1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/bug.h> 14 #include <linux/minmax.h> 15 #include <linux/mm.h> 16 #include <linux/mmu_notifier.h> 17 #include <linux/preempt.h> 18 #include <linux/msi.h> 19 #include <linux/slab.h> 20 #include <linux/vmalloc.h> 21 #include <linux/rcupdate.h> 22 #include <linux/ratelimit.h> 23 #include <linux/err.h> 24 #include <linux/irqflags.h> 25 #include <linux/context_tracking.h> 26 #include <linux/irqbypass.h> 27 #include <linux/rcuwait.h> 28 #include <linux/refcount.h> 29 #include <linux/nospec.h> 30 #include <asm/signal.h> 31 32 #include <linux/kvm.h> 33 #include <linux/kvm_para.h> 34 35 #include <linux/kvm_types.h> 36 37 #include <asm/kvm_host.h> 38 #include <linux/kvm_dirty_ring.h> 39 40 #ifndef KVM_MAX_VCPU_ID 41 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 42 #endif 43 44 /* 45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 46 * in kvm, other bits are visible for userspace which are defined in 47 * include/linux/kvm_h. 48 */ 49 #define KVM_MEMSLOT_INVALID (1UL << 16) 50 51 /* 52 * Bit 63 of the memslot generation number is an "update in-progress flag", 53 * e.g. is temporarily set for the duration of install_new_memslots(). 54 * This flag effectively creates a unique generation number that is used to 55 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 56 * i.e. may (or may not) have come from the previous memslots generation. 57 * 58 * This is necessary because the actual memslots update is not atomic with 59 * respect to the generation number update. Updating the generation number 60 * first would allow a vCPU to cache a spte from the old memslots using the 61 * new generation number, and updating the generation number after switching 62 * to the new memslots would allow cache hits using the old generation number 63 * to reference the defunct memslots. 64 * 65 * This mechanism is used to prevent getting hits in KVM's caches while a 66 * memslot update is in-progress, and to prevent cache hits *after* updating 67 * the actual generation number against accesses that were inserted into the 68 * cache *before* the memslots were updated. 69 */ 70 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 71 72 /* Two fragments for cross MMIO pages. */ 73 #define KVM_MAX_MMIO_FRAGMENTS 2 74 75 #ifndef KVM_ADDRESS_SPACE_NUM 76 #define KVM_ADDRESS_SPACE_NUM 1 77 #endif 78 79 /* 80 * For the normal pfn, the highest 12 bits should be zero, 81 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 82 * mask bit 63 to indicate the noslot pfn. 83 */ 84 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 85 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 86 #define KVM_PFN_NOSLOT (0x1ULL << 63) 87 88 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 89 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 90 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 91 92 /* 93 * error pfns indicate that the gfn is in slot but faild to 94 * translate it to pfn on host. 95 */ 96 static inline bool is_error_pfn(kvm_pfn_t pfn) 97 { 98 return !!(pfn & KVM_PFN_ERR_MASK); 99 } 100 101 /* 102 * error_noslot pfns indicate that the gfn can not be 103 * translated to pfn - it is not in slot or failed to 104 * translate it to pfn. 105 */ 106 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 107 { 108 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 109 } 110 111 /* noslot pfn indicates that the gfn is not in slot. */ 112 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 113 { 114 return pfn == KVM_PFN_NOSLOT; 115 } 116 117 /* 118 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 119 * provide own defines and kvm_is_error_hva 120 */ 121 #ifndef KVM_HVA_ERR_BAD 122 123 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 124 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 125 126 static inline bool kvm_is_error_hva(unsigned long addr) 127 { 128 return addr >= PAGE_OFFSET; 129 } 130 131 #endif 132 133 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 134 135 static inline bool is_error_page(struct page *page) 136 { 137 return IS_ERR(page); 138 } 139 140 #define KVM_REQUEST_MASK GENMASK(7,0) 141 #define KVM_REQUEST_NO_WAKEUP BIT(8) 142 #define KVM_REQUEST_WAIT BIT(9) 143 /* 144 * Architecture-independent vcpu->requests bit members 145 * Bits 4-7 are reserved for more arch-independent bits. 146 */ 147 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 148 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 149 #define KVM_REQ_PENDING_TIMER 2 150 #define KVM_REQ_UNHALT 3 151 #define KVM_REQUEST_ARCH_BASE 8 152 153 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 154 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 155 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 156 }) 157 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 158 159 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 160 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 161 162 extern struct mutex kvm_lock; 163 extern struct list_head vm_list; 164 165 struct kvm_io_range { 166 gpa_t addr; 167 int len; 168 struct kvm_io_device *dev; 169 }; 170 171 #define NR_IOBUS_DEVS 1000 172 173 struct kvm_io_bus { 174 int dev_count; 175 int ioeventfd_count; 176 struct kvm_io_range range[]; 177 }; 178 179 enum kvm_bus { 180 KVM_MMIO_BUS, 181 KVM_PIO_BUS, 182 KVM_VIRTIO_CCW_NOTIFY_BUS, 183 KVM_FAST_MMIO_BUS, 184 KVM_NR_BUSES 185 }; 186 187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 188 int len, const void *val); 189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 190 gpa_t addr, int len, const void *val, long cookie); 191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 192 int len, void *val); 193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 194 int len, struct kvm_io_device *dev); 195 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 struct kvm_io_device *dev); 197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 198 gpa_t addr); 199 200 #ifdef CONFIG_KVM_ASYNC_PF 201 struct kvm_async_pf { 202 struct work_struct work; 203 struct list_head link; 204 struct list_head queue; 205 struct kvm_vcpu *vcpu; 206 struct mm_struct *mm; 207 gpa_t cr2_or_gpa; 208 unsigned long addr; 209 struct kvm_arch_async_pf arch; 210 bool wakeup_all; 211 bool notpresent_injected; 212 }; 213 214 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 215 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 216 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 217 unsigned long hva, struct kvm_arch_async_pf *arch); 218 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 219 #endif 220 221 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER 222 struct kvm_gfn_range { 223 struct kvm_memory_slot *slot; 224 gfn_t start; 225 gfn_t end; 226 pte_t pte; 227 bool may_block; 228 }; 229 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 230 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 231 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 232 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 233 #endif 234 235 enum { 236 OUTSIDE_GUEST_MODE, 237 IN_GUEST_MODE, 238 EXITING_GUEST_MODE, 239 READING_SHADOW_PAGE_TABLES, 240 }; 241 242 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 243 244 struct kvm_host_map { 245 /* 246 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 247 * a 'struct page' for it. When using mem= kernel parameter some memory 248 * can be used as guest memory but they are not managed by host 249 * kernel). 250 * If 'pfn' is not managed by the host kernel, this field is 251 * initialized to KVM_UNMAPPED_PAGE. 252 */ 253 struct page *page; 254 void *hva; 255 kvm_pfn_t pfn; 256 kvm_pfn_t gfn; 257 }; 258 259 /* 260 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 261 * directly to check for that. 262 */ 263 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 264 { 265 return !!map->hva; 266 } 267 268 /* 269 * Sometimes a large or cross-page mmio needs to be broken up into separate 270 * exits for userspace servicing. 271 */ 272 struct kvm_mmio_fragment { 273 gpa_t gpa; 274 void *data; 275 unsigned len; 276 }; 277 278 struct kvm_vcpu { 279 struct kvm *kvm; 280 #ifdef CONFIG_PREEMPT_NOTIFIERS 281 struct preempt_notifier preempt_notifier; 282 #endif 283 int cpu; 284 int vcpu_id; /* id given by userspace at creation */ 285 int vcpu_idx; /* index in kvm->vcpus array */ 286 int srcu_idx; 287 int mode; 288 u64 requests; 289 unsigned long guest_debug; 290 291 int pre_pcpu; 292 struct list_head blocked_vcpu_list; 293 294 struct mutex mutex; 295 struct kvm_run *run; 296 297 struct rcuwait wait; 298 struct pid __rcu *pid; 299 int sigset_active; 300 sigset_t sigset; 301 struct kvm_vcpu_stat stat; 302 unsigned int halt_poll_ns; 303 bool valid_wakeup; 304 305 #ifdef CONFIG_HAS_IOMEM 306 int mmio_needed; 307 int mmio_read_completed; 308 int mmio_is_write; 309 int mmio_cur_fragment; 310 int mmio_nr_fragments; 311 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 312 #endif 313 314 #ifdef CONFIG_KVM_ASYNC_PF 315 struct { 316 u32 queued; 317 struct list_head queue; 318 struct list_head done; 319 spinlock_t lock; 320 } async_pf; 321 #endif 322 323 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 324 /* 325 * Cpu relax intercept or pause loop exit optimization 326 * in_spin_loop: set when a vcpu does a pause loop exit 327 * or cpu relax intercepted. 328 * dy_eligible: indicates whether vcpu is eligible for directed yield. 329 */ 330 struct { 331 bool in_spin_loop; 332 bool dy_eligible; 333 } spin_loop; 334 #endif 335 bool preempted; 336 bool ready; 337 struct kvm_vcpu_arch arch; 338 struct kvm_dirty_ring dirty_ring; 339 }; 340 341 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 342 { 343 /* 344 * The memory barrier ensures a previous write to vcpu->requests cannot 345 * be reordered with the read of vcpu->mode. It pairs with the general 346 * memory barrier following the write of vcpu->mode in VCPU RUN. 347 */ 348 smp_mb__before_atomic(); 349 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 350 } 351 352 /* 353 * Some of the bitops functions do not support too long bitmaps. 354 * This number must be determined not to exceed such limits. 355 */ 356 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 357 358 struct kvm_memory_slot { 359 gfn_t base_gfn; 360 unsigned long npages; 361 unsigned long *dirty_bitmap; 362 struct kvm_arch_memory_slot arch; 363 unsigned long userspace_addr; 364 u32 flags; 365 short id; 366 u16 as_id; 367 }; 368 369 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot) 370 { 371 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 372 } 373 374 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 375 { 376 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 377 } 378 379 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 380 { 381 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 382 383 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 384 } 385 386 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 387 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 388 #endif 389 390 struct kvm_s390_adapter_int { 391 u64 ind_addr; 392 u64 summary_addr; 393 u64 ind_offset; 394 u32 summary_offset; 395 u32 adapter_id; 396 }; 397 398 struct kvm_hv_sint { 399 u32 vcpu; 400 u32 sint; 401 }; 402 403 struct kvm_kernel_irq_routing_entry { 404 u32 gsi; 405 u32 type; 406 int (*set)(struct kvm_kernel_irq_routing_entry *e, 407 struct kvm *kvm, int irq_source_id, int level, 408 bool line_status); 409 union { 410 struct { 411 unsigned irqchip; 412 unsigned pin; 413 } irqchip; 414 struct { 415 u32 address_lo; 416 u32 address_hi; 417 u32 data; 418 u32 flags; 419 u32 devid; 420 } msi; 421 struct kvm_s390_adapter_int adapter; 422 struct kvm_hv_sint hv_sint; 423 }; 424 struct hlist_node link; 425 }; 426 427 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 428 struct kvm_irq_routing_table { 429 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 430 u32 nr_rt_entries; 431 /* 432 * Array indexed by gsi. Each entry contains list of irq chips 433 * the gsi is connected to. 434 */ 435 struct hlist_head map[]; 436 }; 437 #endif 438 439 #ifndef KVM_PRIVATE_MEM_SLOTS 440 #define KVM_PRIVATE_MEM_SLOTS 0 441 #endif 442 443 #define KVM_MEM_SLOTS_NUM SHRT_MAX 444 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 445 446 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 447 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 448 { 449 return 0; 450 } 451 #endif 452 453 /* 454 * Note: 455 * memslots are not sorted by id anymore, please use id_to_memslot() 456 * to get the memslot by its id. 457 */ 458 struct kvm_memslots { 459 u64 generation; 460 /* The mapping table from slot id to the index in memslots[]. */ 461 short id_to_index[KVM_MEM_SLOTS_NUM]; 462 atomic_t lru_slot; 463 int used_slots; 464 struct kvm_memory_slot memslots[]; 465 }; 466 467 struct kvm { 468 #ifdef KVM_HAVE_MMU_RWLOCK 469 rwlock_t mmu_lock; 470 #else 471 spinlock_t mmu_lock; 472 #endif /* KVM_HAVE_MMU_RWLOCK */ 473 474 struct mutex slots_lock; 475 struct mm_struct *mm; /* userspace tied to this vm */ 476 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 477 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 478 479 /* 480 * created_vcpus is protected by kvm->lock, and is incremented 481 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 482 * incremented after storing the kvm_vcpu pointer in vcpus, 483 * and is accessed atomically. 484 */ 485 atomic_t online_vcpus; 486 int created_vcpus; 487 int last_boosted_vcpu; 488 struct list_head vm_list; 489 struct mutex lock; 490 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 491 #ifdef CONFIG_HAVE_KVM_EVENTFD 492 struct { 493 spinlock_t lock; 494 struct list_head items; 495 struct list_head resampler_list; 496 struct mutex resampler_lock; 497 } irqfds; 498 struct list_head ioeventfds; 499 #endif 500 struct kvm_vm_stat stat; 501 struct kvm_arch arch; 502 refcount_t users_count; 503 #ifdef CONFIG_KVM_MMIO 504 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 505 spinlock_t ring_lock; 506 struct list_head coalesced_zones; 507 #endif 508 509 struct mutex irq_lock; 510 #ifdef CONFIG_HAVE_KVM_IRQCHIP 511 /* 512 * Update side is protected by irq_lock. 513 */ 514 struct kvm_irq_routing_table __rcu *irq_routing; 515 #endif 516 #ifdef CONFIG_HAVE_KVM_IRQFD 517 struct hlist_head irq_ack_notifier_list; 518 #endif 519 520 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 521 struct mmu_notifier mmu_notifier; 522 unsigned long mmu_notifier_seq; 523 long mmu_notifier_count; 524 unsigned long mmu_notifier_range_start; 525 unsigned long mmu_notifier_range_end; 526 #endif 527 long tlbs_dirty; 528 struct list_head devices; 529 u64 manual_dirty_log_protect; 530 struct dentry *debugfs_dentry; 531 struct kvm_stat_data **debugfs_stat_data; 532 struct srcu_struct srcu; 533 struct srcu_struct irq_srcu; 534 pid_t userspace_pid; 535 unsigned int max_halt_poll_ns; 536 u32 dirty_ring_size; 537 }; 538 539 #define kvm_err(fmt, ...) \ 540 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 541 #define kvm_info(fmt, ...) \ 542 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 543 #define kvm_debug(fmt, ...) \ 544 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 545 #define kvm_debug_ratelimited(fmt, ...) \ 546 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 547 ## __VA_ARGS__) 548 #define kvm_pr_unimpl(fmt, ...) \ 549 pr_err_ratelimited("kvm [%i]: " fmt, \ 550 task_tgid_nr(current), ## __VA_ARGS__) 551 552 /* The guest did something we don't support. */ 553 #define vcpu_unimpl(vcpu, fmt, ...) \ 554 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 555 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 556 557 #define vcpu_debug(vcpu, fmt, ...) \ 558 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 559 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 560 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 561 ## __VA_ARGS__) 562 #define vcpu_err(vcpu, fmt, ...) \ 563 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 564 565 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 566 { 567 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 568 } 569 570 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 571 { 572 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 573 lockdep_is_held(&kvm->slots_lock) || 574 !refcount_read(&kvm->users_count)); 575 } 576 577 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 578 { 579 int num_vcpus = atomic_read(&kvm->online_vcpus); 580 i = array_index_nospec(i, num_vcpus); 581 582 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 583 smp_rmb(); 584 return kvm->vcpus[i]; 585 } 586 587 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 588 for (idx = 0; \ 589 idx < atomic_read(&kvm->online_vcpus) && \ 590 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 591 idx++) 592 593 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 594 { 595 struct kvm_vcpu *vcpu = NULL; 596 int i; 597 598 if (id < 0) 599 return NULL; 600 if (id < KVM_MAX_VCPUS) 601 vcpu = kvm_get_vcpu(kvm, id); 602 if (vcpu && vcpu->vcpu_id == id) 603 return vcpu; 604 kvm_for_each_vcpu(i, vcpu, kvm) 605 if (vcpu->vcpu_id == id) 606 return vcpu; 607 return NULL; 608 } 609 610 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 611 { 612 return vcpu->vcpu_idx; 613 } 614 615 #define kvm_for_each_memslot(memslot, slots) \ 616 for (memslot = &slots->memslots[0]; \ 617 memslot < slots->memslots + slots->used_slots; memslot++) \ 618 if (WARN_ON_ONCE(!memslot->npages)) { \ 619 } else 620 621 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 622 623 void vcpu_load(struct kvm_vcpu *vcpu); 624 void vcpu_put(struct kvm_vcpu *vcpu); 625 626 #ifdef __KVM_HAVE_IOAPIC 627 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 628 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 629 #else 630 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 631 { 632 } 633 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 634 { 635 } 636 #endif 637 638 #ifdef CONFIG_HAVE_KVM_IRQFD 639 int kvm_irqfd_init(void); 640 void kvm_irqfd_exit(void); 641 #else 642 static inline int kvm_irqfd_init(void) 643 { 644 return 0; 645 } 646 647 static inline void kvm_irqfd_exit(void) 648 { 649 } 650 #endif 651 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 652 struct module *module); 653 void kvm_exit(void); 654 655 void kvm_get_kvm(struct kvm *kvm); 656 void kvm_put_kvm(struct kvm *kvm); 657 void kvm_put_kvm_no_destroy(struct kvm *kvm); 658 659 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 660 { 661 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 662 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 663 lockdep_is_held(&kvm->slots_lock) || 664 !refcount_read(&kvm->users_count)); 665 } 666 667 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 668 { 669 return __kvm_memslots(kvm, 0); 670 } 671 672 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 673 { 674 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 675 676 return __kvm_memslots(vcpu->kvm, as_id); 677 } 678 679 static inline 680 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 681 { 682 int index = slots->id_to_index[id]; 683 struct kvm_memory_slot *slot; 684 685 if (index < 0) 686 return NULL; 687 688 slot = &slots->memslots[index]; 689 690 WARN_ON(slot->id != id); 691 return slot; 692 } 693 694 /* 695 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 696 * - create a new memory slot 697 * - delete an existing memory slot 698 * - modify an existing memory slot 699 * -- move it in the guest physical memory space 700 * -- just change its flags 701 * 702 * Since flags can be changed by some of these operations, the following 703 * differentiation is the best we can do for __kvm_set_memory_region(): 704 */ 705 enum kvm_mr_change { 706 KVM_MR_CREATE, 707 KVM_MR_DELETE, 708 KVM_MR_MOVE, 709 KVM_MR_FLAGS_ONLY, 710 }; 711 712 int kvm_set_memory_region(struct kvm *kvm, 713 const struct kvm_userspace_memory_region *mem); 714 int __kvm_set_memory_region(struct kvm *kvm, 715 const struct kvm_userspace_memory_region *mem); 716 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 717 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 718 int kvm_arch_prepare_memory_region(struct kvm *kvm, 719 struct kvm_memory_slot *memslot, 720 const struct kvm_userspace_memory_region *mem, 721 enum kvm_mr_change change); 722 void kvm_arch_commit_memory_region(struct kvm *kvm, 723 const struct kvm_userspace_memory_region *mem, 724 struct kvm_memory_slot *old, 725 const struct kvm_memory_slot *new, 726 enum kvm_mr_change change); 727 /* flush all memory translations */ 728 void kvm_arch_flush_shadow_all(struct kvm *kvm); 729 /* flush memory translations pointing to 'slot' */ 730 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 731 struct kvm_memory_slot *slot); 732 733 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 734 struct page **pages, int nr_pages); 735 736 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 737 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 738 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 739 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 740 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 741 bool *writable); 742 void kvm_release_page_clean(struct page *page); 743 void kvm_release_page_dirty(struct page *page); 744 void kvm_set_page_accessed(struct page *page); 745 746 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 747 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 748 bool *writable); 749 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 750 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 751 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 752 bool atomic, bool *async, bool write_fault, 753 bool *writable, hva_t *hva); 754 755 void kvm_release_pfn_clean(kvm_pfn_t pfn); 756 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 757 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 758 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 759 void kvm_get_pfn(kvm_pfn_t pfn); 760 761 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 762 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 763 int len); 764 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 765 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 766 void *data, unsigned long len); 767 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 768 void *data, unsigned int offset, 769 unsigned long len); 770 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 771 int offset, int len); 772 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 773 unsigned long len); 774 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 775 void *data, unsigned long len); 776 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 777 void *data, unsigned int offset, 778 unsigned long len); 779 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 780 gpa_t gpa, unsigned long len); 781 782 #define __kvm_get_guest(kvm, gfn, offset, v) \ 783 ({ \ 784 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 785 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 786 int __ret = -EFAULT; \ 787 \ 788 if (!kvm_is_error_hva(__addr)) \ 789 __ret = get_user(v, __uaddr); \ 790 __ret; \ 791 }) 792 793 #define kvm_get_guest(kvm, gpa, v) \ 794 ({ \ 795 gpa_t __gpa = gpa; \ 796 struct kvm *__kvm = kvm; \ 797 \ 798 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 799 offset_in_page(__gpa), v); \ 800 }) 801 802 #define __kvm_put_guest(kvm, gfn, offset, v) \ 803 ({ \ 804 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 805 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 806 int __ret = -EFAULT; \ 807 \ 808 if (!kvm_is_error_hva(__addr)) \ 809 __ret = put_user(v, __uaddr); \ 810 if (!__ret) \ 811 mark_page_dirty(kvm, gfn); \ 812 __ret; \ 813 }) 814 815 #define kvm_put_guest(kvm, gpa, v) \ 816 ({ \ 817 gpa_t __gpa = gpa; \ 818 struct kvm *__kvm = kvm; \ 819 \ 820 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 821 offset_in_page(__gpa), v); \ 822 }) 823 824 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 825 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 826 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 827 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 828 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 829 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn); 830 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 831 832 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 833 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 834 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 835 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 836 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 837 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 838 struct gfn_to_pfn_cache *cache, bool atomic); 839 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 840 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 841 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 842 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 843 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 844 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 845 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 846 int len); 847 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 848 unsigned long len); 849 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 850 unsigned long len); 851 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 852 int offset, int len); 853 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 854 unsigned long len); 855 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 856 857 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 858 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 859 860 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 861 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 862 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 863 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 864 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 865 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 866 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 867 868 void kvm_flush_remote_tlbs(struct kvm *kvm); 869 void kvm_reload_remote_mmus(struct kvm *kvm); 870 871 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 872 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 873 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 874 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 875 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 876 #endif 877 878 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 879 struct kvm_vcpu *except, 880 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 881 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 882 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 883 struct kvm_vcpu *except); 884 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 885 unsigned long *vcpu_bitmap); 886 887 long kvm_arch_dev_ioctl(struct file *filp, 888 unsigned int ioctl, unsigned long arg); 889 long kvm_arch_vcpu_ioctl(struct file *filp, 890 unsigned int ioctl, unsigned long arg); 891 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 892 893 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 894 895 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 896 struct kvm_memory_slot *slot, 897 gfn_t gfn_offset, 898 unsigned long mask); 899 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 900 901 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 902 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 903 const struct kvm_memory_slot *memslot); 904 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 905 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 906 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 907 int *is_dirty, struct kvm_memory_slot **memslot); 908 #endif 909 910 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 911 bool line_status); 912 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 913 struct kvm_enable_cap *cap); 914 long kvm_arch_vm_ioctl(struct file *filp, 915 unsigned int ioctl, unsigned long arg); 916 917 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 918 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 919 920 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 921 struct kvm_translation *tr); 922 923 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 924 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 925 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 926 struct kvm_sregs *sregs); 927 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 928 struct kvm_sregs *sregs); 929 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 930 struct kvm_mp_state *mp_state); 931 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 932 struct kvm_mp_state *mp_state); 933 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 934 struct kvm_guest_debug *dbg); 935 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 936 937 int kvm_arch_init(void *opaque); 938 void kvm_arch_exit(void); 939 940 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 941 942 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 943 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 944 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 945 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 946 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 947 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 948 949 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 950 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 951 #endif 952 953 int kvm_arch_hardware_enable(void); 954 void kvm_arch_hardware_disable(void); 955 int kvm_arch_hardware_setup(void *opaque); 956 void kvm_arch_hardware_unsetup(void); 957 int kvm_arch_check_processor_compat(void *opaque); 958 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 959 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 960 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 961 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 962 int kvm_arch_post_init_vm(struct kvm *kvm); 963 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 964 965 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 966 /* 967 * All architectures that want to use vzalloc currently also 968 * need their own kvm_arch_alloc_vm implementation. 969 */ 970 static inline struct kvm *kvm_arch_alloc_vm(void) 971 { 972 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 973 } 974 975 static inline void kvm_arch_free_vm(struct kvm *kvm) 976 { 977 kfree(kvm); 978 } 979 #endif 980 981 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 982 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 983 { 984 return -ENOTSUPP; 985 } 986 #endif 987 988 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 989 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 990 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 991 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 992 #else 993 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 994 { 995 } 996 997 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 998 { 999 } 1000 1001 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1002 { 1003 return false; 1004 } 1005 #endif 1006 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1007 void kvm_arch_start_assignment(struct kvm *kvm); 1008 void kvm_arch_end_assignment(struct kvm *kvm); 1009 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1010 #else 1011 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1012 { 1013 } 1014 1015 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1016 { 1017 } 1018 1019 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1020 { 1021 return false; 1022 } 1023 #endif 1024 1025 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1026 { 1027 #ifdef __KVM_HAVE_ARCH_WQP 1028 return vcpu->arch.waitp; 1029 #else 1030 return &vcpu->wait; 1031 #endif 1032 } 1033 1034 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1035 /* 1036 * returns true if the virtual interrupt controller is initialized and 1037 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1038 * controller is dynamically instantiated and this is not always true. 1039 */ 1040 bool kvm_arch_intc_initialized(struct kvm *kvm); 1041 #else 1042 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1043 { 1044 return true; 1045 } 1046 #endif 1047 1048 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1049 void kvm_arch_destroy_vm(struct kvm *kvm); 1050 void kvm_arch_sync_events(struct kvm *kvm); 1051 1052 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1053 1054 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1055 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1056 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1057 1058 struct kvm_irq_ack_notifier { 1059 struct hlist_node link; 1060 unsigned gsi; 1061 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1062 }; 1063 1064 int kvm_irq_map_gsi(struct kvm *kvm, 1065 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1066 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1067 1068 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1069 bool line_status); 1070 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1071 int irq_source_id, int level, bool line_status); 1072 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1073 struct kvm *kvm, int irq_source_id, 1074 int level, bool line_status); 1075 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1076 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1077 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1078 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1079 struct kvm_irq_ack_notifier *kian); 1080 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1081 struct kvm_irq_ack_notifier *kian); 1082 int kvm_request_irq_source_id(struct kvm *kvm); 1083 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1084 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1085 1086 /* 1087 * search_memslots() and __gfn_to_memslot() are here because they are 1088 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1089 * gfn_to_memslot() itself isn't here as an inline because that would 1090 * bloat other code too much. 1091 * 1092 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1093 */ 1094 static inline struct kvm_memory_slot * 1095 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1096 { 1097 int start = 0, end = slots->used_slots; 1098 int slot = atomic_read(&slots->lru_slot); 1099 struct kvm_memory_slot *memslots = slots->memslots; 1100 1101 if (unlikely(!slots->used_slots)) 1102 return NULL; 1103 1104 if (gfn >= memslots[slot].base_gfn && 1105 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1106 return &memslots[slot]; 1107 1108 while (start < end) { 1109 slot = start + (end - start) / 2; 1110 1111 if (gfn >= memslots[slot].base_gfn) 1112 end = slot; 1113 else 1114 start = slot + 1; 1115 } 1116 1117 if (start < slots->used_slots && gfn >= memslots[start].base_gfn && 1118 gfn < memslots[start].base_gfn + memslots[start].npages) { 1119 atomic_set(&slots->lru_slot, start); 1120 return &memslots[start]; 1121 } 1122 1123 return NULL; 1124 } 1125 1126 static inline struct kvm_memory_slot * 1127 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1128 { 1129 return search_memslots(slots, gfn); 1130 } 1131 1132 static inline unsigned long 1133 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1134 { 1135 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1136 } 1137 1138 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1139 { 1140 return gfn_to_memslot(kvm, gfn)->id; 1141 } 1142 1143 static inline gfn_t 1144 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1145 { 1146 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1147 1148 return slot->base_gfn + gfn_offset; 1149 } 1150 1151 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1152 { 1153 return (gpa_t)gfn << PAGE_SHIFT; 1154 } 1155 1156 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1157 { 1158 return (gfn_t)(gpa >> PAGE_SHIFT); 1159 } 1160 1161 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1162 { 1163 return (hpa_t)pfn << PAGE_SHIFT; 1164 } 1165 1166 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1167 gpa_t gpa) 1168 { 1169 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1170 } 1171 1172 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1173 { 1174 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1175 1176 return kvm_is_error_hva(hva); 1177 } 1178 1179 enum kvm_stat_kind { 1180 KVM_STAT_VM, 1181 KVM_STAT_VCPU, 1182 }; 1183 1184 struct kvm_stat_data { 1185 struct kvm *kvm; 1186 struct kvm_stats_debugfs_item *dbgfs_item; 1187 }; 1188 1189 struct kvm_stats_debugfs_item { 1190 const char *name; 1191 int offset; 1192 enum kvm_stat_kind kind; 1193 int mode; 1194 }; 1195 1196 #define KVM_DBGFS_GET_MODE(dbgfs_item) \ 1197 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644) 1198 1199 #define VM_STAT(n, x, ...) \ 1200 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ } 1201 #define VCPU_STAT(n, x, ...) \ 1202 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ } 1203 1204 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1205 extern struct dentry *kvm_debugfs_dir; 1206 1207 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1208 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1209 { 1210 if (unlikely(kvm->mmu_notifier_count)) 1211 return 1; 1212 /* 1213 * Ensure the read of mmu_notifier_count happens before the read 1214 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1215 * mmu_notifier_invalidate_range_end to make sure that the caller 1216 * either sees the old (non-zero) value of mmu_notifier_count or 1217 * the new (incremented) value of mmu_notifier_seq. 1218 * PowerPC Book3s HV KVM calls this under a per-page lock 1219 * rather than under kvm->mmu_lock, for scalability, so 1220 * can't rely on kvm->mmu_lock to keep things ordered. 1221 */ 1222 smp_rmb(); 1223 if (kvm->mmu_notifier_seq != mmu_seq) 1224 return 1; 1225 return 0; 1226 } 1227 1228 static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1229 unsigned long mmu_seq, 1230 unsigned long hva) 1231 { 1232 lockdep_assert_held(&kvm->mmu_lock); 1233 /* 1234 * If mmu_notifier_count is non-zero, then the range maintained by 1235 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1236 * might be being invalidated. Note that it may include some false 1237 * positives, due to shortcuts when handing concurrent invalidations. 1238 */ 1239 if (unlikely(kvm->mmu_notifier_count) && 1240 hva >= kvm->mmu_notifier_range_start && 1241 hva < kvm->mmu_notifier_range_end) 1242 return 1; 1243 if (kvm->mmu_notifier_seq != mmu_seq) 1244 return 1; 1245 return 0; 1246 } 1247 #endif 1248 1249 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1250 1251 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1252 1253 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1254 int kvm_set_irq_routing(struct kvm *kvm, 1255 const struct kvm_irq_routing_entry *entries, 1256 unsigned nr, 1257 unsigned flags); 1258 int kvm_set_routing_entry(struct kvm *kvm, 1259 struct kvm_kernel_irq_routing_entry *e, 1260 const struct kvm_irq_routing_entry *ue); 1261 void kvm_free_irq_routing(struct kvm *kvm); 1262 1263 #else 1264 1265 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1266 1267 #endif 1268 1269 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1270 1271 #ifdef CONFIG_HAVE_KVM_EVENTFD 1272 1273 void kvm_eventfd_init(struct kvm *kvm); 1274 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1275 1276 #ifdef CONFIG_HAVE_KVM_IRQFD 1277 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1278 void kvm_irqfd_release(struct kvm *kvm); 1279 void kvm_irq_routing_update(struct kvm *); 1280 #else 1281 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1282 { 1283 return -EINVAL; 1284 } 1285 1286 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1287 #endif 1288 1289 #else 1290 1291 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1292 1293 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1294 { 1295 return -EINVAL; 1296 } 1297 1298 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1299 1300 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1301 static inline void kvm_irq_routing_update(struct kvm *kvm) 1302 { 1303 } 1304 #endif 1305 1306 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1307 { 1308 return -ENOSYS; 1309 } 1310 1311 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1312 1313 void kvm_arch_irq_routing_update(struct kvm *kvm); 1314 1315 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1316 { 1317 /* 1318 * Ensure the rest of the request is published to kvm_check_request's 1319 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1320 */ 1321 smp_wmb(); 1322 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1323 } 1324 1325 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1326 { 1327 return READ_ONCE(vcpu->requests); 1328 } 1329 1330 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1331 { 1332 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1333 } 1334 1335 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1336 { 1337 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1338 } 1339 1340 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1341 { 1342 if (kvm_test_request(req, vcpu)) { 1343 kvm_clear_request(req, vcpu); 1344 1345 /* 1346 * Ensure the rest of the request is visible to kvm_check_request's 1347 * caller. Paired with the smp_wmb in kvm_make_request. 1348 */ 1349 smp_mb__after_atomic(); 1350 return true; 1351 } else { 1352 return false; 1353 } 1354 } 1355 1356 extern bool kvm_rebooting; 1357 1358 extern unsigned int halt_poll_ns; 1359 extern unsigned int halt_poll_ns_grow; 1360 extern unsigned int halt_poll_ns_grow_start; 1361 extern unsigned int halt_poll_ns_shrink; 1362 1363 struct kvm_device { 1364 const struct kvm_device_ops *ops; 1365 struct kvm *kvm; 1366 void *private; 1367 struct list_head vm_node; 1368 }; 1369 1370 /* create, destroy, and name are mandatory */ 1371 struct kvm_device_ops { 1372 const char *name; 1373 1374 /* 1375 * create is called holding kvm->lock and any operations not suitable 1376 * to do while holding the lock should be deferred to init (see 1377 * below). 1378 */ 1379 int (*create)(struct kvm_device *dev, u32 type); 1380 1381 /* 1382 * init is called after create if create is successful and is called 1383 * outside of holding kvm->lock. 1384 */ 1385 void (*init)(struct kvm_device *dev); 1386 1387 /* 1388 * Destroy is responsible for freeing dev. 1389 * 1390 * Destroy may be called before or after destructors are called 1391 * on emulated I/O regions, depending on whether a reference is 1392 * held by a vcpu or other kvm component that gets destroyed 1393 * after the emulated I/O. 1394 */ 1395 void (*destroy)(struct kvm_device *dev); 1396 1397 /* 1398 * Release is an alternative method to free the device. It is 1399 * called when the device file descriptor is closed. Once 1400 * release is called, the destroy method will not be called 1401 * anymore as the device is removed from the device list of 1402 * the VM. kvm->lock is held. 1403 */ 1404 void (*release)(struct kvm_device *dev); 1405 1406 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1407 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1408 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1409 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1410 unsigned long arg); 1411 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1412 }; 1413 1414 void kvm_device_get(struct kvm_device *dev); 1415 void kvm_device_put(struct kvm_device *dev); 1416 struct kvm_device *kvm_device_from_filp(struct file *filp); 1417 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1418 void kvm_unregister_device_ops(u32 type); 1419 1420 extern struct kvm_device_ops kvm_mpic_ops; 1421 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1422 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1423 1424 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1425 1426 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1427 { 1428 vcpu->spin_loop.in_spin_loop = val; 1429 } 1430 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1431 { 1432 vcpu->spin_loop.dy_eligible = val; 1433 } 1434 1435 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1436 1437 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1438 { 1439 } 1440 1441 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1442 { 1443 } 1444 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1445 1446 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1447 { 1448 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1449 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1450 } 1451 1452 struct kvm_vcpu *kvm_get_running_vcpu(void); 1453 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1454 1455 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1456 bool kvm_arch_has_irq_bypass(void); 1457 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1458 struct irq_bypass_producer *); 1459 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1460 struct irq_bypass_producer *); 1461 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1462 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1463 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1464 uint32_t guest_irq, bool set); 1465 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1466 1467 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1468 /* If we wakeup during the poll time, was it a sucessful poll? */ 1469 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1470 { 1471 return vcpu->valid_wakeup; 1472 } 1473 1474 #else 1475 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1476 { 1477 return true; 1478 } 1479 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1480 1481 #ifdef CONFIG_HAVE_KVM_NO_POLL 1482 /* Callback that tells if we must not poll */ 1483 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1484 #else 1485 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1486 { 1487 return false; 1488 } 1489 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1490 1491 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1492 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1493 unsigned int ioctl, unsigned long arg); 1494 #else 1495 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1496 unsigned int ioctl, 1497 unsigned long arg) 1498 { 1499 return -ENOIOCTLCMD; 1500 } 1501 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1502 1503 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1504 unsigned long start, unsigned long end); 1505 1506 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1507 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1508 #else 1509 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1510 { 1511 return 0; 1512 } 1513 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1514 1515 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1516 1517 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1518 uintptr_t data, const char *name, 1519 struct task_struct **thread_ptr); 1520 1521 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1522 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1523 { 1524 vcpu->run->exit_reason = KVM_EXIT_INTR; 1525 vcpu->stat.signal_exits++; 1526 } 1527 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1528 1529 /* 1530 * This defines how many reserved entries we want to keep before we 1531 * kick the vcpu to the userspace to avoid dirty ring full. This 1532 * value can be tuned to higher if e.g. PML is enabled on the host. 1533 */ 1534 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 1535 1536 /* Max number of entries allowed for each kvm dirty ring */ 1537 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 1538 1539 #endif 1540