xref: /linux-6.15/include/linux/kvm_host.h (revision f42e289a)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 #define KVM_PFN_ERR_NEEDS_IO	(KVM_PFN_ERR_MASK + 4)
101 
102 /*
103  * error pfns indicate that the gfn is in slot but faild to
104  * translate it to pfn on host.
105  */
106 static inline bool is_error_pfn(kvm_pfn_t pfn)
107 {
108 	return !!(pfn & KVM_PFN_ERR_MASK);
109 }
110 
111 /*
112  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
113  * by a pending signal.  Note, the signal may or may not be fatal.
114  */
115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
116 {
117 	return pfn == KVM_PFN_ERR_SIGPENDING;
118 }
119 
120 /*
121  * error_noslot pfns indicate that the gfn can not be
122  * translated to pfn - it is not in slot or failed to
123  * translate it to pfn.
124  */
125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
126 {
127 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
128 }
129 
130 /* noslot pfn indicates that the gfn is not in slot. */
131 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
132 {
133 	return pfn == KVM_PFN_NOSLOT;
134 }
135 
136 /*
137  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
138  * provide own defines and kvm_is_error_hva
139  */
140 #ifndef KVM_HVA_ERR_BAD
141 
142 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
143 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
144 
145 static inline bool kvm_is_error_hva(unsigned long addr)
146 {
147 	return addr >= PAGE_OFFSET;
148 }
149 
150 #endif
151 
152 static inline bool kvm_is_error_gpa(gpa_t gpa)
153 {
154 	return gpa == INVALID_GPA;
155 }
156 
157 #define KVM_REQUEST_MASK           GENMASK(7,0)
158 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
159 #define KVM_REQUEST_WAIT           BIT(9)
160 #define KVM_REQUEST_NO_ACTION      BIT(10)
161 /*
162  * Architecture-independent vcpu->requests bit members
163  * Bits 3-7 are reserved for more arch-independent bits.
164  */
165 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
166 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_UNBLOCK			2
168 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
169 #define KVM_REQUEST_ARCH_BASE		8
170 
171 /*
172  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
173  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
174  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
175  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
176  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
177  * guarantee the vCPU received an IPI and has actually exited guest mode.
178  */
179 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
180 
181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
182 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
183 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
184 })
185 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
186 
187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
188 				 unsigned long *vcpu_bitmap);
189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
190 
191 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
193 
194 extern struct mutex kvm_lock;
195 extern struct list_head vm_list;
196 
197 struct kvm_io_range {
198 	gpa_t addr;
199 	int len;
200 	struct kvm_io_device *dev;
201 };
202 
203 #define NR_IOBUS_DEVS 1000
204 
205 struct kvm_io_bus {
206 	int dev_count;
207 	int ioeventfd_count;
208 	struct kvm_io_range range[];
209 };
210 
211 enum kvm_bus {
212 	KVM_MMIO_BUS,
213 	KVM_PIO_BUS,
214 	KVM_VIRTIO_CCW_NOTIFY_BUS,
215 	KVM_FAST_MMIO_BUS,
216 	KVM_NR_BUSES
217 };
218 
219 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
220 		     int len, const void *val);
221 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
222 			    gpa_t addr, int len, const void *val, long cookie);
223 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
224 		    int len, void *val);
225 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
226 			    int len, struct kvm_io_device *dev);
227 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
228 			      struct kvm_io_device *dev);
229 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
230 					 gpa_t addr);
231 
232 #ifdef CONFIG_KVM_ASYNC_PF
233 struct kvm_async_pf {
234 	struct work_struct work;
235 	struct list_head link;
236 	struct list_head queue;
237 	struct kvm_vcpu *vcpu;
238 	gpa_t cr2_or_gpa;
239 	unsigned long addr;
240 	struct kvm_arch_async_pf arch;
241 	bool   wakeup_all;
242 	bool notpresent_injected;
243 };
244 
245 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
246 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
247 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
248 			unsigned long hva, struct kvm_arch_async_pf *arch);
249 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
250 #endif
251 
252 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
253 union kvm_mmu_notifier_arg {
254 	unsigned long attributes;
255 };
256 
257 struct kvm_gfn_range {
258 	struct kvm_memory_slot *slot;
259 	gfn_t start;
260 	gfn_t end;
261 	union kvm_mmu_notifier_arg arg;
262 	bool may_block;
263 };
264 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
265 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
266 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
267 #endif
268 
269 enum {
270 	OUTSIDE_GUEST_MODE,
271 	IN_GUEST_MODE,
272 	EXITING_GUEST_MODE,
273 	READING_SHADOW_PAGE_TABLES,
274 };
275 
276 struct kvm_host_map {
277 	/*
278 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
279 	 * a 'struct page' for it. When using mem= kernel parameter some memory
280 	 * can be used as guest memory but they are not managed by host
281 	 * kernel).
282 	 */
283 	struct page *pinned_page;
284 	struct page *page;
285 	void *hva;
286 	kvm_pfn_t pfn;
287 	kvm_pfn_t gfn;
288 	bool writable;
289 };
290 
291 /*
292  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
293  * directly to check for that.
294  */
295 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
296 {
297 	return !!map->hva;
298 }
299 
300 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
301 {
302 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
303 }
304 
305 /*
306  * Sometimes a large or cross-page mmio needs to be broken up into separate
307  * exits for userspace servicing.
308  */
309 struct kvm_mmio_fragment {
310 	gpa_t gpa;
311 	void *data;
312 	unsigned len;
313 };
314 
315 struct kvm_vcpu {
316 	struct kvm *kvm;
317 #ifdef CONFIG_PREEMPT_NOTIFIERS
318 	struct preempt_notifier preempt_notifier;
319 #endif
320 	int cpu;
321 	int vcpu_id; /* id given by userspace at creation */
322 	int vcpu_idx; /* index into kvm->vcpu_array */
323 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
324 #ifdef CONFIG_PROVE_RCU
325 	int srcu_depth;
326 #endif
327 	int mode;
328 	u64 requests;
329 	unsigned long guest_debug;
330 
331 	struct mutex mutex;
332 	struct kvm_run *run;
333 
334 #ifndef __KVM_HAVE_ARCH_WQP
335 	struct rcuwait wait;
336 #endif
337 	struct pid __rcu *pid;
338 	int sigset_active;
339 	sigset_t sigset;
340 	unsigned int halt_poll_ns;
341 	bool valid_wakeup;
342 
343 #ifdef CONFIG_HAS_IOMEM
344 	int mmio_needed;
345 	int mmio_read_completed;
346 	int mmio_is_write;
347 	int mmio_cur_fragment;
348 	int mmio_nr_fragments;
349 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
350 #endif
351 
352 #ifdef CONFIG_KVM_ASYNC_PF
353 	struct {
354 		u32 queued;
355 		struct list_head queue;
356 		struct list_head done;
357 		spinlock_t lock;
358 	} async_pf;
359 #endif
360 
361 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
362 	/*
363 	 * Cpu relax intercept or pause loop exit optimization
364 	 * in_spin_loop: set when a vcpu does a pause loop exit
365 	 *  or cpu relax intercepted.
366 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
367 	 */
368 	struct {
369 		bool in_spin_loop;
370 		bool dy_eligible;
371 	} spin_loop;
372 #endif
373 	bool wants_to_run;
374 	bool preempted;
375 	bool ready;
376 	bool scheduled_out;
377 	struct kvm_vcpu_arch arch;
378 	struct kvm_vcpu_stat stat;
379 	char stats_id[KVM_STATS_NAME_SIZE];
380 	struct kvm_dirty_ring dirty_ring;
381 
382 	/*
383 	 * The most recently used memslot by this vCPU and the slots generation
384 	 * for which it is valid.
385 	 * No wraparound protection is needed since generations won't overflow in
386 	 * thousands of years, even assuming 1M memslot operations per second.
387 	 */
388 	struct kvm_memory_slot *last_used_slot;
389 	u64 last_used_slot_gen;
390 };
391 
392 /*
393  * Start accounting time towards a guest.
394  * Must be called before entering guest context.
395  */
396 static __always_inline void guest_timing_enter_irqoff(void)
397 {
398 	/*
399 	 * This is running in ioctl context so its safe to assume that it's the
400 	 * stime pending cputime to flush.
401 	 */
402 	instrumentation_begin();
403 	vtime_account_guest_enter();
404 	instrumentation_end();
405 }
406 
407 /*
408  * Enter guest context and enter an RCU extended quiescent state.
409  *
410  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
411  * unsafe to use any code which may directly or indirectly use RCU, tracing
412  * (including IRQ flag tracing), or lockdep. All code in this period must be
413  * non-instrumentable.
414  */
415 static __always_inline void guest_context_enter_irqoff(void)
416 {
417 	/*
418 	 * KVM does not hold any references to rcu protected data when it
419 	 * switches CPU into a guest mode. In fact switching to a guest mode
420 	 * is very similar to exiting to userspace from rcu point of view. In
421 	 * addition CPU may stay in a guest mode for quite a long time (up to
422 	 * one time slice). Lets treat guest mode as quiescent state, just like
423 	 * we do with user-mode execution.
424 	 */
425 	if (!context_tracking_guest_enter()) {
426 		instrumentation_begin();
427 		rcu_virt_note_context_switch();
428 		instrumentation_end();
429 	}
430 }
431 
432 /*
433  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
434  * guest_state_enter_irqoff().
435  */
436 static __always_inline void guest_enter_irqoff(void)
437 {
438 	guest_timing_enter_irqoff();
439 	guest_context_enter_irqoff();
440 }
441 
442 /**
443  * guest_state_enter_irqoff - Fixup state when entering a guest
444  *
445  * Entry to a guest will enable interrupts, but the kernel state is interrupts
446  * disabled when this is invoked. Also tell RCU about it.
447  *
448  * 1) Trace interrupts on state
449  * 2) Invoke context tracking if enabled to adjust RCU state
450  * 3) Tell lockdep that interrupts are enabled
451  *
452  * Invoked from architecture specific code before entering a guest.
453  * Must be called with interrupts disabled and the caller must be
454  * non-instrumentable.
455  * The caller has to invoke guest_timing_enter_irqoff() before this.
456  *
457  * Note: this is analogous to exit_to_user_mode().
458  */
459 static __always_inline void guest_state_enter_irqoff(void)
460 {
461 	instrumentation_begin();
462 	trace_hardirqs_on_prepare();
463 	lockdep_hardirqs_on_prepare();
464 	instrumentation_end();
465 
466 	guest_context_enter_irqoff();
467 	lockdep_hardirqs_on(CALLER_ADDR0);
468 }
469 
470 /*
471  * Exit guest context and exit an RCU extended quiescent state.
472  *
473  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
474  * unsafe to use any code which may directly or indirectly use RCU, tracing
475  * (including IRQ flag tracing), or lockdep. All code in this period must be
476  * non-instrumentable.
477  */
478 static __always_inline void guest_context_exit_irqoff(void)
479 {
480 	/*
481 	 * Guest mode is treated as a quiescent state, see
482 	 * guest_context_enter_irqoff() for more details.
483 	 */
484 	if (!context_tracking_guest_exit()) {
485 		instrumentation_begin();
486 		rcu_virt_note_context_switch();
487 		instrumentation_end();
488 	}
489 }
490 
491 /*
492  * Stop accounting time towards a guest.
493  * Must be called after exiting guest context.
494  */
495 static __always_inline void guest_timing_exit_irqoff(void)
496 {
497 	instrumentation_begin();
498 	/* Flush the guest cputime we spent on the guest */
499 	vtime_account_guest_exit();
500 	instrumentation_end();
501 }
502 
503 /*
504  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
505  * guest_timing_exit_irqoff().
506  */
507 static __always_inline void guest_exit_irqoff(void)
508 {
509 	guest_context_exit_irqoff();
510 	guest_timing_exit_irqoff();
511 }
512 
513 static inline void guest_exit(void)
514 {
515 	unsigned long flags;
516 
517 	local_irq_save(flags);
518 	guest_exit_irqoff();
519 	local_irq_restore(flags);
520 }
521 
522 /**
523  * guest_state_exit_irqoff - Establish state when returning from guest mode
524  *
525  * Entry from a guest disables interrupts, but guest mode is traced as
526  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
527  *
528  * 1) Tell lockdep that interrupts are disabled
529  * 2) Invoke context tracking if enabled to reactivate RCU
530  * 3) Trace interrupts off state
531  *
532  * Invoked from architecture specific code after exiting a guest.
533  * Must be invoked with interrupts disabled and the caller must be
534  * non-instrumentable.
535  * The caller has to invoke guest_timing_exit_irqoff() after this.
536  *
537  * Note: this is analogous to enter_from_user_mode().
538  */
539 static __always_inline void guest_state_exit_irqoff(void)
540 {
541 	lockdep_hardirqs_off(CALLER_ADDR0);
542 	guest_context_exit_irqoff();
543 
544 	instrumentation_begin();
545 	trace_hardirqs_off_finish();
546 	instrumentation_end();
547 }
548 
549 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
550 {
551 	/*
552 	 * The memory barrier ensures a previous write to vcpu->requests cannot
553 	 * be reordered with the read of vcpu->mode.  It pairs with the general
554 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
555 	 */
556 	smp_mb__before_atomic();
557 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
558 }
559 
560 /*
561  * Some of the bitops functions do not support too long bitmaps.
562  * This number must be determined not to exceed such limits.
563  */
564 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
565 
566 /*
567  * Since at idle each memslot belongs to two memslot sets it has to contain
568  * two embedded nodes for each data structure that it forms a part of.
569  *
570  * Two memslot sets (one active and one inactive) are necessary so the VM
571  * continues to run on one memslot set while the other is being modified.
572  *
573  * These two memslot sets normally point to the same set of memslots.
574  * They can, however, be desynchronized when performing a memslot management
575  * operation by replacing the memslot to be modified by its copy.
576  * After the operation is complete, both memslot sets once again point to
577  * the same, common set of memslot data.
578  *
579  * The memslots themselves are independent of each other so they can be
580  * individually added or deleted.
581  */
582 struct kvm_memory_slot {
583 	struct hlist_node id_node[2];
584 	struct interval_tree_node hva_node[2];
585 	struct rb_node gfn_node[2];
586 	gfn_t base_gfn;
587 	unsigned long npages;
588 	unsigned long *dirty_bitmap;
589 	struct kvm_arch_memory_slot arch;
590 	unsigned long userspace_addr;
591 	u32 flags;
592 	short id;
593 	u16 as_id;
594 
595 #ifdef CONFIG_KVM_PRIVATE_MEM
596 	struct {
597 		struct file __rcu *file;
598 		pgoff_t pgoff;
599 	} gmem;
600 #endif
601 };
602 
603 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
604 {
605 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
606 }
607 
608 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
609 {
610 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
611 }
612 
613 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
614 {
615 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
616 }
617 
618 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
619 {
620 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
621 
622 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
623 }
624 
625 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
626 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
627 #endif
628 
629 struct kvm_s390_adapter_int {
630 	u64 ind_addr;
631 	u64 summary_addr;
632 	u64 ind_offset;
633 	u32 summary_offset;
634 	u32 adapter_id;
635 };
636 
637 struct kvm_hv_sint {
638 	u32 vcpu;
639 	u32 sint;
640 };
641 
642 struct kvm_xen_evtchn {
643 	u32 port;
644 	u32 vcpu_id;
645 	int vcpu_idx;
646 	u32 priority;
647 };
648 
649 struct kvm_kernel_irq_routing_entry {
650 	u32 gsi;
651 	u32 type;
652 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
653 		   struct kvm *kvm, int irq_source_id, int level,
654 		   bool line_status);
655 	union {
656 		struct {
657 			unsigned irqchip;
658 			unsigned pin;
659 		} irqchip;
660 		struct {
661 			u32 address_lo;
662 			u32 address_hi;
663 			u32 data;
664 			u32 flags;
665 			u32 devid;
666 		} msi;
667 		struct kvm_s390_adapter_int adapter;
668 		struct kvm_hv_sint hv_sint;
669 		struct kvm_xen_evtchn xen_evtchn;
670 	};
671 	struct hlist_node link;
672 };
673 
674 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
675 struct kvm_irq_routing_table {
676 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
677 	u32 nr_rt_entries;
678 	/*
679 	 * Array indexed by gsi. Each entry contains list of irq chips
680 	 * the gsi is connected to.
681 	 */
682 	struct hlist_head map[] __counted_by(nr_rt_entries);
683 };
684 #endif
685 
686 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
687 
688 #ifndef KVM_INTERNAL_MEM_SLOTS
689 #define KVM_INTERNAL_MEM_SLOTS 0
690 #endif
691 
692 #define KVM_MEM_SLOTS_NUM SHRT_MAX
693 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
694 
695 #if KVM_MAX_NR_ADDRESS_SPACES == 1
696 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
697 {
698 	return KVM_MAX_NR_ADDRESS_SPACES;
699 }
700 
701 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
702 {
703 	return 0;
704 }
705 #endif
706 
707 /*
708  * Arch code must define kvm_arch_has_private_mem if support for private memory
709  * is enabled.
710  */
711 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
712 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
713 {
714 	return false;
715 }
716 #endif
717 
718 #ifndef kvm_arch_has_readonly_mem
719 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
720 {
721 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
722 }
723 #endif
724 
725 struct kvm_memslots {
726 	u64 generation;
727 	atomic_long_t last_used_slot;
728 	struct rb_root_cached hva_tree;
729 	struct rb_root gfn_tree;
730 	/*
731 	 * The mapping table from slot id to memslot.
732 	 *
733 	 * 7-bit bucket count matches the size of the old id to index array for
734 	 * 512 slots, while giving good performance with this slot count.
735 	 * Higher bucket counts bring only small performance improvements but
736 	 * always result in higher memory usage (even for lower memslot counts).
737 	 */
738 	DECLARE_HASHTABLE(id_hash, 7);
739 	int node_idx;
740 };
741 
742 struct kvm {
743 #ifdef KVM_HAVE_MMU_RWLOCK
744 	rwlock_t mmu_lock;
745 #else
746 	spinlock_t mmu_lock;
747 #endif /* KVM_HAVE_MMU_RWLOCK */
748 
749 	struct mutex slots_lock;
750 
751 	/*
752 	 * Protects the arch-specific fields of struct kvm_memory_slots in
753 	 * use by the VM. To be used under the slots_lock (above) or in a
754 	 * kvm->srcu critical section where acquiring the slots_lock would
755 	 * lead to deadlock with the synchronize_srcu in
756 	 * kvm_swap_active_memslots().
757 	 */
758 	struct mutex slots_arch_lock;
759 	struct mm_struct *mm; /* userspace tied to this vm */
760 	unsigned long nr_memslot_pages;
761 	/* The two memslot sets - active and inactive (per address space) */
762 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
763 	/* The current active memslot set for each address space */
764 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
765 	struct xarray vcpu_array;
766 	/*
767 	 * Protected by slots_lock, but can be read outside if an
768 	 * incorrect answer is acceptable.
769 	 */
770 	atomic_t nr_memslots_dirty_logging;
771 
772 	/* Used to wait for completion of MMU notifiers.  */
773 	spinlock_t mn_invalidate_lock;
774 	unsigned long mn_active_invalidate_count;
775 	struct rcuwait mn_memslots_update_rcuwait;
776 
777 	/* For management / invalidation of gfn_to_pfn_caches */
778 	spinlock_t gpc_lock;
779 	struct list_head gpc_list;
780 
781 	/*
782 	 * created_vcpus is protected by kvm->lock, and is incremented
783 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
784 	 * incremented after storing the kvm_vcpu pointer in vcpus,
785 	 * and is accessed atomically.
786 	 */
787 	atomic_t online_vcpus;
788 	int max_vcpus;
789 	int created_vcpus;
790 	int last_boosted_vcpu;
791 	struct list_head vm_list;
792 	struct mutex lock;
793 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
794 #ifdef CONFIG_HAVE_KVM_IRQCHIP
795 	struct {
796 		spinlock_t        lock;
797 		struct list_head  items;
798 		/* resampler_list update side is protected by resampler_lock. */
799 		struct list_head  resampler_list;
800 		struct mutex      resampler_lock;
801 	} irqfds;
802 #endif
803 	struct list_head ioeventfds;
804 	struct kvm_vm_stat stat;
805 	struct kvm_arch arch;
806 	refcount_t users_count;
807 #ifdef CONFIG_KVM_MMIO
808 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
809 	spinlock_t ring_lock;
810 	struct list_head coalesced_zones;
811 #endif
812 
813 	struct mutex irq_lock;
814 #ifdef CONFIG_HAVE_KVM_IRQCHIP
815 	/*
816 	 * Update side is protected by irq_lock.
817 	 */
818 	struct kvm_irq_routing_table __rcu *irq_routing;
819 
820 	struct hlist_head irq_ack_notifier_list;
821 #endif
822 
823 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
824 	struct mmu_notifier mmu_notifier;
825 	unsigned long mmu_invalidate_seq;
826 	long mmu_invalidate_in_progress;
827 	gfn_t mmu_invalidate_range_start;
828 	gfn_t mmu_invalidate_range_end;
829 #endif
830 	struct list_head devices;
831 	u64 manual_dirty_log_protect;
832 	struct dentry *debugfs_dentry;
833 	struct kvm_stat_data **debugfs_stat_data;
834 	struct srcu_struct srcu;
835 	struct srcu_struct irq_srcu;
836 	pid_t userspace_pid;
837 	bool override_halt_poll_ns;
838 	unsigned int max_halt_poll_ns;
839 	u32 dirty_ring_size;
840 	bool dirty_ring_with_bitmap;
841 	bool vm_bugged;
842 	bool vm_dead;
843 
844 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
845 	struct notifier_block pm_notifier;
846 #endif
847 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
848 	/* Protected by slots_locks (for writes) and RCU (for reads) */
849 	struct xarray mem_attr_array;
850 #endif
851 	char stats_id[KVM_STATS_NAME_SIZE];
852 };
853 
854 #define kvm_err(fmt, ...) \
855 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
856 #define kvm_info(fmt, ...) \
857 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
858 #define kvm_debug(fmt, ...) \
859 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
860 #define kvm_debug_ratelimited(fmt, ...) \
861 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
862 			     ## __VA_ARGS__)
863 #define kvm_pr_unimpl(fmt, ...) \
864 	pr_err_ratelimited("kvm [%i]: " fmt, \
865 			   task_tgid_nr(current), ## __VA_ARGS__)
866 
867 /* The guest did something we don't support. */
868 #define vcpu_unimpl(vcpu, fmt, ...)					\
869 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
870 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
871 
872 #define vcpu_debug(vcpu, fmt, ...)					\
873 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
874 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
875 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
876 			      ## __VA_ARGS__)
877 #define vcpu_err(vcpu, fmt, ...)					\
878 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
879 
880 static inline void kvm_vm_dead(struct kvm *kvm)
881 {
882 	kvm->vm_dead = true;
883 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
884 }
885 
886 static inline void kvm_vm_bugged(struct kvm *kvm)
887 {
888 	kvm->vm_bugged = true;
889 	kvm_vm_dead(kvm);
890 }
891 
892 
893 #define KVM_BUG(cond, kvm, fmt...)				\
894 ({								\
895 	bool __ret = !!(cond);					\
896 								\
897 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
898 		kvm_vm_bugged(kvm);				\
899 	unlikely(__ret);					\
900 })
901 
902 #define KVM_BUG_ON(cond, kvm)					\
903 ({								\
904 	bool __ret = !!(cond);					\
905 								\
906 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
907 		kvm_vm_bugged(kvm);				\
908 	unlikely(__ret);					\
909 })
910 
911 /*
912  * Note, "data corruption" refers to corruption of host kernel data structures,
913  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
914  * and contained to a single VM should *never* BUG() and potentially panic the
915  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
916  * is corrupted and that corruption can have a cascading effect to other parts
917  * of the hosts and/or to other VMs.
918  */
919 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
920 ({								\
921 	bool __ret = !!(cond);					\
922 								\
923 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
924 		BUG_ON(__ret);					\
925 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
926 		kvm_vm_bugged(kvm);				\
927 	unlikely(__ret);					\
928 })
929 
930 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
931 {
932 #ifdef CONFIG_PROVE_RCU
933 	WARN_ONCE(vcpu->srcu_depth++,
934 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
935 #endif
936 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
937 }
938 
939 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
940 {
941 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
942 
943 #ifdef CONFIG_PROVE_RCU
944 	WARN_ONCE(--vcpu->srcu_depth,
945 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
946 #endif
947 }
948 
949 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
950 {
951 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
952 }
953 
954 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
955 {
956 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
957 				      lockdep_is_held(&kvm->slots_lock) ||
958 				      !refcount_read(&kvm->users_count));
959 }
960 
961 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
962 {
963 	int num_vcpus = atomic_read(&kvm->online_vcpus);
964 	i = array_index_nospec(i, num_vcpus);
965 
966 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
967 	smp_rmb();
968 	return xa_load(&kvm->vcpu_array, i);
969 }
970 
971 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
972 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
973 			  (atomic_read(&kvm->online_vcpus) - 1))
974 
975 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
976 {
977 	struct kvm_vcpu *vcpu = NULL;
978 	unsigned long i;
979 
980 	if (id < 0)
981 		return NULL;
982 	if (id < KVM_MAX_VCPUS)
983 		vcpu = kvm_get_vcpu(kvm, id);
984 	if (vcpu && vcpu->vcpu_id == id)
985 		return vcpu;
986 	kvm_for_each_vcpu(i, vcpu, kvm)
987 		if (vcpu->vcpu_id == id)
988 			return vcpu;
989 	return NULL;
990 }
991 
992 void kvm_destroy_vcpus(struct kvm *kvm);
993 
994 void vcpu_load(struct kvm_vcpu *vcpu);
995 void vcpu_put(struct kvm_vcpu *vcpu);
996 
997 #ifdef __KVM_HAVE_IOAPIC
998 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
999 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1000 #else
1001 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1002 {
1003 }
1004 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1005 {
1006 }
1007 #endif
1008 
1009 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1010 int kvm_irqfd_init(void);
1011 void kvm_irqfd_exit(void);
1012 #else
1013 static inline int kvm_irqfd_init(void)
1014 {
1015 	return 0;
1016 }
1017 
1018 static inline void kvm_irqfd_exit(void)
1019 {
1020 }
1021 #endif
1022 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1023 void kvm_exit(void);
1024 
1025 void kvm_get_kvm(struct kvm *kvm);
1026 bool kvm_get_kvm_safe(struct kvm *kvm);
1027 void kvm_put_kvm(struct kvm *kvm);
1028 bool file_is_kvm(struct file *file);
1029 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1030 
1031 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1032 {
1033 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1034 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1035 			lockdep_is_held(&kvm->slots_lock) ||
1036 			!refcount_read(&kvm->users_count));
1037 }
1038 
1039 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1040 {
1041 	return __kvm_memslots(kvm, 0);
1042 }
1043 
1044 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1045 {
1046 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1047 
1048 	return __kvm_memslots(vcpu->kvm, as_id);
1049 }
1050 
1051 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1052 {
1053 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1054 }
1055 
1056 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1057 
1058 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1059 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1060 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1061 		} else
1062 
1063 static inline
1064 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1065 {
1066 	struct kvm_memory_slot *slot;
1067 	int idx = slots->node_idx;
1068 
1069 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1070 		if (slot->id == id)
1071 			return slot;
1072 	}
1073 
1074 	return NULL;
1075 }
1076 
1077 /* Iterator used for walking memslots that overlap a gfn range. */
1078 struct kvm_memslot_iter {
1079 	struct kvm_memslots *slots;
1080 	struct rb_node *node;
1081 	struct kvm_memory_slot *slot;
1082 };
1083 
1084 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1085 {
1086 	iter->node = rb_next(iter->node);
1087 	if (!iter->node)
1088 		return;
1089 
1090 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1091 }
1092 
1093 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1094 					  struct kvm_memslots *slots,
1095 					  gfn_t start)
1096 {
1097 	int idx = slots->node_idx;
1098 	struct rb_node *tmp;
1099 	struct kvm_memory_slot *slot;
1100 
1101 	iter->slots = slots;
1102 
1103 	/*
1104 	 * Find the so called "upper bound" of a key - the first node that has
1105 	 * its key strictly greater than the searched one (the start gfn in our case).
1106 	 */
1107 	iter->node = NULL;
1108 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1109 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1110 		if (start < slot->base_gfn) {
1111 			iter->node = tmp;
1112 			tmp = tmp->rb_left;
1113 		} else {
1114 			tmp = tmp->rb_right;
1115 		}
1116 	}
1117 
1118 	/*
1119 	 * Find the slot with the lowest gfn that can possibly intersect with
1120 	 * the range, so we'll ideally have slot start <= range start
1121 	 */
1122 	if (iter->node) {
1123 		/*
1124 		 * A NULL previous node means that the very first slot
1125 		 * already has a higher start gfn.
1126 		 * In this case slot start > range start.
1127 		 */
1128 		tmp = rb_prev(iter->node);
1129 		if (tmp)
1130 			iter->node = tmp;
1131 	} else {
1132 		/* a NULL node below means no slots */
1133 		iter->node = rb_last(&slots->gfn_tree);
1134 	}
1135 
1136 	if (iter->node) {
1137 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1138 
1139 		/*
1140 		 * It is possible in the slot start < range start case that the
1141 		 * found slot ends before or at range start (slot end <= range start)
1142 		 * and so it does not overlap the requested range.
1143 		 *
1144 		 * In such non-overlapping case the next slot (if it exists) will
1145 		 * already have slot start > range start, otherwise the logic above
1146 		 * would have found it instead of the current slot.
1147 		 */
1148 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1149 			kvm_memslot_iter_next(iter);
1150 	}
1151 }
1152 
1153 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1154 {
1155 	if (!iter->node)
1156 		return false;
1157 
1158 	/*
1159 	 * If this slot starts beyond or at the end of the range so does
1160 	 * every next one
1161 	 */
1162 	return iter->slot->base_gfn < end;
1163 }
1164 
1165 /* Iterate over each memslot at least partially intersecting [start, end) range */
1166 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1167 	for (kvm_memslot_iter_start(iter, slots, start);		\
1168 	     kvm_memslot_iter_is_valid(iter, end);			\
1169 	     kvm_memslot_iter_next(iter))
1170 
1171 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1172 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1173 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1174 
1175 /*
1176  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1177  * - create a new memory slot
1178  * - delete an existing memory slot
1179  * - modify an existing memory slot
1180  *   -- move it in the guest physical memory space
1181  *   -- just change its flags
1182  *
1183  * Since flags can be changed by some of these operations, the following
1184  * differentiation is the best we can do for __kvm_set_memory_region():
1185  */
1186 enum kvm_mr_change {
1187 	KVM_MR_CREATE,
1188 	KVM_MR_DELETE,
1189 	KVM_MR_MOVE,
1190 	KVM_MR_FLAGS_ONLY,
1191 };
1192 
1193 int kvm_set_memory_region(struct kvm *kvm,
1194 			  const struct kvm_userspace_memory_region2 *mem);
1195 int __kvm_set_memory_region(struct kvm *kvm,
1196 			    const struct kvm_userspace_memory_region2 *mem);
1197 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1198 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1199 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1200 				const struct kvm_memory_slot *old,
1201 				struct kvm_memory_slot *new,
1202 				enum kvm_mr_change change);
1203 void kvm_arch_commit_memory_region(struct kvm *kvm,
1204 				struct kvm_memory_slot *old,
1205 				const struct kvm_memory_slot *new,
1206 				enum kvm_mr_change change);
1207 /* flush all memory translations */
1208 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1209 /* flush memory translations pointing to 'slot' */
1210 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1211 				   struct kvm_memory_slot *slot);
1212 
1213 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1214 		       struct page **pages, int nr_pages);
1215 
1216 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
1217 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1218 {
1219 	return __gfn_to_page(kvm, gfn, true);
1220 }
1221 
1222 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1223 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1224 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1225 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1226 				      bool *writable);
1227 
1228 static inline void kvm_release_page_unused(struct page *page)
1229 {
1230 	if (!page)
1231 		return;
1232 
1233 	put_page(page);
1234 }
1235 
1236 void kvm_release_page_clean(struct page *page);
1237 void kvm_release_page_dirty(struct page *page);
1238 
1239 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1240 					    bool unused, bool dirty)
1241 {
1242 	lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1243 
1244 	if (!page)
1245 		return;
1246 
1247 	/*
1248 	 * If the page that KVM got from the *primary MMU* is writable, and KVM
1249 	 * installed or reused a SPTE, mark the page/folio dirty.  Note, this
1250 	 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1251 	 * the GFN is write-protected.  Folios can't be safely marked dirty
1252 	 * outside of mmu_lock as doing so could race with writeback on the
1253 	 * folio.  As a result, KVM can't mark folios dirty in the fast page
1254 	 * fault handler, and so KVM must (somewhat) speculatively mark the
1255 	 * folio dirty if KVM could locklessly make the SPTE writable.
1256 	 */
1257 	if (unused)
1258 		kvm_release_page_unused(page);
1259 	else if (dirty)
1260 		kvm_release_page_dirty(page);
1261 	else
1262 		kvm_release_page_clean(page);
1263 }
1264 
1265 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1266 			    unsigned int foll, bool *writable,
1267 			    struct page **refcounted_page);
1268 
1269 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1270 					bool write, bool *writable,
1271 					struct page **refcounted_page)
1272 {
1273 	return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1274 				 write ? FOLL_WRITE : 0, writable, refcounted_page);
1275 }
1276 
1277 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1278 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1279 		      bool *writable);
1280 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1281 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1282 			       bool interruptible, bool no_wait,
1283 			       bool write_fault, bool *writable);
1284 
1285 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1286 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1287 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1288 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1289 
1290 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1291 			int len);
1292 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1293 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1294 			   void *data, unsigned long len);
1295 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1296 				 void *data, unsigned int offset,
1297 				 unsigned long len);
1298 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1299 			 int offset, int len);
1300 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1301 		    unsigned long len);
1302 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1303 			   void *data, unsigned long len);
1304 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1305 				  void *data, unsigned int offset,
1306 				  unsigned long len);
1307 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1308 			      gpa_t gpa, unsigned long len);
1309 
1310 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1311 ({									\
1312 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1313 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1314 	int __ret = -EFAULT;						\
1315 									\
1316 	if (!kvm_is_error_hva(__addr))					\
1317 		__ret = get_user(v, __uaddr);				\
1318 	__ret;								\
1319 })
1320 
1321 #define kvm_get_guest(kvm, gpa, v)					\
1322 ({									\
1323 	gpa_t __gpa = gpa;						\
1324 	struct kvm *__kvm = kvm;					\
1325 									\
1326 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1327 			offset_in_page(__gpa), v);			\
1328 })
1329 
1330 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1331 ({									\
1332 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1333 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1334 	int __ret = -EFAULT;						\
1335 									\
1336 	if (!kvm_is_error_hva(__addr))					\
1337 		__ret = put_user(v, __uaddr);				\
1338 	if (!__ret)							\
1339 		mark_page_dirty(kvm, gfn);				\
1340 	__ret;								\
1341 })
1342 
1343 #define kvm_put_guest(kvm, gpa, v)					\
1344 ({									\
1345 	gpa_t __gpa = gpa;						\
1346 	struct kvm *__kvm = kvm;					\
1347 									\
1348 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1349 			offset_in_page(__gpa), v);			\
1350 })
1351 
1352 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1353 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1354 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1355 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1356 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1357 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1358 
1359 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1360 		   bool writable);
1361 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1362 
1363 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1364 			       struct kvm_host_map *map)
1365 {
1366 	return __kvm_vcpu_map(vcpu, gpa, map, true);
1367 }
1368 
1369 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1370 					struct kvm_host_map *map)
1371 {
1372 	return __kvm_vcpu_map(vcpu, gpa, map, false);
1373 }
1374 
1375 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1376 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1377 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1378 			     int len);
1379 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1380 			       unsigned long len);
1381 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1382 			unsigned long len);
1383 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1384 			      int offset, int len);
1385 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1386 			 unsigned long len);
1387 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1388 
1389 /**
1390  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1391  *
1392  * @gpc:	   struct gfn_to_pfn_cache object.
1393  * @kvm:	   pointer to kvm instance.
1394  *
1395  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1396  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1397  * the caller before init).
1398  */
1399 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1400 
1401 /**
1402  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1403  *                    physical address.
1404  *
1405  * @gpc:	   struct gfn_to_pfn_cache object.
1406  * @gpa:	   guest physical address to map.
1407  * @len:	   sanity check; the range being access must fit a single page.
1408  *
1409  * @return:	   0 for success.
1410  *		   -EINVAL for a mapping which would cross a page boundary.
1411  *		   -EFAULT for an untranslatable guest physical address.
1412  *
1413  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1414  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1415  * to ensure that the cache is valid before accessing the target page.
1416  */
1417 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1418 
1419 /**
1420  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1421  *
1422  * @gpc:          struct gfn_to_pfn_cache object.
1423  * @hva:          userspace virtual address to map.
1424  * @len:          sanity check; the range being access must fit a single page.
1425  *
1426  * @return:       0 for success.
1427  *                -EINVAL for a mapping which would cross a page boundary.
1428  *                -EFAULT for an untranslatable guest physical address.
1429  *
1430  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1431  * merely bypasses a layer of address translation.
1432  */
1433 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1434 
1435 /**
1436  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1437  *
1438  * @gpc:	   struct gfn_to_pfn_cache object.
1439  * @len:	   sanity check; the range being access must fit a single page.
1440  *
1441  * @return:	   %true if the cache is still valid and the address matches.
1442  *		   %false if the cache is not valid.
1443  *
1444  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1445  * while calling this function, and then continue to hold the lock until the
1446  * access is complete.
1447  *
1448  * Callers in IN_GUEST_MODE may do so without locking, although they should
1449  * still hold a read lock on kvm->scru for the memslot checks.
1450  */
1451 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1452 
1453 /**
1454  * kvm_gpc_refresh - update a previously initialized cache.
1455  *
1456  * @gpc:	   struct gfn_to_pfn_cache object.
1457  * @len:	   sanity check; the range being access must fit a single page.
1458  *
1459  * @return:	   0 for success.
1460  *		   -EINVAL for a mapping which would cross a page boundary.
1461  *		   -EFAULT for an untranslatable guest physical address.
1462  *
1463  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1464  * return from this function does not mean the page can be immediately
1465  * accessed because it may have raced with an invalidation. Callers must
1466  * still lock and check the cache status, as this function does not return
1467  * with the lock still held to permit access.
1468  */
1469 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1470 
1471 /**
1472  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1473  *
1474  * @gpc:	   struct gfn_to_pfn_cache object.
1475  *
1476  * This removes a cache from the VM's list to be processed on MMU notifier
1477  * invocation.
1478  */
1479 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1480 
1481 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1482 {
1483 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1484 }
1485 
1486 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1487 {
1488 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1489 }
1490 
1491 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1492 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1493 
1494 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1495 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1496 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1497 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1498 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1499 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1500 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1501 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1502 
1503 void kvm_flush_remote_tlbs(struct kvm *kvm);
1504 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1505 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1506 				   const struct kvm_memory_slot *memslot);
1507 
1508 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1509 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1510 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1511 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1512 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1513 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1514 #endif
1515 
1516 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1517 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1518 void kvm_mmu_invalidate_end(struct kvm *kvm);
1519 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1520 
1521 long kvm_arch_dev_ioctl(struct file *filp,
1522 			unsigned int ioctl, unsigned long arg);
1523 long kvm_arch_vcpu_ioctl(struct file *filp,
1524 			 unsigned int ioctl, unsigned long arg);
1525 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1526 
1527 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1528 
1529 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1530 					struct kvm_memory_slot *slot,
1531 					gfn_t gfn_offset,
1532 					unsigned long mask);
1533 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1534 
1535 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1536 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1537 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1538 		      int *is_dirty, struct kvm_memory_slot **memslot);
1539 #endif
1540 
1541 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1542 			bool line_status);
1543 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1544 			    struct kvm_enable_cap *cap);
1545 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1546 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1547 			      unsigned long arg);
1548 
1549 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1550 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1551 
1552 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1553 				    struct kvm_translation *tr);
1554 
1555 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1556 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1557 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1558 				  struct kvm_sregs *sregs);
1559 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1560 				  struct kvm_sregs *sregs);
1561 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1562 				    struct kvm_mp_state *mp_state);
1563 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1564 				    struct kvm_mp_state *mp_state);
1565 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1566 					struct kvm_guest_debug *dbg);
1567 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1568 
1569 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1570 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1571 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1572 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1573 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1574 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1575 
1576 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1577 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1578 #endif
1579 
1580 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1581 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1582 #else
1583 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1584 #endif
1585 
1586 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1587 /*
1588  * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1589  * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1590  * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1591  * sequence, and at the end of the generic hardware disabling sequence.
1592  */
1593 void kvm_arch_enable_virtualization(void);
1594 void kvm_arch_disable_virtualization(void);
1595 /*
1596  * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1597  * do the actual twiddling of hardware bits.  The hooks are called on all
1598  * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1599  * when that CPU is onlined/offlined (including for Resume/Suspend).
1600  */
1601 int kvm_arch_enable_virtualization_cpu(void);
1602 void kvm_arch_disable_virtualization_cpu(void);
1603 #endif
1604 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1605 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1606 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1607 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1608 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1609 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1610 int kvm_arch_post_init_vm(struct kvm *kvm);
1611 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1612 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1613 
1614 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1615 /*
1616  * All architectures that want to use vzalloc currently also
1617  * need their own kvm_arch_alloc_vm implementation.
1618  */
1619 static inline struct kvm *kvm_arch_alloc_vm(void)
1620 {
1621 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1622 }
1623 #endif
1624 
1625 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1626 {
1627 	kvfree(kvm);
1628 }
1629 
1630 #ifndef __KVM_HAVE_ARCH_VM_FREE
1631 static inline void kvm_arch_free_vm(struct kvm *kvm)
1632 {
1633 	__kvm_arch_free_vm(kvm);
1634 }
1635 #endif
1636 
1637 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1638 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1639 {
1640 	return -ENOTSUPP;
1641 }
1642 #else
1643 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1644 #endif
1645 
1646 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1647 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1648 						    gfn_t gfn, u64 nr_pages)
1649 {
1650 	return -EOPNOTSUPP;
1651 }
1652 #else
1653 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1654 #endif
1655 
1656 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1657 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1658 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1659 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1660 #else
1661 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1662 {
1663 }
1664 
1665 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1666 {
1667 }
1668 
1669 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1670 {
1671 	return false;
1672 }
1673 #endif
1674 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1675 void kvm_arch_start_assignment(struct kvm *kvm);
1676 void kvm_arch_end_assignment(struct kvm *kvm);
1677 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1678 #else
1679 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1680 {
1681 }
1682 
1683 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1684 {
1685 }
1686 
1687 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1688 {
1689 	return false;
1690 }
1691 #endif
1692 
1693 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1694 {
1695 #ifdef __KVM_HAVE_ARCH_WQP
1696 	return vcpu->arch.waitp;
1697 #else
1698 	return &vcpu->wait;
1699 #endif
1700 }
1701 
1702 /*
1703  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1704  * true if the vCPU was blocking and was awakened, false otherwise.
1705  */
1706 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1707 {
1708 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1709 }
1710 
1711 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1712 {
1713 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1714 }
1715 
1716 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1717 /*
1718  * returns true if the virtual interrupt controller is initialized and
1719  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1720  * controller is dynamically instantiated and this is not always true.
1721  */
1722 bool kvm_arch_intc_initialized(struct kvm *kvm);
1723 #else
1724 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1725 {
1726 	return true;
1727 }
1728 #endif
1729 
1730 #ifdef CONFIG_GUEST_PERF_EVENTS
1731 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1732 
1733 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1734 void kvm_unregister_perf_callbacks(void);
1735 #else
1736 static inline void kvm_register_perf_callbacks(void *ign) {}
1737 static inline void kvm_unregister_perf_callbacks(void) {}
1738 #endif /* CONFIG_GUEST_PERF_EVENTS */
1739 
1740 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1741 void kvm_arch_destroy_vm(struct kvm *kvm);
1742 void kvm_arch_sync_events(struct kvm *kvm);
1743 
1744 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1745 
1746 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1747 bool kvm_is_zone_device_page(struct page *page);
1748 
1749 struct kvm_irq_ack_notifier {
1750 	struct hlist_node link;
1751 	unsigned gsi;
1752 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1753 };
1754 
1755 int kvm_irq_map_gsi(struct kvm *kvm,
1756 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1757 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1758 
1759 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1760 		bool line_status);
1761 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1762 		int irq_source_id, int level, bool line_status);
1763 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1764 			       struct kvm *kvm, int irq_source_id,
1765 			       int level, bool line_status);
1766 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1767 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1768 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1769 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1770 				   struct kvm_irq_ack_notifier *kian);
1771 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1772 				   struct kvm_irq_ack_notifier *kian);
1773 int kvm_request_irq_source_id(struct kvm *kvm);
1774 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1775 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1776 
1777 /*
1778  * Returns a pointer to the memslot if it contains gfn.
1779  * Otherwise returns NULL.
1780  */
1781 static inline struct kvm_memory_slot *
1782 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1783 {
1784 	if (!slot)
1785 		return NULL;
1786 
1787 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1788 		return slot;
1789 	else
1790 		return NULL;
1791 }
1792 
1793 /*
1794  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1795  *
1796  * With "approx" set returns the memslot also when the address falls
1797  * in a hole. In that case one of the memslots bordering the hole is
1798  * returned.
1799  */
1800 static inline struct kvm_memory_slot *
1801 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1802 {
1803 	struct kvm_memory_slot *slot;
1804 	struct rb_node *node;
1805 	int idx = slots->node_idx;
1806 
1807 	slot = NULL;
1808 	for (node = slots->gfn_tree.rb_node; node; ) {
1809 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1810 		if (gfn >= slot->base_gfn) {
1811 			if (gfn < slot->base_gfn + slot->npages)
1812 				return slot;
1813 			node = node->rb_right;
1814 		} else
1815 			node = node->rb_left;
1816 	}
1817 
1818 	return approx ? slot : NULL;
1819 }
1820 
1821 static inline struct kvm_memory_slot *
1822 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1823 {
1824 	struct kvm_memory_slot *slot;
1825 
1826 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1827 	slot = try_get_memslot(slot, gfn);
1828 	if (slot)
1829 		return slot;
1830 
1831 	slot = search_memslots(slots, gfn, approx);
1832 	if (slot) {
1833 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1834 		return slot;
1835 	}
1836 
1837 	return NULL;
1838 }
1839 
1840 /*
1841  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1842  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1843  * because that would bloat other code too much.
1844  */
1845 static inline struct kvm_memory_slot *
1846 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1847 {
1848 	return ____gfn_to_memslot(slots, gfn, false);
1849 }
1850 
1851 static inline unsigned long
1852 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1853 {
1854 	/*
1855 	 * The index was checked originally in search_memslots.  To avoid
1856 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1857 	 * table walks, do not let the processor speculate loads outside
1858 	 * the guest's registered memslots.
1859 	 */
1860 	unsigned long offset = gfn - slot->base_gfn;
1861 	offset = array_index_nospec(offset, slot->npages);
1862 	return slot->userspace_addr + offset * PAGE_SIZE;
1863 }
1864 
1865 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1866 {
1867 	return gfn_to_memslot(kvm, gfn)->id;
1868 }
1869 
1870 static inline gfn_t
1871 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1872 {
1873 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1874 
1875 	return slot->base_gfn + gfn_offset;
1876 }
1877 
1878 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1879 {
1880 	return (gpa_t)gfn << PAGE_SHIFT;
1881 }
1882 
1883 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1884 {
1885 	return (gfn_t)(gpa >> PAGE_SHIFT);
1886 }
1887 
1888 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1889 {
1890 	return (hpa_t)pfn << PAGE_SHIFT;
1891 }
1892 
1893 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1894 {
1895 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1896 
1897 	return !kvm_is_error_hva(hva);
1898 }
1899 
1900 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1901 {
1902 	lockdep_assert_held(&gpc->lock);
1903 
1904 	if (!gpc->memslot)
1905 		return;
1906 
1907 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1908 }
1909 
1910 enum kvm_stat_kind {
1911 	KVM_STAT_VM,
1912 	KVM_STAT_VCPU,
1913 };
1914 
1915 struct kvm_stat_data {
1916 	struct kvm *kvm;
1917 	const struct _kvm_stats_desc *desc;
1918 	enum kvm_stat_kind kind;
1919 };
1920 
1921 struct _kvm_stats_desc {
1922 	struct kvm_stats_desc desc;
1923 	char name[KVM_STATS_NAME_SIZE];
1924 };
1925 
1926 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1927 	.flags = type | unit | base |					       \
1928 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1929 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1930 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1931 	.exponent = exp,						       \
1932 	.size = sz,							       \
1933 	.bucket_size = bsz
1934 
1935 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1936 	{								       \
1937 		{							       \
1938 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1939 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1940 		},							       \
1941 		.name = #stat,						       \
1942 	}
1943 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1944 	{								       \
1945 		{							       \
1946 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1947 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1948 		},							       \
1949 		.name = #stat,						       \
1950 	}
1951 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1952 	{								       \
1953 		{							       \
1954 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1955 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1956 		},							       \
1957 		.name = #stat,						       \
1958 	}
1959 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1960 	{								       \
1961 		{							       \
1962 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1963 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1964 		},							       \
1965 		.name = #stat,						       \
1966 	}
1967 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1968 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1969 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1970 
1971 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1972 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1973 		unit, base, exponent, 1, 0)
1974 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1975 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1976 		unit, base, exponent, 1, 0)
1977 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1978 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1979 		unit, base, exponent, 1, 0)
1980 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1981 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1982 		unit, base, exponent, sz, bsz)
1983 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1984 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1985 		unit, base, exponent, sz, 0)
1986 
1987 /* Cumulative counter, read/write */
1988 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1989 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1990 		KVM_STATS_BASE_POW10, 0)
1991 /* Instantaneous counter, read only */
1992 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1993 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1994 		KVM_STATS_BASE_POW10, 0)
1995 /* Peak counter, read/write */
1996 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1997 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1998 		KVM_STATS_BASE_POW10, 0)
1999 
2000 /* Instantaneous boolean value, read only */
2001 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
2002 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2003 		KVM_STATS_BASE_POW10, 0)
2004 /* Peak (sticky) boolean value, read/write */
2005 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
2006 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2007 		KVM_STATS_BASE_POW10, 0)
2008 
2009 /* Cumulative time in nanosecond */
2010 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
2011 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2012 		KVM_STATS_BASE_POW10, -9)
2013 /* Linear histogram for time in nanosecond */
2014 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
2015 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2016 		KVM_STATS_BASE_POW10, -9, sz, bsz)
2017 /* Logarithmic histogram for time in nanosecond */
2018 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
2019 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2020 		KVM_STATS_BASE_POW10, -9, sz)
2021 
2022 #define KVM_GENERIC_VM_STATS()						       \
2023 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
2024 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2025 
2026 #define KVM_GENERIC_VCPU_STATS()					       \
2027 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
2028 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
2029 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
2030 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
2031 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
2032 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
2033 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
2034 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
2035 			HALT_POLL_HIST_COUNT),				       \
2036 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
2037 			HALT_POLL_HIST_COUNT),				       \
2038 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
2039 			HALT_POLL_HIST_COUNT),				       \
2040 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2041 
2042 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2043 		       const struct _kvm_stats_desc *desc,
2044 		       void *stats, size_t size_stats,
2045 		       char __user *user_buffer, size_t size, loff_t *offset);
2046 
2047 /**
2048  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2049  * statistics data.
2050  *
2051  * @data: start address of the stats data
2052  * @size: the number of bucket of the stats data
2053  * @value: the new value used to update the linear histogram's bucket
2054  * @bucket_size: the size (width) of a bucket
2055  */
2056 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2057 						u64 value, size_t bucket_size)
2058 {
2059 	size_t index = div64_u64(value, bucket_size);
2060 
2061 	index = min(index, size - 1);
2062 	++data[index];
2063 }
2064 
2065 /**
2066  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2067  * statistics data.
2068  *
2069  * @data: start address of the stats data
2070  * @size: the number of bucket of the stats data
2071  * @value: the new value used to update the logarithmic histogram's bucket
2072  */
2073 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2074 {
2075 	size_t index = fls64(value);
2076 
2077 	index = min(index, size - 1);
2078 	++data[index];
2079 }
2080 
2081 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2082 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2083 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2084 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2085 
2086 
2087 extern const struct kvm_stats_header kvm_vm_stats_header;
2088 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2089 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2090 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2091 
2092 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2093 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2094 {
2095 	if (unlikely(kvm->mmu_invalidate_in_progress))
2096 		return 1;
2097 	/*
2098 	 * Ensure the read of mmu_invalidate_in_progress happens before
2099 	 * the read of mmu_invalidate_seq.  This interacts with the
2100 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2101 	 * that the caller either sees the old (non-zero) value of
2102 	 * mmu_invalidate_in_progress or the new (incremented) value of
2103 	 * mmu_invalidate_seq.
2104 	 *
2105 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2106 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2107 	 * kvm->mmu_lock to keep things ordered.
2108 	 */
2109 	smp_rmb();
2110 	if (kvm->mmu_invalidate_seq != mmu_seq)
2111 		return 1;
2112 	return 0;
2113 }
2114 
2115 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2116 					   unsigned long mmu_seq,
2117 					   gfn_t gfn)
2118 {
2119 	lockdep_assert_held(&kvm->mmu_lock);
2120 	/*
2121 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2122 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2123 	 * that might be being invalidated. Note that it may include some false
2124 	 * positives, due to shortcuts when handing concurrent invalidations.
2125 	 */
2126 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2127 		/*
2128 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2129 		 * but before updating the range is a KVM bug.
2130 		 */
2131 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2132 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2133 			return 1;
2134 
2135 		if (gfn >= kvm->mmu_invalidate_range_start &&
2136 		    gfn < kvm->mmu_invalidate_range_end)
2137 			return 1;
2138 	}
2139 
2140 	if (kvm->mmu_invalidate_seq != mmu_seq)
2141 		return 1;
2142 	return 0;
2143 }
2144 
2145 /*
2146  * This lockless version of the range-based retry check *must* be paired with a
2147  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2148  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2149  * get false negatives and false positives.
2150  */
2151 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2152 						   unsigned long mmu_seq,
2153 						   gfn_t gfn)
2154 {
2155 	/*
2156 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2157 	 * are always read from memory, e.g. so that checking for retry in a
2158 	 * loop won't result in an infinite retry loop.  Don't force loads for
2159 	 * start+end, as the key to avoiding infinite retry loops is observing
2160 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2161 	 * due to stale start+end values is acceptable.
2162 	 */
2163 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2164 	    gfn >= kvm->mmu_invalidate_range_start &&
2165 	    gfn < kvm->mmu_invalidate_range_end)
2166 		return true;
2167 
2168 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2169 }
2170 #endif
2171 
2172 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2173 
2174 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2175 
2176 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2177 int kvm_set_irq_routing(struct kvm *kvm,
2178 			const struct kvm_irq_routing_entry *entries,
2179 			unsigned nr,
2180 			unsigned flags);
2181 int kvm_init_irq_routing(struct kvm *kvm);
2182 int kvm_set_routing_entry(struct kvm *kvm,
2183 			  struct kvm_kernel_irq_routing_entry *e,
2184 			  const struct kvm_irq_routing_entry *ue);
2185 void kvm_free_irq_routing(struct kvm *kvm);
2186 
2187 #else
2188 
2189 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2190 
2191 static inline int kvm_init_irq_routing(struct kvm *kvm)
2192 {
2193 	return 0;
2194 }
2195 
2196 #endif
2197 
2198 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2199 
2200 void kvm_eventfd_init(struct kvm *kvm);
2201 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2202 
2203 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2204 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2205 void kvm_irqfd_release(struct kvm *kvm);
2206 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2207 				unsigned int irqchip,
2208 				unsigned int pin);
2209 void kvm_irq_routing_update(struct kvm *);
2210 #else
2211 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2212 {
2213 	return -EINVAL;
2214 }
2215 
2216 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2217 
2218 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2219 					      unsigned int irqchip,
2220 					      unsigned int pin)
2221 {
2222 	return false;
2223 }
2224 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2225 
2226 void kvm_arch_irq_routing_update(struct kvm *kvm);
2227 
2228 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2229 {
2230 	/*
2231 	 * Ensure the rest of the request is published to kvm_check_request's
2232 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2233 	 */
2234 	smp_wmb();
2235 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2236 }
2237 
2238 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2239 {
2240 	/*
2241 	 * Request that don't require vCPU action should never be logged in
2242 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2243 	 * logged indefinitely and prevent the vCPU from entering the guest.
2244 	 */
2245 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2246 		     (req & KVM_REQUEST_NO_ACTION));
2247 
2248 	__kvm_make_request(req, vcpu);
2249 }
2250 
2251 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2252 {
2253 	return READ_ONCE(vcpu->requests);
2254 }
2255 
2256 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2257 {
2258 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2259 }
2260 
2261 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2262 {
2263 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2264 }
2265 
2266 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2267 {
2268 	if (kvm_test_request(req, vcpu)) {
2269 		kvm_clear_request(req, vcpu);
2270 
2271 		/*
2272 		 * Ensure the rest of the request is visible to kvm_check_request's
2273 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2274 		 */
2275 		smp_mb__after_atomic();
2276 		return true;
2277 	} else {
2278 		return false;
2279 	}
2280 }
2281 
2282 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2283 extern bool kvm_rebooting;
2284 #endif
2285 
2286 extern unsigned int halt_poll_ns;
2287 extern unsigned int halt_poll_ns_grow;
2288 extern unsigned int halt_poll_ns_grow_start;
2289 extern unsigned int halt_poll_ns_shrink;
2290 
2291 struct kvm_device {
2292 	const struct kvm_device_ops *ops;
2293 	struct kvm *kvm;
2294 	void *private;
2295 	struct list_head vm_node;
2296 };
2297 
2298 /* create, destroy, and name are mandatory */
2299 struct kvm_device_ops {
2300 	const char *name;
2301 
2302 	/*
2303 	 * create is called holding kvm->lock and any operations not suitable
2304 	 * to do while holding the lock should be deferred to init (see
2305 	 * below).
2306 	 */
2307 	int (*create)(struct kvm_device *dev, u32 type);
2308 
2309 	/*
2310 	 * init is called after create if create is successful and is called
2311 	 * outside of holding kvm->lock.
2312 	 */
2313 	void (*init)(struct kvm_device *dev);
2314 
2315 	/*
2316 	 * Destroy is responsible for freeing dev.
2317 	 *
2318 	 * Destroy may be called before or after destructors are called
2319 	 * on emulated I/O regions, depending on whether a reference is
2320 	 * held by a vcpu or other kvm component that gets destroyed
2321 	 * after the emulated I/O.
2322 	 */
2323 	void (*destroy)(struct kvm_device *dev);
2324 
2325 	/*
2326 	 * Release is an alternative method to free the device. It is
2327 	 * called when the device file descriptor is closed. Once
2328 	 * release is called, the destroy method will not be called
2329 	 * anymore as the device is removed from the device list of
2330 	 * the VM. kvm->lock is held.
2331 	 */
2332 	void (*release)(struct kvm_device *dev);
2333 
2334 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2335 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2336 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2337 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2338 		      unsigned long arg);
2339 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2340 };
2341 
2342 struct kvm_device *kvm_device_from_filp(struct file *filp);
2343 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2344 void kvm_unregister_device_ops(u32 type);
2345 
2346 extern struct kvm_device_ops kvm_mpic_ops;
2347 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2348 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2349 
2350 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2351 
2352 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2353 {
2354 	vcpu->spin_loop.in_spin_loop = val;
2355 }
2356 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2357 {
2358 	vcpu->spin_loop.dy_eligible = val;
2359 }
2360 
2361 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2362 
2363 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2364 {
2365 }
2366 
2367 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2368 {
2369 }
2370 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2371 
2372 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2373 {
2374 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2375 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2376 }
2377 
2378 struct kvm_vcpu *kvm_get_running_vcpu(void);
2379 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2380 
2381 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2382 bool kvm_arch_has_irq_bypass(void);
2383 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2384 			   struct irq_bypass_producer *);
2385 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2386 			   struct irq_bypass_producer *);
2387 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2388 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2389 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2390 				  uint32_t guest_irq, bool set);
2391 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2392 				  struct kvm_kernel_irq_routing_entry *);
2393 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2394 
2395 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2396 /* If we wakeup during the poll time, was it a sucessful poll? */
2397 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2398 {
2399 	return vcpu->valid_wakeup;
2400 }
2401 
2402 #else
2403 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2404 {
2405 	return true;
2406 }
2407 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2408 
2409 #ifdef CONFIG_HAVE_KVM_NO_POLL
2410 /* Callback that tells if we must not poll */
2411 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2412 #else
2413 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2414 {
2415 	return false;
2416 }
2417 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2418 
2419 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2420 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2421 			       unsigned int ioctl, unsigned long arg);
2422 #else
2423 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2424 					     unsigned int ioctl,
2425 					     unsigned long arg)
2426 {
2427 	return -ENOIOCTLCMD;
2428 }
2429 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2430 
2431 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2432 
2433 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2434 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2435 #else
2436 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2437 {
2438 	return 0;
2439 }
2440 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2441 
2442 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2443 
2444 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2445 				uintptr_t data, const char *name,
2446 				struct task_struct **thread_ptr);
2447 
2448 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2449 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2450 {
2451 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2452 	vcpu->stat.signal_exits++;
2453 }
2454 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2455 
2456 /*
2457  * If more than one page is being (un)accounted, @virt must be the address of
2458  * the first page of a block of pages what were allocated together (i.e
2459  * accounted together).
2460  *
2461  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2462  * is thread-safe.
2463  */
2464 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2465 {
2466 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2467 }
2468 
2469 /*
2470  * This defines how many reserved entries we want to keep before we
2471  * kick the vcpu to the userspace to avoid dirty ring full.  This
2472  * value can be tuned to higher if e.g. PML is enabled on the host.
2473  */
2474 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2475 
2476 /* Max number of entries allowed for each kvm dirty ring */
2477 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2478 
2479 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2480 						 gpa_t gpa, gpa_t size,
2481 						 bool is_write, bool is_exec,
2482 						 bool is_private)
2483 {
2484 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2485 	vcpu->run->memory_fault.gpa = gpa;
2486 	vcpu->run->memory_fault.size = size;
2487 
2488 	/* RWX flags are not (yet) defined or communicated to userspace. */
2489 	vcpu->run->memory_fault.flags = 0;
2490 	if (is_private)
2491 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2492 }
2493 
2494 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2495 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2496 {
2497 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2498 }
2499 
2500 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2501 				     unsigned long mask, unsigned long attrs);
2502 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2503 					struct kvm_gfn_range *range);
2504 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2505 					 struct kvm_gfn_range *range);
2506 
2507 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2508 {
2509 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2510 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2511 }
2512 #else
2513 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2514 {
2515 	return false;
2516 }
2517 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2518 
2519 #ifdef CONFIG_KVM_PRIVATE_MEM
2520 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2521 		     gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2522 		     int *max_order);
2523 #else
2524 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2525 				   struct kvm_memory_slot *slot, gfn_t gfn,
2526 				   kvm_pfn_t *pfn, struct page **page,
2527 				   int *max_order)
2528 {
2529 	KVM_BUG_ON(1, kvm);
2530 	return -EIO;
2531 }
2532 #endif /* CONFIG_KVM_PRIVATE_MEM */
2533 
2534 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2535 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2536 #endif
2537 
2538 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2539 /**
2540  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2541  *
2542  * @kvm: KVM instance
2543  * @gfn: starting GFN to be populated
2544  * @src: userspace-provided buffer containing data to copy into GFN range
2545  *       (passed to @post_populate, and incremented on each iteration
2546  *       if not NULL)
2547  * @npages: number of pages to copy from userspace-buffer
2548  * @post_populate: callback to issue for each gmem page that backs the GPA
2549  *                 range
2550  * @opaque: opaque data to pass to @post_populate callback
2551  *
2552  * This is primarily intended for cases where a gmem-backed GPA range needs
2553  * to be initialized with userspace-provided data prior to being mapped into
2554  * the guest as a private page. This should be called with the slots->lock
2555  * held so that caller-enforced invariants regarding the expected memory
2556  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2557  *
2558  * Returns the number of pages that were populated.
2559  */
2560 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2561 				    void __user *src, int order, void *opaque);
2562 
2563 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2564 		       kvm_gmem_populate_cb post_populate, void *opaque);
2565 #endif
2566 
2567 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2568 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2569 #endif
2570 
2571 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2572 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2573 				    struct kvm_pre_fault_memory *range);
2574 #endif
2575 
2576 #endif
2577