list_head * next) 150 { 151 next->prev = prev; 152 prev->next = next; 153 } 154 155 /** 156 * list_del - deletes entry from list. 157 * @entry: the element to delete from the list. 158 * Note: list_empty on entry does not return true after this, the entry is 159 * in an undefined state. 160 */ 161 static inline void list_del(struct list_head *entry) 162 { 163 __list_del(entry->prev, entry->next); 164 entry->next = LIST_POISON1; 165 entry->prev = LIST_POISON2; 166 } 167 168 /** 169 * list_del_rcu - deletes entry from list without re-initialization 170 * @entry: the element to delete from the list. 171 * 172 * Note: list_empty on entry does not return true after this, 173 * the entry is in an undefined state. It is useful for RCU based 174 * lockfree traversal. 175 * 176 * In particular, it means that we can not poison the forward 177 * pointers that may still be used for walking the list. 178 * 179 * The caller must take whatever precautions are necessary 180 * (such as holding appropriate locks) to avoid racing 181 * with another list-mutation primitive, such as list_del_rcu() 182 * or list_add_rcu(), running on this same list. 183 * However, it is perfectly legal to run concurrently with 184 * the _rcu list-traversal primitives, such as 185 * list_for_each_entry_rcu(). 186 * 187 * Note that the caller is not permitted to immediately free 188 * the newly deleted entry. Instead, either synchronize_rcu() 189 * or call_rcu() must be used to defer freeing until an RCU 190 * grace period has elapsed. 191 */ 192 static inline void list_del_rcu(struct list_head *entry) 193 { 194 __list_del(entry->prev, entry->next); 195 entry->prev = LIST_POISON2; 196 } 197 198 /* 199 * list_replace_rcu - replace old entry by new one 200 * @old : the element to be replaced 201 * @new : the new element to insert 202 * 203 * The old entry will be replaced with the new entry atomically. 204 */ 205 static inline void list_replace_rcu(struct list_head *old, struct list_head *new){ 206 new->next = old->next; 207 new->prev = old->prev; 208 smp_wmb(); 209 new->next->prev = new; 210 new->prev->next = new; 211 } 212 213 /** 214 * list_del_init - deletes entry from list and reinitialize it. 215 * @entry: the element to delete from the list. 216 */ 217 static inline void list_del_init(struct list_head *entry) 218 { 219 __list_del(entry->prev, entry->next); 220 INIT_LIST_HEAD(entry); 221 } 222 223 /** 224 * list_move - delete from one list and add as another's head 225 * @list: the entry to move 226 * @head: the head that will precede our entry 227 */ 228 static inline void list_move(struct list_head *list, struct list_head *head) 229 { 230 __list_del(list->prev, list->next); 231 list_add(list, head); 232 } 233 234 /** 235 * list_move_tail - delete from one list and add as another's tail 236 * @list: the entry to move 237 * @head: the head that will follow our entry 238 */ 239 static inline void list_move_tail(struct list_head *list, 240 struct list_head *head) 241 { 242 __list_del(list->prev, list->next); 243 list_add_tail(list, head); 244 } 245 246 /** 247 * list_empty - tests whether a list is empty 248 * @head: the list to test. 249 */ 250 static inline int list_empty(const struct list_head *head) 251 { 252 return head->next == head; 253 } 254 255 /** 256 * list_empty_careful - tests whether a list is 257 * empty _and_ checks that no other CPU might be 258 * in the process of still modifying either member 259 * 260 * NOTE: using list_empty_careful() without synchronization 261 * can only be safe if the only activity that can happen 262 * to the list entry is list_del_init(). Eg. it cannot be used 263 * if another CPU could re-list_add() it. 264 * 265 * @head: the list to test. 266 */ 267 static inline int list_empty_careful(const struct list_head *head) 268 { 269 struct list_head *next = head->next; 270 return (next == head) && (next == head->prev); 271 } 272 273 static inline void __list_splice(struct list_head *list, 274 struct list_head *head) 275 { 276 struct list_head *first = list->next; 277 struct list_head *last = list->prev; 278 struct list_head *at = head->next; 279 280 first->prev = head; 281 head->next = first; 282 283 last->next = at; 284 at->prev = last; 285 } 286 287 /** 288 * list_splice - join two lists 289 * @list: the new list to add. 290 * @head: the place to add it in the first list. 291 */ 292 static inline void list_splice(struct list_head *list, struct list_head *head) 293 { 294 if (!list_empty(list)) 295 __list_splice(list, head); 296 } 297 298 /** 299 * list_splice_init - join two lists and reinitialise the emptied list. 300 * @list: the new list to add. 301 * @head: the place to add it in the first list. 302 * 303 * The list at @list is reinitialised 304 */ 305 static inline void list_splice_init(struct list_head *list, 306 struct list_head *head) 307 { 308 if (!list_empty(list)) { 309 __list_splice(list, head); 310 INIT_LIST_HEAD(list); 311 } 312 } 313 314 /** 315 * list_entry - get the struct for this entry 316 * @ptr: the &struct list_head pointer. 317 * @type: the type of the struct this is embedded in. 318 * @member: the name of the list_struct within the struct. 319 */ 320 #define list_entry(ptr, type, member) \ 321 container_of(ptr, type, member) 322 323 /** 324 * list_for_each - iterate over a list 325 * @pos: the &struct list_head to use as a loop counter. 326 * @head: the head for your list. 327 */ 328 #define list_for_each(pos, head) \ 329 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 330 pos = pos->next) 331 332 /** 333 * __list_for_each - iterate over a list 334 * @pos: the &struct list_head to use as a loop counter. 335 * @head: the head for your list. 336 * 337 * This variant differs from list_for_each() in that it's the 338 * simplest possible list iteration code, no prefetching is done. 339 * Use this for code that knows the list to be very short (empty 340 * or 1 entry) most of the time. 341 */ 342 #define __list_for_each(pos, head) \ 343 for (pos = (head)->next; pos != (head); pos = pos->next) 344 345 /** 346 * list_for_each_prev - iterate over a list backwards 347 * @pos: the &struct list_head to use as a loop counter. 348 * @head: the head for your list. 349 */ 350 #define list_for_each_prev(pos, head) \ 351 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 352 pos = pos->prev) 353 354 /** 355 * list_for_each_safe - iterate over a list safe against removal of list entry 356 * @pos: the &struct list_head to use as a loop counter. 357 * @n: another &struct list_head to use as temporary storage 358 * @head: the head for your list. 359 */ 360 #define list_for_each_safe(pos, n, head) \ 361 for (pos = (head)->next, n = pos->next; pos != (head); \ 362 pos = n, n = pos->next) 363 364 /** 365 * list_for_each_entry - iterate over list of given type 366 * @pos: the type * to use as a loop counter. 367 * @head: the head for your list. 368 * @member: the name of the list_struct within the struct. 369 */ 370 #define list_for_each_entry(pos, head, member) \ 371 for (pos = list_entry((head)->next, typeof(*pos), member); \ 372 prefetch(pos->member.next), &pos->member != (head); \ 373 pos = list_entry(pos->member.next, typeof(*pos), member)) 374 375 /** 376 * list_for_each_entry_reverse - iterate backwards over list of given type. 377 * @pos: the type * to use as a loop counter. 378 * @head: the head for your list. 379 * @member: the name of the list_struct within the struct. 380 */ 381 #define list_for_each_entry_reverse(pos, head, member) \ 382 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 383 prefetch(pos->member.prev), &pos->member != (head); \ 384 pos = list_entry(pos->member.prev, typeof(*pos), member)) 385 386 /** 387 * list_prepare_entry - prepare a pos entry for use as a start point in 388 * list_for_each_entry_continue 389 * @pos: the type * to use as a start point 390 * @head: the head of the list 391 * @member: the name of the list_struct within the struct. 392 */ 393 #define list_prepare_entry(pos, head, member) \ 394 ((pos) ? : list_entry(head, typeof(*pos), member)) 395 396 /** 397 * list_for_each_entry_continue - iterate over list of given type 398 * continuing after existing point 399 * @pos: the type * to use as a loop counter. 400 * @head: the head for your list. 401 * @member: the name of the list_struct within the struct. 402 */ 403 #define list_for_each_entry_continue(pos, head, member) \ 404 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 405 prefetch(pos->member.next), &pos->member != (head); \ 406 pos = list_entry(pos->member.next, typeof(*pos), member)) 407 408 /** 409 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 410 * @pos: the type * to use as a loop counter. 411 * @n: another type * to use as temporary storage 412 * @head: the head for your list. 413 * @member: the name of the list_struct within the struct. 414 */ 415 #define list_for_each_entry_safe(pos, n, head, member) \ 416 for (pos = list_entry((head)->next, typeof(*pos), member), \ 417 n = list_entry(pos->member.next, typeof(*pos), member); \ 418 &pos->member != (head); \ 419 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 420 421 /** 422 * list_for_each_entry_safe_continue - iterate over list of given type 423 * continuing after existing point safe against removal of list entry 424 * @pos: the type * to use as a loop counter. 425 * @n: another type * to use as temporary storage 426 * @head: the head for your list. 427 * @member: the name of the list_struct within the struct. 428 */ 429 #define list_for_each_entry_safe_continue(pos, n, head, member) \ 430 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 431 n = list_entry(pos->member.next, typeof(*pos), member); \ 432 &pos->member != (head); \ 433 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 434 435 /** 436 * list_for_each_rcu - iterate over an rcu-protected list 437 * @pos: the &struct list_head to use as a loop counter. 438 * @head: the head for your list. 439 * 440 * This list-traversal primitive may safely run concurrently with 441 * the _rcu list-mutation primitives such as list_add_rcu() 442 * as long as the traversal is guarded by rcu_read_lock(). 443 */ 444 #define list_for_each_rcu(pos, head) \ 445 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 446 pos = rcu_dereference(pos->next)) 447 448 #define __list_for_each_rcu(pos, head) \ 449 for (pos = (head)->next; pos != (head); \ 450 pos = rcu_dereference(pos->next)) 451 452 /** 453 * list_for_each_safe_rcu - iterate over an rcu-protected list safe 454 * against removal of list entry 455 * @pos: the &struct list_head to use as a loop counter. 456 * @n: another &struct list_head to use as temporary storage 457 * @head: the head for your list. 458 * 459 * This list-traversal primitive may safely run concurrently with 460 * the _rcu list-mutation primitives such as list_add_rcu() 461 * as long as the traversal is guarded by rcu_read_lock(). 462 */ 463 #define list_for_each_safe_rcu(pos, n, head) \ 464 for (pos = (head)->next, n = pos->next; pos != (head); \ 465 pos = rcu_dereference(n), n = pos->next) 466 467 /** 468 * list_for_each_entry_rcu - iterate over rcu list of given type 469 * @pos: the type * to use as a loop counter. 470 * @head: the head for your list. 471 * @member: the name of the list_struct within the struct. 472 * 473 * This list-traversal primitive may safely run concurrently with 474 * the _rcu list-mutation primitives such as list_add_rcu() 475 * as long as the traversal is guarded by rcu_read_lock(). 476 */ 477 #define list_for_each_entry_rcu(pos, head, member) \ 478 for (pos = list_entry((head)->next, typeof(*pos), member); \ 479 prefetch(pos->member.next), &pos->member != (head); \ 480 pos = rcu_dereference(list_entry(pos->member.next, \ 481 typeof(*pos), member))) 482 483 484 /** 485 * list_for_each_continue_rcu - iterate over an rcu-protected list 486 * continuing after existing point. 487 * @pos: the &struct list_head to use as a loop counter. 488 * @head: the head for your list. 489 * 490 * This list-traversal primitive may safely run concurrently with 491 * the _rcu list-mutation primitives such as list_add_rcu() 492 * as long as the traversal is guarded by rcu_read_lock(). 493 */ 494 #define list_for_each_continue_rcu(pos, head) \ 495 for ((pos) = (pos)->next; prefetch((pos)->next), (pos) != (head); \ 496 (pos) = rcu_dereference((pos)->next)) 497 498 /* 499 * Double linked lists with a single pointer list head. 500 * Mostly useful for hash tables where the two pointer list head is 501 * too wasteful. 502 * You lose the ability to access the tail in O(1). 503 */ 504 505 struct hlist_head { 506 struct hlist_node *first; 507 }; 508 509 struct hlist_node { 510 struct hlist_node *next, **pprev; 511 }; 512 513 #define HLIST_HEAD_INIT { .first = NULL } 514 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 515 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 516 #define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL) 517 518 static inline int hlist_unhashed(const struct hlist_node *h) 519 { 520 return !h->pprev; 521 } 522 523 static inline int hlist_empty(const struct hlist_head *h) 524 { 525 return !h->first; 526 } 527 528 static inline void __hlist_del(struct hlist_node *n) 529 { 530 struct hlist_node *next = n->next; 531 struct hlist_node **pprev = n->pprev; 532 *pprev = next; 533 if (next) 534 next->pprev = pprev; 535 } 536 537 static inline void hlist_del(struct hlist_node *n) 538 { 539 __hlist_del(n); 540 n->next = LIST_POISON1; 541 n->pprev = LIST_POISON2; 542 } 543 544 /** 545 * hlist_del_rcu - deletes entry from hash list without re-initialization 546 * @n: the element to delete from the hash list. 547 * 548 * Note: list_unhashed() on entry does not return true after this, 549 * the entry is in an undefined state. It is useful for RCU based 550 * lockfree traversal. 551 * 552 * In particular, it means that we can not poison the forward 553 * pointers that may still be used for walking the hash list. 554 * 555 * The caller must take whatever precautions are necessary 556 * (such as holding appropriate locks) to avoid racing 557 * with another list-mutation primitive, such as hlist_add_head_rcu() 558 * or hlist_del_rcu(), running on this same list. 559 * However, it is perfectly legal to run concurrently with 560 * the _rcu list-traversal primitives, such as 561 * hlist_for_each_entry(). 562 */ 563 static inline void hlist_del_rcu(struct hlist_node *n) 564 { 565 __hlist_del(n); 566 n->pprev = LIST_POISON2; 567 } 568 569 static inline void hlist_del_init(struct hlist_node *n) 570 { 571 if (n->pprev) { 572 __hlist_del(n); 573 INIT_HLIST_NODE(n); 574 } 575 } 576 577 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 578 { 579 struct hlist_node *first = h->first; 580 n->next = first; 581 if (first) 582 first->pprev = &n->next; 583 h->first = n; 584 n->pprev = &h->first; 585 } 586 587 588 /** 589 * hlist_add_head_rcu - adds the specified element to the specified hlist, 590 * while permitting racing traversals. 591 * @n: the element to add to the hash list. 592 * @h: the list to add to. 593 * 594 * The caller must take whatever precautions are necessary 595 * (such as holding appropriate locks) to avoid racing 596 * with another list-mutation primitive, such as hlist_add_head_rcu() 597 * or hlist_del_rcu(), running on this same list. 598 * However, it is perfectly legal to run concurrently with 599 * the _rcu list-traversal primitives, such as 600 * hlist_for_each_rcu(), used to prevent memory-consistency 601 * problems on Alpha CPUs. Regardless of the type of CPU, the 602 * list-traversal primitive must be guarded by rcu_read_lock(). 603 */ 604 static inline void hlist_add_head_rcu(struct hlist_node *n, 605 struct hlist_head *h) 606 { 607 struct hlist_node *first = h->first; 608 n->next = first; 609 n->pprev = &h->first; 610 smp_wmb(); 611 if (first) 612 first->pprev = &n->next; 613 h->first = n; 614 } 615 616 /* next must be != NULL */ 617 static inline void hlist_add_before(struct hlist_node *n, 618 struct hlist_node *next) 619 { 620 n->pprev = next->pprev; 621 n->next = next; 622 next->pprev = &n->next; 623 *(n->pprev) = n; 624 } 625 626 static inline void hlist_add_after(struct hlist_node *n, 627 struct hlist_node *next) 628 { 629 next->next = n->next; 630 n->next = next; 631 next->pprev = &n->next; 632 633 if(next->next) 634 next->next->pprev = &next->next; 635 } 636 637 /** 638 * hlist_add_before_rcu - adds the specified element to the specified hlist 639 * before the specified node while permitting racing traversals. 640 * @n: the new element to add to the hash list. 641 * @next: the existing element to add the new element before. 642 * 643 * The caller must take whatever precautions are necessary 644 * (such as holding appropriate locks) to avoid racing 645 * with another list-mutation primitive, such as hlist_add_head_rcu() 646 * or hlist_del_rcu(), running on this same list. 647 * However, it is perfectly legal to run concurrently with 648 * the _rcu list-traversal primitives, such as 649 * hlist_for_each_rcu(), used to prevent memory-consistency 650 * problems on Alpha CPUs. 651 */ 652 static inline void hlist_add_before_rcu(struct hlist_node *n, 653 struct hlist_node *next) 654 { 655 n->pprev = next->pprev; 656 n->next = next; 657 smp_wmb(); 658 next->pprev = &n->next; 659 *(n->pprev) = n; 660 } 661 662 /** 663 * hlist_add_after_rcu - adds the specified element to the specified hlist 664 * after the specified node while permitting racing traversals. 665 * @prev: the existing element to add the new element after. 666 * @n: the new element to add to the hash list. 667 * 668 * The caller must take whatever precautions are necessary 669 * (such as holding appropriate locks) to avoid racing 670 * with another list-mutation primitive, such as hlist_add_head_rcu() 671 * or hlist_del_rcu(), running on this same list. 672 * However, it is perfectly legal to run concurrently with 673 * the _rcu list-traversal primitives, such as 674 * hlist_for_each_rcu(), used to prevent memory-consistency 675 * problems on Alpha CPUs. 676 */ 677 static inline void hlist_add_after_rcu(struct hlist_node *prev, 678 struct hlist_node *n) 679 { 680 n->next = prev->next; 681 n->pprev = &prev->next; 682 smp_wmb(); 683 prev->next = n; 684 if (n->next) 685 n->next->pprev = &n->next; 686 } 687 688 #define hlist_entry(ptr, type, member) container_of(ptr,type,member) 689 690 #define hlist_for_each(pos, head) \ 691 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 692 pos = pos->next) 693 694 #define hlist_for_each_safe(pos, n, head) \ 695 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 696 pos = n) 697 698 #define hlist_for_each_rcu(pos, head) \ 699 for ((pos) = (head)->first; pos && ({ prefetch((pos)->next); 1; }); \ 700 (pos) = rcu_dereference((pos)->next)) 701 702 /** 703 * hlist_for_each_entry - iterate over list of given type 704 * @tpos: the type * to use as a loop counter. 705 * @pos: the &struct hlist_node to use as a loop counter. 706 * @head: the head for your list. 707 * @member: the name of the hlist_node within the struct. 708 */ 709 #define hlist_for_each_entry(tpos, pos, head, member) \ 710 for (pos = (head)->first; \ 711 pos && ({ prefetch(pos->next); 1;}) && \ 712 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 713 pos = pos->next) 714 715 /** 716 * hlist_for_each_entry_continue - iterate over a hlist continuing after existing point 717 * @tpos: the type * to use as a loop counter. 718 * @pos: the &struct hlist_node to use as a loop counter. 719 * @member: the name of the hlist_node within the struct. 720 */ 721 #define hlist_for_each_entry_continue(tpos, pos, member) \ 722 for (pos = (pos)->next; \ 723 pos && ({ prefetch(pos->next); 1;}) && \ 724 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 725 pos = pos->next) 726 727 /** 728 * hlist_for_each_entry_from - iterate over a hlist continuing from existing point 729 * @tpos: the type * to use as a loop counter. 730 * @pos: the &struct hlist_node to use as a loop counter. 731 * @member: the name of the hlist_node within the struct. 732 */ 733 #define hlist_for_each_entry_from(tpos, pos, member) \ 734 for (; pos && ({ prefetch(pos->next); 1;}) && \ 735 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 736 pos = pos->next) 737 738 /** 739 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 740 * @tpos: the type * to use as a loop counter. 741 * @pos: the &struct hlist_node to use as a loop counter. 742 * @n: another &struct hlist_node to use as temporary storage 743 * @head: the head for your list. 744 * @member: the name of the hlist_node within the struct. 745 */ 746 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 747 for (pos = (head)->first; \ 748 pos && ({ n = pos->next; 1; }) && \ 749 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 750 pos = n) 751 752 /** 753 * hlist_for_each_entry_rcu - iterate over rcu list of given type 754 * @pos: the type * to use as a loop counter. 755 * @pos: the &struct hlist_node to use as a loop counter. 756 * @head: the head for your list. 757 * @member: the name of the hlist_node within the struct. 758 * 759 * This list-traversal primitive may safely run concurrently with 760 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 761 * as long as the traversal is guarded by rcu_read_lock(). 762 */ 763 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 764 for (pos = (head)->first; \ 765 pos && ({ prefetch(pos->next); 1;}) && \ 766 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 767 pos = rcu_dereference(pos->next)) 768 769 #else 770 #warning "don't include kernel headers in userspace" 771 #endif /* __KERNEL__ */ 772 #endif 773