xref: /linux-6.15/include/linux/kvm_host.h (revision fa76c775)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/minmax.h>
15 #include <linux/mm.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/preempt.h>
18 #include <linux/msi.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 #include <linux/rcupdate.h>
22 #include <linux/ratelimit.h>
23 #include <linux/err.h>
24 #include <linux/irqflags.h>
25 #include <linux/context_tracking.h>
26 #include <linux/irqbypass.h>
27 #include <linux/rcuwait.h>
28 #include <linux/refcount.h>
29 #include <linux/nospec.h>
30 #include <asm/signal.h>
31 
32 #include <linux/kvm.h>
33 #include <linux/kvm_para.h>
34 
35 #include <linux/kvm_types.h>
36 
37 #include <asm/kvm_host.h>
38 #include <linux/kvm_dirty_ring.h>
39 
40 #ifndef KVM_MAX_VCPU_ID
41 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
42 #endif
43 
44 /*
45  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
46  * in kvm, other bits are visible for userspace which are defined in
47  * include/linux/kvm_h.
48  */
49 #define KVM_MEMSLOT_INVALID	(1UL << 16)
50 
51 /*
52  * Bit 63 of the memslot generation number is an "update in-progress flag",
53  * e.g. is temporarily set for the duration of install_new_memslots().
54  * This flag effectively creates a unique generation number that is used to
55  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
56  * i.e. may (or may not) have come from the previous memslots generation.
57  *
58  * This is necessary because the actual memslots update is not atomic with
59  * respect to the generation number update.  Updating the generation number
60  * first would allow a vCPU to cache a spte from the old memslots using the
61  * new generation number, and updating the generation number after switching
62  * to the new memslots would allow cache hits using the old generation number
63  * to reference the defunct memslots.
64  *
65  * This mechanism is used to prevent getting hits in KVM's caches while a
66  * memslot update is in-progress, and to prevent cache hits *after* updating
67  * the actual generation number against accesses that were inserted into the
68  * cache *before* the memslots were updated.
69  */
70 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
71 
72 /* Two fragments for cross MMIO pages. */
73 #define KVM_MAX_MMIO_FRAGMENTS	2
74 
75 #ifndef KVM_ADDRESS_SPACE_NUM
76 #define KVM_ADDRESS_SPACE_NUM	1
77 #endif
78 
79 /*
80  * For the normal pfn, the highest 12 bits should be zero,
81  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
82  * mask bit 63 to indicate the noslot pfn.
83  */
84 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
85 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
86 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
87 
88 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
89 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
90 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
91 
92 /*
93  * error pfns indicate that the gfn is in slot but faild to
94  * translate it to pfn on host.
95  */
96 static inline bool is_error_pfn(kvm_pfn_t pfn)
97 {
98 	return !!(pfn & KVM_PFN_ERR_MASK);
99 }
100 
101 /*
102  * error_noslot pfns indicate that the gfn can not be
103  * translated to pfn - it is not in slot or failed to
104  * translate it to pfn.
105  */
106 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
107 {
108 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
109 }
110 
111 /* noslot pfn indicates that the gfn is not in slot. */
112 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
113 {
114 	return pfn == KVM_PFN_NOSLOT;
115 }
116 
117 /*
118  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
119  * provide own defines and kvm_is_error_hva
120  */
121 #ifndef KVM_HVA_ERR_BAD
122 
123 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
124 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
125 
126 static inline bool kvm_is_error_hva(unsigned long addr)
127 {
128 	return addr >= PAGE_OFFSET;
129 }
130 
131 #endif
132 
133 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
134 
135 static inline bool is_error_page(struct page *page)
136 {
137 	return IS_ERR(page);
138 }
139 
140 #define KVM_REQUEST_MASK           GENMASK(7,0)
141 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
142 #define KVM_REQUEST_WAIT           BIT(9)
143 /*
144  * Architecture-independent vcpu->requests bit members
145  * Bits 4-7 are reserved for more arch-independent bits.
146  */
147 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
148 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149 #define KVM_REQ_PENDING_TIMER     2
150 #define KVM_REQ_UNHALT            3
151 #define KVM_REQUEST_ARCH_BASE     8
152 
153 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
154 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
155 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
156 })
157 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
158 
159 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
160 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
161 
162 extern struct mutex kvm_lock;
163 extern struct list_head vm_list;
164 
165 struct kvm_io_range {
166 	gpa_t addr;
167 	int len;
168 	struct kvm_io_device *dev;
169 };
170 
171 #define NR_IOBUS_DEVS 1000
172 
173 struct kvm_io_bus {
174 	int dev_count;
175 	int ioeventfd_count;
176 	struct kvm_io_range range[];
177 };
178 
179 enum kvm_bus {
180 	KVM_MMIO_BUS,
181 	KVM_PIO_BUS,
182 	KVM_VIRTIO_CCW_NOTIFY_BUS,
183 	KVM_FAST_MMIO_BUS,
184 	KVM_NR_BUSES
185 };
186 
187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
188 		     int len, const void *val);
189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
190 			    gpa_t addr, int len, const void *val, long cookie);
191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
192 		    int len, void *val);
193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
194 			    int len, struct kvm_io_device *dev);
195 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 			      struct kvm_io_device *dev);
197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 					 gpa_t addr);
199 
200 #ifdef CONFIG_KVM_ASYNC_PF
201 struct kvm_async_pf {
202 	struct work_struct work;
203 	struct list_head link;
204 	struct list_head queue;
205 	struct kvm_vcpu *vcpu;
206 	struct mm_struct *mm;
207 	gpa_t cr2_or_gpa;
208 	unsigned long addr;
209 	struct kvm_arch_async_pf arch;
210 	bool   wakeup_all;
211 	bool notpresent_injected;
212 };
213 
214 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
215 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
216 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
217 			unsigned long hva, struct kvm_arch_async_pf *arch);
218 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
219 #endif
220 
221 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
222 struct kvm_gfn_range {
223 	struct kvm_memory_slot *slot;
224 	gfn_t start;
225 	gfn_t end;
226 	pte_t pte;
227 	bool may_block;
228 };
229 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
230 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
231 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
232 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
233 #endif
234 
235 enum {
236 	OUTSIDE_GUEST_MODE,
237 	IN_GUEST_MODE,
238 	EXITING_GUEST_MODE,
239 	READING_SHADOW_PAGE_TABLES,
240 };
241 
242 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
243 
244 struct kvm_host_map {
245 	/*
246 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
247 	 * a 'struct page' for it. When using mem= kernel parameter some memory
248 	 * can be used as guest memory but they are not managed by host
249 	 * kernel).
250 	 * If 'pfn' is not managed by the host kernel, this field is
251 	 * initialized to KVM_UNMAPPED_PAGE.
252 	 */
253 	struct page *page;
254 	void *hva;
255 	kvm_pfn_t pfn;
256 	kvm_pfn_t gfn;
257 };
258 
259 /*
260  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
261  * directly to check for that.
262  */
263 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
264 {
265 	return !!map->hva;
266 }
267 
268 /*
269  * Sometimes a large or cross-page mmio needs to be broken up into separate
270  * exits for userspace servicing.
271  */
272 struct kvm_mmio_fragment {
273 	gpa_t gpa;
274 	void *data;
275 	unsigned len;
276 };
277 
278 struct kvm_vcpu {
279 	struct kvm *kvm;
280 #ifdef CONFIG_PREEMPT_NOTIFIERS
281 	struct preempt_notifier preempt_notifier;
282 #endif
283 	int cpu;
284 	int vcpu_id; /* id given by userspace at creation */
285 	int vcpu_idx; /* index in kvm->vcpus array */
286 	int srcu_idx;
287 	int mode;
288 	u64 requests;
289 	unsigned long guest_debug;
290 
291 	int pre_pcpu;
292 	struct list_head blocked_vcpu_list;
293 
294 	struct mutex mutex;
295 	struct kvm_run *run;
296 
297 	struct rcuwait wait;
298 	struct pid __rcu *pid;
299 	int sigset_active;
300 	sigset_t sigset;
301 	struct kvm_vcpu_stat stat;
302 	unsigned int halt_poll_ns;
303 	bool valid_wakeup;
304 
305 #ifdef CONFIG_HAS_IOMEM
306 	int mmio_needed;
307 	int mmio_read_completed;
308 	int mmio_is_write;
309 	int mmio_cur_fragment;
310 	int mmio_nr_fragments;
311 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
312 #endif
313 
314 #ifdef CONFIG_KVM_ASYNC_PF
315 	struct {
316 		u32 queued;
317 		struct list_head queue;
318 		struct list_head done;
319 		spinlock_t lock;
320 	} async_pf;
321 #endif
322 
323 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
324 	/*
325 	 * Cpu relax intercept or pause loop exit optimization
326 	 * in_spin_loop: set when a vcpu does a pause loop exit
327 	 *  or cpu relax intercepted.
328 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
329 	 */
330 	struct {
331 		bool in_spin_loop;
332 		bool dy_eligible;
333 	} spin_loop;
334 #endif
335 	bool preempted;
336 	bool ready;
337 	struct kvm_vcpu_arch arch;
338 	struct kvm_dirty_ring dirty_ring;
339 };
340 
341 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
342 {
343 	/*
344 	 * The memory barrier ensures a previous write to vcpu->requests cannot
345 	 * be reordered with the read of vcpu->mode.  It pairs with the general
346 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
347 	 */
348 	smp_mb__before_atomic();
349 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
350 }
351 
352 /*
353  * Some of the bitops functions do not support too long bitmaps.
354  * This number must be determined not to exceed such limits.
355  */
356 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
357 
358 struct kvm_memory_slot {
359 	gfn_t base_gfn;
360 	unsigned long npages;
361 	unsigned long *dirty_bitmap;
362 	struct kvm_arch_memory_slot arch;
363 	unsigned long userspace_addr;
364 	u32 flags;
365 	short id;
366 	u16 as_id;
367 };
368 
369 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
370 {
371 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
372 }
373 
374 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
375 {
376 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
377 }
378 
379 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
380 {
381 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
382 
383 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
384 }
385 
386 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
387 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
388 #endif
389 
390 struct kvm_s390_adapter_int {
391 	u64 ind_addr;
392 	u64 summary_addr;
393 	u64 ind_offset;
394 	u32 summary_offset;
395 	u32 adapter_id;
396 };
397 
398 struct kvm_hv_sint {
399 	u32 vcpu;
400 	u32 sint;
401 };
402 
403 struct kvm_kernel_irq_routing_entry {
404 	u32 gsi;
405 	u32 type;
406 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
407 		   struct kvm *kvm, int irq_source_id, int level,
408 		   bool line_status);
409 	union {
410 		struct {
411 			unsigned irqchip;
412 			unsigned pin;
413 		} irqchip;
414 		struct {
415 			u32 address_lo;
416 			u32 address_hi;
417 			u32 data;
418 			u32 flags;
419 			u32 devid;
420 		} msi;
421 		struct kvm_s390_adapter_int adapter;
422 		struct kvm_hv_sint hv_sint;
423 	};
424 	struct hlist_node link;
425 };
426 
427 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
428 struct kvm_irq_routing_table {
429 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
430 	u32 nr_rt_entries;
431 	/*
432 	 * Array indexed by gsi. Each entry contains list of irq chips
433 	 * the gsi is connected to.
434 	 */
435 	struct hlist_head map[];
436 };
437 #endif
438 
439 #ifndef KVM_PRIVATE_MEM_SLOTS
440 #define KVM_PRIVATE_MEM_SLOTS 0
441 #endif
442 
443 #define KVM_MEM_SLOTS_NUM SHRT_MAX
444 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
445 
446 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
447 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
448 {
449 	return 0;
450 }
451 #endif
452 
453 /*
454  * Note:
455  * memslots are not sorted by id anymore, please use id_to_memslot()
456  * to get the memslot by its id.
457  */
458 struct kvm_memslots {
459 	u64 generation;
460 	/* The mapping table from slot id to the index in memslots[]. */
461 	short id_to_index[KVM_MEM_SLOTS_NUM];
462 	atomic_t lru_slot;
463 	int used_slots;
464 	struct kvm_memory_slot memslots[];
465 };
466 
467 struct kvm {
468 #ifdef KVM_HAVE_MMU_RWLOCK
469 	rwlock_t mmu_lock;
470 #else
471 	spinlock_t mmu_lock;
472 #endif /* KVM_HAVE_MMU_RWLOCK */
473 
474 	struct mutex slots_lock;
475 	struct mm_struct *mm; /* userspace tied to this vm */
476 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
477 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
478 
479 	/*
480 	 * created_vcpus is protected by kvm->lock, and is incremented
481 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
482 	 * incremented after storing the kvm_vcpu pointer in vcpus,
483 	 * and is accessed atomically.
484 	 */
485 	atomic_t online_vcpus;
486 	int created_vcpus;
487 	int last_boosted_vcpu;
488 	struct list_head vm_list;
489 	struct mutex lock;
490 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
491 #ifdef CONFIG_HAVE_KVM_EVENTFD
492 	struct {
493 		spinlock_t        lock;
494 		struct list_head  items;
495 		struct list_head  resampler_list;
496 		struct mutex      resampler_lock;
497 	} irqfds;
498 	struct list_head ioeventfds;
499 #endif
500 	struct kvm_vm_stat stat;
501 	struct kvm_arch arch;
502 	refcount_t users_count;
503 #ifdef CONFIG_KVM_MMIO
504 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
505 	spinlock_t ring_lock;
506 	struct list_head coalesced_zones;
507 #endif
508 
509 	struct mutex irq_lock;
510 #ifdef CONFIG_HAVE_KVM_IRQCHIP
511 	/*
512 	 * Update side is protected by irq_lock.
513 	 */
514 	struct kvm_irq_routing_table __rcu *irq_routing;
515 #endif
516 #ifdef CONFIG_HAVE_KVM_IRQFD
517 	struct hlist_head irq_ack_notifier_list;
518 #endif
519 
520 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
521 	struct mmu_notifier mmu_notifier;
522 	unsigned long mmu_notifier_seq;
523 	long mmu_notifier_count;
524 	unsigned long mmu_notifier_range_start;
525 	unsigned long mmu_notifier_range_end;
526 #endif
527 	long tlbs_dirty;
528 	struct list_head devices;
529 	u64 manual_dirty_log_protect;
530 	struct dentry *debugfs_dentry;
531 	struct kvm_stat_data **debugfs_stat_data;
532 	struct srcu_struct srcu;
533 	struct srcu_struct irq_srcu;
534 	pid_t userspace_pid;
535 	unsigned int max_halt_poll_ns;
536 	u32 dirty_ring_size;
537 };
538 
539 #define kvm_err(fmt, ...) \
540 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
541 #define kvm_info(fmt, ...) \
542 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
543 #define kvm_debug(fmt, ...) \
544 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
545 #define kvm_debug_ratelimited(fmt, ...) \
546 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
547 			     ## __VA_ARGS__)
548 #define kvm_pr_unimpl(fmt, ...) \
549 	pr_err_ratelimited("kvm [%i]: " fmt, \
550 			   task_tgid_nr(current), ## __VA_ARGS__)
551 
552 /* The guest did something we don't support. */
553 #define vcpu_unimpl(vcpu, fmt, ...)					\
554 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
555 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
556 
557 #define vcpu_debug(vcpu, fmt, ...)					\
558 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
559 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
560 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
561 			      ## __VA_ARGS__)
562 #define vcpu_err(vcpu, fmt, ...)					\
563 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
564 
565 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
566 {
567 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
568 }
569 
570 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
571 {
572 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
573 				      lockdep_is_held(&kvm->slots_lock) ||
574 				      !refcount_read(&kvm->users_count));
575 }
576 
577 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
578 {
579 	int num_vcpus = atomic_read(&kvm->online_vcpus);
580 	i = array_index_nospec(i, num_vcpus);
581 
582 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
583 	smp_rmb();
584 	return kvm->vcpus[i];
585 }
586 
587 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
588 	for (idx = 0; \
589 	     idx < atomic_read(&kvm->online_vcpus) && \
590 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
591 	     idx++)
592 
593 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
594 {
595 	struct kvm_vcpu *vcpu = NULL;
596 	int i;
597 
598 	if (id < 0)
599 		return NULL;
600 	if (id < KVM_MAX_VCPUS)
601 		vcpu = kvm_get_vcpu(kvm, id);
602 	if (vcpu && vcpu->vcpu_id == id)
603 		return vcpu;
604 	kvm_for_each_vcpu(i, vcpu, kvm)
605 		if (vcpu->vcpu_id == id)
606 			return vcpu;
607 	return NULL;
608 }
609 
610 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
611 {
612 	return vcpu->vcpu_idx;
613 }
614 
615 #define kvm_for_each_memslot(memslot, slots)				\
616 	for (memslot = &slots->memslots[0];				\
617 	     memslot < slots->memslots + slots->used_slots; memslot++)	\
618 		if (WARN_ON_ONCE(!memslot->npages)) {			\
619 		} else
620 
621 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
622 
623 void vcpu_load(struct kvm_vcpu *vcpu);
624 void vcpu_put(struct kvm_vcpu *vcpu);
625 
626 #ifdef __KVM_HAVE_IOAPIC
627 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
628 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
629 #else
630 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
631 {
632 }
633 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
634 {
635 }
636 #endif
637 
638 #ifdef CONFIG_HAVE_KVM_IRQFD
639 int kvm_irqfd_init(void);
640 void kvm_irqfd_exit(void);
641 #else
642 static inline int kvm_irqfd_init(void)
643 {
644 	return 0;
645 }
646 
647 static inline void kvm_irqfd_exit(void)
648 {
649 }
650 #endif
651 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
652 		  struct module *module);
653 void kvm_exit(void);
654 
655 void kvm_get_kvm(struct kvm *kvm);
656 void kvm_put_kvm(struct kvm *kvm);
657 void kvm_put_kvm_no_destroy(struct kvm *kvm);
658 
659 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
660 {
661 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
662 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
663 			lockdep_is_held(&kvm->slots_lock) ||
664 			!refcount_read(&kvm->users_count));
665 }
666 
667 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
668 {
669 	return __kvm_memslots(kvm, 0);
670 }
671 
672 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
673 {
674 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
675 
676 	return __kvm_memslots(vcpu->kvm, as_id);
677 }
678 
679 static inline
680 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
681 {
682 	int index = slots->id_to_index[id];
683 	struct kvm_memory_slot *slot;
684 
685 	if (index < 0)
686 		return NULL;
687 
688 	slot = &slots->memslots[index];
689 
690 	WARN_ON(slot->id != id);
691 	return slot;
692 }
693 
694 /*
695  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
696  * - create a new memory slot
697  * - delete an existing memory slot
698  * - modify an existing memory slot
699  *   -- move it in the guest physical memory space
700  *   -- just change its flags
701  *
702  * Since flags can be changed by some of these operations, the following
703  * differentiation is the best we can do for __kvm_set_memory_region():
704  */
705 enum kvm_mr_change {
706 	KVM_MR_CREATE,
707 	KVM_MR_DELETE,
708 	KVM_MR_MOVE,
709 	KVM_MR_FLAGS_ONLY,
710 };
711 
712 int kvm_set_memory_region(struct kvm *kvm,
713 			  const struct kvm_userspace_memory_region *mem);
714 int __kvm_set_memory_region(struct kvm *kvm,
715 			    const struct kvm_userspace_memory_region *mem);
716 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
717 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
718 int kvm_arch_prepare_memory_region(struct kvm *kvm,
719 				struct kvm_memory_slot *memslot,
720 				const struct kvm_userspace_memory_region *mem,
721 				enum kvm_mr_change change);
722 void kvm_arch_commit_memory_region(struct kvm *kvm,
723 				const struct kvm_userspace_memory_region *mem,
724 				struct kvm_memory_slot *old,
725 				const struct kvm_memory_slot *new,
726 				enum kvm_mr_change change);
727 /* flush all memory translations */
728 void kvm_arch_flush_shadow_all(struct kvm *kvm);
729 /* flush memory translations pointing to 'slot' */
730 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
731 				   struct kvm_memory_slot *slot);
732 
733 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
734 			    struct page **pages, int nr_pages);
735 
736 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
737 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
738 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
739 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
740 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
741 				      bool *writable);
742 void kvm_release_page_clean(struct page *page);
743 void kvm_release_page_dirty(struct page *page);
744 void kvm_set_page_accessed(struct page *page);
745 
746 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
747 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
748 		      bool *writable);
749 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
750 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
751 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
752 			       bool atomic, bool *async, bool write_fault,
753 			       bool *writable, hva_t *hva);
754 
755 void kvm_release_pfn_clean(kvm_pfn_t pfn);
756 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
757 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
758 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
759 void kvm_get_pfn(kvm_pfn_t pfn);
760 
761 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
762 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
763 			int len);
764 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
765 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
766 			   void *data, unsigned long len);
767 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
768 				 void *data, unsigned int offset,
769 				 unsigned long len);
770 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
771 			 int offset, int len);
772 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
773 		    unsigned long len);
774 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
775 			   void *data, unsigned long len);
776 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
777 				  void *data, unsigned int offset,
778 				  unsigned long len);
779 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
780 			      gpa_t gpa, unsigned long len);
781 
782 #define __kvm_get_guest(kvm, gfn, offset, v)				\
783 ({									\
784 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
785 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
786 	int __ret = -EFAULT;						\
787 									\
788 	if (!kvm_is_error_hva(__addr))					\
789 		__ret = get_user(v, __uaddr);				\
790 	__ret;								\
791 })
792 
793 #define kvm_get_guest(kvm, gpa, v)					\
794 ({									\
795 	gpa_t __gpa = gpa;						\
796 	struct kvm *__kvm = kvm;					\
797 									\
798 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
799 			offset_in_page(__gpa), v);			\
800 })
801 
802 #define __kvm_put_guest(kvm, gfn, offset, v)				\
803 ({									\
804 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
805 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
806 	int __ret = -EFAULT;						\
807 									\
808 	if (!kvm_is_error_hva(__addr))					\
809 		__ret = put_user(v, __uaddr);				\
810 	if (!__ret)							\
811 		mark_page_dirty(kvm, gfn);				\
812 	__ret;								\
813 })
814 
815 #define kvm_put_guest(kvm, gpa, v)					\
816 ({									\
817 	gpa_t __gpa = gpa;						\
818 	struct kvm *__kvm = kvm;					\
819 									\
820 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
821 			offset_in_page(__gpa), v);			\
822 })
823 
824 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
825 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
826 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
827 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
828 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
829 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
830 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
831 
832 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
833 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
834 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
835 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
836 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
837 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
838 		struct gfn_to_pfn_cache *cache, bool atomic);
839 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
840 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
841 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
842 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
843 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
844 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
845 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
846 			     int len);
847 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
848 			       unsigned long len);
849 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
850 			unsigned long len);
851 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
852 			      int offset, int len);
853 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
854 			 unsigned long len);
855 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
856 
857 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
858 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
859 
860 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
861 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
862 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
863 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
864 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
865 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
866 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
867 
868 void kvm_flush_remote_tlbs(struct kvm *kvm);
869 void kvm_reload_remote_mmus(struct kvm *kvm);
870 
871 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
872 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
873 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
874 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
875 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
876 #endif
877 
878 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
879 				 struct kvm_vcpu *except,
880 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
881 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
882 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
883 				      struct kvm_vcpu *except);
884 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
885 				unsigned long *vcpu_bitmap);
886 
887 long kvm_arch_dev_ioctl(struct file *filp,
888 			unsigned int ioctl, unsigned long arg);
889 long kvm_arch_vcpu_ioctl(struct file *filp,
890 			 unsigned int ioctl, unsigned long arg);
891 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
892 
893 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
894 
895 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
896 					struct kvm_memory_slot *slot,
897 					gfn_t gfn_offset,
898 					unsigned long mask);
899 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
900 
901 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
902 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
903 					const struct kvm_memory_slot *memslot);
904 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
905 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
906 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
907 		      int *is_dirty, struct kvm_memory_slot **memslot);
908 #endif
909 
910 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
911 			bool line_status);
912 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
913 			    struct kvm_enable_cap *cap);
914 long kvm_arch_vm_ioctl(struct file *filp,
915 		       unsigned int ioctl, unsigned long arg);
916 
917 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
918 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
919 
920 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
921 				    struct kvm_translation *tr);
922 
923 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
924 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
925 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
926 				  struct kvm_sregs *sregs);
927 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
928 				  struct kvm_sregs *sregs);
929 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
930 				    struct kvm_mp_state *mp_state);
931 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
932 				    struct kvm_mp_state *mp_state);
933 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
934 					struct kvm_guest_debug *dbg);
935 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
936 
937 int kvm_arch_init(void *opaque);
938 void kvm_arch_exit(void);
939 
940 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
941 
942 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
943 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
944 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
945 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
946 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
947 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
948 
949 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
950 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
951 #endif
952 
953 int kvm_arch_hardware_enable(void);
954 void kvm_arch_hardware_disable(void);
955 int kvm_arch_hardware_setup(void *opaque);
956 void kvm_arch_hardware_unsetup(void);
957 int kvm_arch_check_processor_compat(void *opaque);
958 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
959 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
960 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
961 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
962 int kvm_arch_post_init_vm(struct kvm *kvm);
963 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
964 
965 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
966 /*
967  * All architectures that want to use vzalloc currently also
968  * need their own kvm_arch_alloc_vm implementation.
969  */
970 static inline struct kvm *kvm_arch_alloc_vm(void)
971 {
972 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
973 }
974 
975 static inline void kvm_arch_free_vm(struct kvm *kvm)
976 {
977 	kfree(kvm);
978 }
979 #endif
980 
981 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
982 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
983 {
984 	return -ENOTSUPP;
985 }
986 #endif
987 
988 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
989 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
990 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
991 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
992 #else
993 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
994 {
995 }
996 
997 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
998 {
999 }
1000 
1001 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1002 {
1003 	return false;
1004 }
1005 #endif
1006 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1007 void kvm_arch_start_assignment(struct kvm *kvm);
1008 void kvm_arch_end_assignment(struct kvm *kvm);
1009 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1010 #else
1011 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1012 {
1013 }
1014 
1015 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1016 {
1017 }
1018 
1019 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1020 {
1021 	return false;
1022 }
1023 #endif
1024 
1025 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1026 {
1027 #ifdef __KVM_HAVE_ARCH_WQP
1028 	return vcpu->arch.waitp;
1029 #else
1030 	return &vcpu->wait;
1031 #endif
1032 }
1033 
1034 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1035 /*
1036  * returns true if the virtual interrupt controller is initialized and
1037  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1038  * controller is dynamically instantiated and this is not always true.
1039  */
1040 bool kvm_arch_intc_initialized(struct kvm *kvm);
1041 #else
1042 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1043 {
1044 	return true;
1045 }
1046 #endif
1047 
1048 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1049 void kvm_arch_destroy_vm(struct kvm *kvm);
1050 void kvm_arch_sync_events(struct kvm *kvm);
1051 
1052 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1053 
1054 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1055 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1056 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1057 
1058 struct kvm_irq_ack_notifier {
1059 	struct hlist_node link;
1060 	unsigned gsi;
1061 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1062 };
1063 
1064 int kvm_irq_map_gsi(struct kvm *kvm,
1065 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1066 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1067 
1068 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1069 		bool line_status);
1070 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1071 		int irq_source_id, int level, bool line_status);
1072 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1073 			       struct kvm *kvm, int irq_source_id,
1074 			       int level, bool line_status);
1075 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1076 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1077 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1078 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1079 				   struct kvm_irq_ack_notifier *kian);
1080 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1081 				   struct kvm_irq_ack_notifier *kian);
1082 int kvm_request_irq_source_id(struct kvm *kvm);
1083 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1084 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1085 
1086 /*
1087  * search_memslots() and __gfn_to_memslot() are here because they are
1088  * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1089  * gfn_to_memslot() itself isn't here as an inline because that would
1090  * bloat other code too much.
1091  *
1092  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1093  */
1094 static inline struct kvm_memory_slot *
1095 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1096 {
1097 	int start = 0, end = slots->used_slots;
1098 	int slot = atomic_read(&slots->lru_slot);
1099 	struct kvm_memory_slot *memslots = slots->memslots;
1100 
1101 	if (unlikely(!slots->used_slots))
1102 		return NULL;
1103 
1104 	if (gfn >= memslots[slot].base_gfn &&
1105 	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
1106 		return &memslots[slot];
1107 
1108 	while (start < end) {
1109 		slot = start + (end - start) / 2;
1110 
1111 		if (gfn >= memslots[slot].base_gfn)
1112 			end = slot;
1113 		else
1114 			start = slot + 1;
1115 	}
1116 
1117 	if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1118 	    gfn < memslots[start].base_gfn + memslots[start].npages) {
1119 		atomic_set(&slots->lru_slot, start);
1120 		return &memslots[start];
1121 	}
1122 
1123 	return NULL;
1124 }
1125 
1126 static inline struct kvm_memory_slot *
1127 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1128 {
1129 	return search_memslots(slots, gfn);
1130 }
1131 
1132 static inline unsigned long
1133 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1134 {
1135 	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1136 }
1137 
1138 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1139 {
1140 	return gfn_to_memslot(kvm, gfn)->id;
1141 }
1142 
1143 static inline gfn_t
1144 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1145 {
1146 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1147 
1148 	return slot->base_gfn + gfn_offset;
1149 }
1150 
1151 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1152 {
1153 	return (gpa_t)gfn << PAGE_SHIFT;
1154 }
1155 
1156 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1157 {
1158 	return (gfn_t)(gpa >> PAGE_SHIFT);
1159 }
1160 
1161 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1162 {
1163 	return (hpa_t)pfn << PAGE_SHIFT;
1164 }
1165 
1166 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1167 						gpa_t gpa)
1168 {
1169 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1170 }
1171 
1172 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1173 {
1174 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1175 
1176 	return kvm_is_error_hva(hva);
1177 }
1178 
1179 enum kvm_stat_kind {
1180 	KVM_STAT_VM,
1181 	KVM_STAT_VCPU,
1182 };
1183 
1184 struct kvm_stat_data {
1185 	struct kvm *kvm;
1186 	struct kvm_stats_debugfs_item *dbgfs_item;
1187 };
1188 
1189 struct kvm_stats_debugfs_item {
1190 	const char *name;
1191 	int offset;
1192 	enum kvm_stat_kind kind;
1193 	int mode;
1194 };
1195 
1196 #define KVM_DBGFS_GET_MODE(dbgfs_item)                                         \
1197 	((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1198 
1199 #define VM_STAT(n, x, ...) 							\
1200 	{ n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1201 #define VCPU_STAT(n, x, ...)							\
1202 	{ n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1203 
1204 extern struct kvm_stats_debugfs_item debugfs_entries[];
1205 extern struct dentry *kvm_debugfs_dir;
1206 
1207 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1208 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1209 {
1210 	if (unlikely(kvm->mmu_notifier_count))
1211 		return 1;
1212 	/*
1213 	 * Ensure the read of mmu_notifier_count happens before the read
1214 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1215 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1216 	 * either sees the old (non-zero) value of mmu_notifier_count or
1217 	 * the new (incremented) value of mmu_notifier_seq.
1218 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1219 	 * rather than under kvm->mmu_lock, for scalability, so
1220 	 * can't rely on kvm->mmu_lock to keep things ordered.
1221 	 */
1222 	smp_rmb();
1223 	if (kvm->mmu_notifier_seq != mmu_seq)
1224 		return 1;
1225 	return 0;
1226 }
1227 
1228 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1229 					 unsigned long mmu_seq,
1230 					 unsigned long hva)
1231 {
1232 	lockdep_assert_held(&kvm->mmu_lock);
1233 	/*
1234 	 * If mmu_notifier_count is non-zero, then the range maintained by
1235 	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1236 	 * might be being invalidated. Note that it may include some false
1237 	 * positives, due to shortcuts when handing concurrent invalidations.
1238 	 */
1239 	if (unlikely(kvm->mmu_notifier_count) &&
1240 	    hva >= kvm->mmu_notifier_range_start &&
1241 	    hva < kvm->mmu_notifier_range_end)
1242 		return 1;
1243 	if (kvm->mmu_notifier_seq != mmu_seq)
1244 		return 1;
1245 	return 0;
1246 }
1247 #endif
1248 
1249 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1250 
1251 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1252 
1253 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1254 int kvm_set_irq_routing(struct kvm *kvm,
1255 			const struct kvm_irq_routing_entry *entries,
1256 			unsigned nr,
1257 			unsigned flags);
1258 int kvm_set_routing_entry(struct kvm *kvm,
1259 			  struct kvm_kernel_irq_routing_entry *e,
1260 			  const struct kvm_irq_routing_entry *ue);
1261 void kvm_free_irq_routing(struct kvm *kvm);
1262 
1263 #else
1264 
1265 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1266 
1267 #endif
1268 
1269 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1270 
1271 #ifdef CONFIG_HAVE_KVM_EVENTFD
1272 
1273 void kvm_eventfd_init(struct kvm *kvm);
1274 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1275 
1276 #ifdef CONFIG_HAVE_KVM_IRQFD
1277 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1278 void kvm_irqfd_release(struct kvm *kvm);
1279 void kvm_irq_routing_update(struct kvm *);
1280 #else
1281 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1282 {
1283 	return -EINVAL;
1284 }
1285 
1286 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1287 #endif
1288 
1289 #else
1290 
1291 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1292 
1293 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1294 {
1295 	return -EINVAL;
1296 }
1297 
1298 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1299 
1300 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1301 static inline void kvm_irq_routing_update(struct kvm *kvm)
1302 {
1303 }
1304 #endif
1305 
1306 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1307 {
1308 	return -ENOSYS;
1309 }
1310 
1311 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1312 
1313 void kvm_arch_irq_routing_update(struct kvm *kvm);
1314 
1315 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1316 {
1317 	/*
1318 	 * Ensure the rest of the request is published to kvm_check_request's
1319 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1320 	 */
1321 	smp_wmb();
1322 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1323 }
1324 
1325 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1326 {
1327 	return READ_ONCE(vcpu->requests);
1328 }
1329 
1330 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1331 {
1332 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1333 }
1334 
1335 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1336 {
1337 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1338 }
1339 
1340 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1341 {
1342 	if (kvm_test_request(req, vcpu)) {
1343 		kvm_clear_request(req, vcpu);
1344 
1345 		/*
1346 		 * Ensure the rest of the request is visible to kvm_check_request's
1347 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1348 		 */
1349 		smp_mb__after_atomic();
1350 		return true;
1351 	} else {
1352 		return false;
1353 	}
1354 }
1355 
1356 extern bool kvm_rebooting;
1357 
1358 extern unsigned int halt_poll_ns;
1359 extern unsigned int halt_poll_ns_grow;
1360 extern unsigned int halt_poll_ns_grow_start;
1361 extern unsigned int halt_poll_ns_shrink;
1362 
1363 struct kvm_device {
1364 	const struct kvm_device_ops *ops;
1365 	struct kvm *kvm;
1366 	void *private;
1367 	struct list_head vm_node;
1368 };
1369 
1370 /* create, destroy, and name are mandatory */
1371 struct kvm_device_ops {
1372 	const char *name;
1373 
1374 	/*
1375 	 * create is called holding kvm->lock and any operations not suitable
1376 	 * to do while holding the lock should be deferred to init (see
1377 	 * below).
1378 	 */
1379 	int (*create)(struct kvm_device *dev, u32 type);
1380 
1381 	/*
1382 	 * init is called after create if create is successful and is called
1383 	 * outside of holding kvm->lock.
1384 	 */
1385 	void (*init)(struct kvm_device *dev);
1386 
1387 	/*
1388 	 * Destroy is responsible for freeing dev.
1389 	 *
1390 	 * Destroy may be called before or after destructors are called
1391 	 * on emulated I/O regions, depending on whether a reference is
1392 	 * held by a vcpu or other kvm component that gets destroyed
1393 	 * after the emulated I/O.
1394 	 */
1395 	void (*destroy)(struct kvm_device *dev);
1396 
1397 	/*
1398 	 * Release is an alternative method to free the device. It is
1399 	 * called when the device file descriptor is closed. Once
1400 	 * release is called, the destroy method will not be called
1401 	 * anymore as the device is removed from the device list of
1402 	 * the VM. kvm->lock is held.
1403 	 */
1404 	void (*release)(struct kvm_device *dev);
1405 
1406 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1407 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1408 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1409 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1410 		      unsigned long arg);
1411 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1412 };
1413 
1414 void kvm_device_get(struct kvm_device *dev);
1415 void kvm_device_put(struct kvm_device *dev);
1416 struct kvm_device *kvm_device_from_filp(struct file *filp);
1417 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1418 void kvm_unregister_device_ops(u32 type);
1419 
1420 extern struct kvm_device_ops kvm_mpic_ops;
1421 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1422 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1423 
1424 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1425 
1426 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1427 {
1428 	vcpu->spin_loop.in_spin_loop = val;
1429 }
1430 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1431 {
1432 	vcpu->spin_loop.dy_eligible = val;
1433 }
1434 
1435 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1436 
1437 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1438 {
1439 }
1440 
1441 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1442 {
1443 }
1444 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1445 
1446 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1447 {
1448 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1449 		!(memslot->flags & KVM_MEMSLOT_INVALID));
1450 }
1451 
1452 struct kvm_vcpu *kvm_get_running_vcpu(void);
1453 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1454 
1455 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1456 bool kvm_arch_has_irq_bypass(void);
1457 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1458 			   struct irq_bypass_producer *);
1459 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1460 			   struct irq_bypass_producer *);
1461 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1462 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1463 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1464 				  uint32_t guest_irq, bool set);
1465 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1466 
1467 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1468 /* If we wakeup during the poll time, was it a sucessful poll? */
1469 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1470 {
1471 	return vcpu->valid_wakeup;
1472 }
1473 
1474 #else
1475 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1476 {
1477 	return true;
1478 }
1479 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1480 
1481 #ifdef CONFIG_HAVE_KVM_NO_POLL
1482 /* Callback that tells if we must not poll */
1483 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1484 #else
1485 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1486 {
1487 	return false;
1488 }
1489 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1490 
1491 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1492 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1493 			       unsigned int ioctl, unsigned long arg);
1494 #else
1495 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1496 					     unsigned int ioctl,
1497 					     unsigned long arg)
1498 {
1499 	return -ENOIOCTLCMD;
1500 }
1501 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1502 
1503 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1504 					    unsigned long start, unsigned long end);
1505 
1506 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1507 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1508 #else
1509 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1510 {
1511 	return 0;
1512 }
1513 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1514 
1515 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1516 
1517 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1518 				uintptr_t data, const char *name,
1519 				struct task_struct **thread_ptr);
1520 
1521 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1522 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1523 {
1524 	vcpu->run->exit_reason = KVM_EXIT_INTR;
1525 	vcpu->stat.signal_exits++;
1526 }
1527 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1528 
1529 /*
1530  * This defines how many reserved entries we want to keep before we
1531  * kick the vcpu to the userspace to avoid dirty ring full.  This
1532  * value can be tuned to higher if e.g. PML is enabled on the host.
1533  */
1534 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
1535 
1536 /* Max number of entries allowed for each kvm dirty ring */
1537 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
1538 
1539 #endif
1540