xref: /linux-6.15/include/linux/kvm_host.h (revision f1f99adf)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/minmax.h>
15 #include <linux/mm.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/preempt.h>
18 #include <linux/msi.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 #include <linux/rcupdate.h>
22 #include <linux/ratelimit.h>
23 #include <linux/err.h>
24 #include <linux/irqflags.h>
25 #include <linux/context_tracking.h>
26 #include <linux/irqbypass.h>
27 #include <linux/rcuwait.h>
28 #include <linux/refcount.h>
29 #include <linux/nospec.h>
30 #include <asm/signal.h>
31 
32 #include <linux/kvm.h>
33 #include <linux/kvm_para.h>
34 
35 #include <linux/kvm_types.h>
36 
37 #include <asm/kvm_host.h>
38 #include <linux/kvm_dirty_ring.h>
39 
40 #ifndef KVM_MAX_VCPU_ID
41 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
42 #endif
43 
44 /*
45  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
46  * in kvm, other bits are visible for userspace which are defined in
47  * include/linux/kvm_h.
48  */
49 #define KVM_MEMSLOT_INVALID	(1UL << 16)
50 
51 /*
52  * Bit 63 of the memslot generation number is an "update in-progress flag",
53  * e.g. is temporarily set for the duration of install_new_memslots().
54  * This flag effectively creates a unique generation number that is used to
55  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
56  * i.e. may (or may not) have come from the previous memslots generation.
57  *
58  * This is necessary because the actual memslots update is not atomic with
59  * respect to the generation number update.  Updating the generation number
60  * first would allow a vCPU to cache a spte from the old memslots using the
61  * new generation number, and updating the generation number after switching
62  * to the new memslots would allow cache hits using the old generation number
63  * to reference the defunct memslots.
64  *
65  * This mechanism is used to prevent getting hits in KVM's caches while a
66  * memslot update is in-progress, and to prevent cache hits *after* updating
67  * the actual generation number against accesses that were inserted into the
68  * cache *before* the memslots were updated.
69  */
70 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
71 
72 /* Two fragments for cross MMIO pages. */
73 #define KVM_MAX_MMIO_FRAGMENTS	2
74 
75 #ifndef KVM_ADDRESS_SPACE_NUM
76 #define KVM_ADDRESS_SPACE_NUM	1
77 #endif
78 
79 /*
80  * For the normal pfn, the highest 12 bits should be zero,
81  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
82  * mask bit 63 to indicate the noslot pfn.
83  */
84 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
85 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
86 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
87 
88 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
89 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
90 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
91 
92 /*
93  * error pfns indicate that the gfn is in slot but faild to
94  * translate it to pfn on host.
95  */
96 static inline bool is_error_pfn(kvm_pfn_t pfn)
97 {
98 	return !!(pfn & KVM_PFN_ERR_MASK);
99 }
100 
101 /*
102  * error_noslot pfns indicate that the gfn can not be
103  * translated to pfn - it is not in slot or failed to
104  * translate it to pfn.
105  */
106 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
107 {
108 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
109 }
110 
111 /* noslot pfn indicates that the gfn is not in slot. */
112 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
113 {
114 	return pfn == KVM_PFN_NOSLOT;
115 }
116 
117 /*
118  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
119  * provide own defines and kvm_is_error_hva
120  */
121 #ifndef KVM_HVA_ERR_BAD
122 
123 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
124 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
125 
126 static inline bool kvm_is_error_hva(unsigned long addr)
127 {
128 	return addr >= PAGE_OFFSET;
129 }
130 
131 #endif
132 
133 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
134 
135 static inline bool is_error_page(struct page *page)
136 {
137 	return IS_ERR(page);
138 }
139 
140 #define KVM_REQUEST_MASK           GENMASK(7,0)
141 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
142 #define KVM_REQUEST_WAIT           BIT(9)
143 /*
144  * Architecture-independent vcpu->requests bit members
145  * Bits 4-7 are reserved for more arch-independent bits.
146  */
147 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
148 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149 #define KVM_REQ_PENDING_TIMER     2
150 #define KVM_REQ_UNHALT            3
151 #define KVM_REQUEST_ARCH_BASE     8
152 
153 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
154 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
155 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
156 })
157 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
158 
159 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
160 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
161 
162 extern struct mutex kvm_lock;
163 extern struct list_head vm_list;
164 
165 struct kvm_io_range {
166 	gpa_t addr;
167 	int len;
168 	struct kvm_io_device *dev;
169 };
170 
171 #define NR_IOBUS_DEVS 1000
172 
173 struct kvm_io_bus {
174 	int dev_count;
175 	int ioeventfd_count;
176 	struct kvm_io_range range[];
177 };
178 
179 enum kvm_bus {
180 	KVM_MMIO_BUS,
181 	KVM_PIO_BUS,
182 	KVM_VIRTIO_CCW_NOTIFY_BUS,
183 	KVM_FAST_MMIO_BUS,
184 	KVM_NR_BUSES
185 };
186 
187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
188 		     int len, const void *val);
189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
190 			    gpa_t addr, int len, const void *val, long cookie);
191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
192 		    int len, void *val);
193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
194 			    int len, struct kvm_io_device *dev);
195 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 			      struct kvm_io_device *dev);
197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 					 gpa_t addr);
199 
200 #ifdef CONFIG_KVM_ASYNC_PF
201 struct kvm_async_pf {
202 	struct work_struct work;
203 	struct list_head link;
204 	struct list_head queue;
205 	struct kvm_vcpu *vcpu;
206 	struct mm_struct *mm;
207 	gpa_t cr2_or_gpa;
208 	unsigned long addr;
209 	struct kvm_arch_async_pf arch;
210 	bool   wakeup_all;
211 	bool notpresent_injected;
212 };
213 
214 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
215 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
216 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
217 			unsigned long hva, struct kvm_arch_async_pf *arch);
218 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
219 #endif
220 
221 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
222 struct kvm_gfn_range {
223 	struct kvm_memory_slot *slot;
224 	gfn_t start;
225 	gfn_t end;
226 	pte_t pte;
227 	bool may_block;
228 };
229 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
230 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
231 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
232 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
233 #endif
234 
235 enum {
236 	OUTSIDE_GUEST_MODE,
237 	IN_GUEST_MODE,
238 	EXITING_GUEST_MODE,
239 	READING_SHADOW_PAGE_TABLES,
240 };
241 
242 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
243 
244 struct kvm_host_map {
245 	/*
246 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
247 	 * a 'struct page' for it. When using mem= kernel parameter some memory
248 	 * can be used as guest memory but they are not managed by host
249 	 * kernel).
250 	 * If 'pfn' is not managed by the host kernel, this field is
251 	 * initialized to KVM_UNMAPPED_PAGE.
252 	 */
253 	struct page *page;
254 	void *hva;
255 	kvm_pfn_t pfn;
256 	kvm_pfn_t gfn;
257 };
258 
259 /*
260  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
261  * directly to check for that.
262  */
263 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
264 {
265 	return !!map->hva;
266 }
267 
268 /*
269  * Sometimes a large or cross-page mmio needs to be broken up into separate
270  * exits for userspace servicing.
271  */
272 struct kvm_mmio_fragment {
273 	gpa_t gpa;
274 	void *data;
275 	unsigned len;
276 };
277 
278 struct kvm_vcpu {
279 	struct kvm *kvm;
280 #ifdef CONFIG_PREEMPT_NOTIFIERS
281 	struct preempt_notifier preempt_notifier;
282 #endif
283 	int cpu;
284 	int vcpu_id; /* id given by userspace at creation */
285 	int vcpu_idx; /* index in kvm->vcpus array */
286 	int srcu_idx;
287 	int mode;
288 	u64 requests;
289 	unsigned long guest_debug;
290 
291 	int pre_pcpu;
292 	struct list_head blocked_vcpu_list;
293 
294 	struct mutex mutex;
295 	struct kvm_run *run;
296 
297 	struct rcuwait wait;
298 	struct pid __rcu *pid;
299 	int sigset_active;
300 	sigset_t sigset;
301 	struct kvm_vcpu_stat stat;
302 	unsigned int halt_poll_ns;
303 	bool valid_wakeup;
304 
305 #ifdef CONFIG_HAS_IOMEM
306 	int mmio_needed;
307 	int mmio_read_completed;
308 	int mmio_is_write;
309 	int mmio_cur_fragment;
310 	int mmio_nr_fragments;
311 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
312 #endif
313 
314 #ifdef CONFIG_KVM_ASYNC_PF
315 	struct {
316 		u32 queued;
317 		struct list_head queue;
318 		struct list_head done;
319 		spinlock_t lock;
320 	} async_pf;
321 #endif
322 
323 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
324 	/*
325 	 * Cpu relax intercept or pause loop exit optimization
326 	 * in_spin_loop: set when a vcpu does a pause loop exit
327 	 *  or cpu relax intercepted.
328 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
329 	 */
330 	struct {
331 		bool in_spin_loop;
332 		bool dy_eligible;
333 	} spin_loop;
334 #endif
335 	bool preempted;
336 	bool ready;
337 	struct kvm_vcpu_arch arch;
338 	struct kvm_dirty_ring dirty_ring;
339 };
340 
341 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
342 {
343 	/*
344 	 * The memory barrier ensures a previous write to vcpu->requests cannot
345 	 * be reordered with the read of vcpu->mode.  It pairs with the general
346 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
347 	 */
348 	smp_mb__before_atomic();
349 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
350 }
351 
352 /*
353  * Some of the bitops functions do not support too long bitmaps.
354  * This number must be determined not to exceed such limits.
355  */
356 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
357 
358 struct kvm_memory_slot {
359 	gfn_t base_gfn;
360 	unsigned long npages;
361 	unsigned long *dirty_bitmap;
362 	struct kvm_arch_memory_slot arch;
363 	unsigned long userspace_addr;
364 	u32 flags;
365 	short id;
366 	u16 as_id;
367 };
368 
369 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
370 {
371 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
372 }
373 
374 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
375 {
376 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
377 }
378 
379 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
380 {
381 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
382 
383 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
384 }
385 
386 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
387 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
388 #endif
389 
390 struct kvm_s390_adapter_int {
391 	u64 ind_addr;
392 	u64 summary_addr;
393 	u64 ind_offset;
394 	u32 summary_offset;
395 	u32 adapter_id;
396 };
397 
398 struct kvm_hv_sint {
399 	u32 vcpu;
400 	u32 sint;
401 };
402 
403 struct kvm_kernel_irq_routing_entry {
404 	u32 gsi;
405 	u32 type;
406 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
407 		   struct kvm *kvm, int irq_source_id, int level,
408 		   bool line_status);
409 	union {
410 		struct {
411 			unsigned irqchip;
412 			unsigned pin;
413 		} irqchip;
414 		struct {
415 			u32 address_lo;
416 			u32 address_hi;
417 			u32 data;
418 			u32 flags;
419 			u32 devid;
420 		} msi;
421 		struct kvm_s390_adapter_int adapter;
422 		struct kvm_hv_sint hv_sint;
423 	};
424 	struct hlist_node link;
425 };
426 
427 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
428 struct kvm_irq_routing_table {
429 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
430 	u32 nr_rt_entries;
431 	/*
432 	 * Array indexed by gsi. Each entry contains list of irq chips
433 	 * the gsi is connected to.
434 	 */
435 	struct hlist_head map[];
436 };
437 #endif
438 
439 #ifndef KVM_PRIVATE_MEM_SLOTS
440 #define KVM_PRIVATE_MEM_SLOTS 0
441 #endif
442 
443 #define KVM_MEM_SLOTS_NUM SHRT_MAX
444 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
445 
446 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
447 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
448 {
449 	return 0;
450 }
451 #endif
452 
453 /*
454  * Note:
455  * memslots are not sorted by id anymore, please use id_to_memslot()
456  * to get the memslot by its id.
457  */
458 struct kvm_memslots {
459 	u64 generation;
460 	/* The mapping table from slot id to the index in memslots[]. */
461 	short id_to_index[KVM_MEM_SLOTS_NUM];
462 	atomic_t lru_slot;
463 	int used_slots;
464 	struct kvm_memory_slot memslots[];
465 };
466 
467 struct kvm {
468 #ifdef KVM_HAVE_MMU_RWLOCK
469 	rwlock_t mmu_lock;
470 #else
471 	spinlock_t mmu_lock;
472 #endif /* KVM_HAVE_MMU_RWLOCK */
473 
474 	struct mutex slots_lock;
475 	struct mm_struct *mm; /* userspace tied to this vm */
476 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
477 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
478 
479 	/*
480 	 * created_vcpus is protected by kvm->lock, and is incremented
481 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
482 	 * incremented after storing the kvm_vcpu pointer in vcpus,
483 	 * and is accessed atomically.
484 	 */
485 	atomic_t online_vcpus;
486 	int created_vcpus;
487 	int last_boosted_vcpu;
488 	struct list_head vm_list;
489 	struct mutex lock;
490 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
491 #ifdef CONFIG_HAVE_KVM_EVENTFD
492 	struct {
493 		spinlock_t        lock;
494 		struct list_head  items;
495 		struct list_head  resampler_list;
496 		struct mutex      resampler_lock;
497 	} irqfds;
498 	struct list_head ioeventfds;
499 #endif
500 	struct kvm_vm_stat stat;
501 	struct kvm_arch arch;
502 	refcount_t users_count;
503 #ifdef CONFIG_KVM_MMIO
504 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
505 	spinlock_t ring_lock;
506 	struct list_head coalesced_zones;
507 #endif
508 
509 	struct mutex irq_lock;
510 #ifdef CONFIG_HAVE_KVM_IRQCHIP
511 	/*
512 	 * Update side is protected by irq_lock.
513 	 */
514 	struct kvm_irq_routing_table __rcu *irq_routing;
515 #endif
516 #ifdef CONFIG_HAVE_KVM_IRQFD
517 	struct hlist_head irq_ack_notifier_list;
518 #endif
519 
520 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
521 	struct mmu_notifier mmu_notifier;
522 	unsigned long mmu_notifier_seq;
523 	long mmu_notifier_count;
524 	unsigned long mmu_notifier_range_start;
525 	unsigned long mmu_notifier_range_end;
526 #endif
527 	long tlbs_dirty;
528 	struct list_head devices;
529 	u64 manual_dirty_log_protect;
530 	struct dentry *debugfs_dentry;
531 	struct kvm_stat_data **debugfs_stat_data;
532 	struct srcu_struct srcu;
533 	struct srcu_struct irq_srcu;
534 	pid_t userspace_pid;
535 	unsigned int max_halt_poll_ns;
536 	u32 dirty_ring_size;
537 };
538 
539 #define kvm_err(fmt, ...) \
540 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
541 #define kvm_info(fmt, ...) \
542 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
543 #define kvm_debug(fmt, ...) \
544 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
545 #define kvm_debug_ratelimited(fmt, ...) \
546 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
547 			     ## __VA_ARGS__)
548 #define kvm_pr_unimpl(fmt, ...) \
549 	pr_err_ratelimited("kvm [%i]: " fmt, \
550 			   task_tgid_nr(current), ## __VA_ARGS__)
551 
552 /* The guest did something we don't support. */
553 #define vcpu_unimpl(vcpu, fmt, ...)					\
554 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
555 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
556 
557 #define vcpu_debug(vcpu, fmt, ...)					\
558 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
559 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
560 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
561 			      ## __VA_ARGS__)
562 #define vcpu_err(vcpu, fmt, ...)					\
563 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
564 
565 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
566 {
567 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
568 }
569 
570 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
571 {
572 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
573 				      lockdep_is_held(&kvm->slots_lock) ||
574 				      !refcount_read(&kvm->users_count));
575 }
576 
577 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
578 {
579 	int num_vcpus = atomic_read(&kvm->online_vcpus);
580 	i = array_index_nospec(i, num_vcpus);
581 
582 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
583 	smp_rmb();
584 	return kvm->vcpus[i];
585 }
586 
587 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
588 	for (idx = 0; \
589 	     idx < atomic_read(&kvm->online_vcpus) && \
590 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
591 	     idx++)
592 
593 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
594 {
595 	struct kvm_vcpu *vcpu = NULL;
596 	int i;
597 
598 	if (id < 0)
599 		return NULL;
600 	if (id < KVM_MAX_VCPUS)
601 		vcpu = kvm_get_vcpu(kvm, id);
602 	if (vcpu && vcpu->vcpu_id == id)
603 		return vcpu;
604 	kvm_for_each_vcpu(i, vcpu, kvm)
605 		if (vcpu->vcpu_id == id)
606 			return vcpu;
607 	return NULL;
608 }
609 
610 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
611 {
612 	return vcpu->vcpu_idx;
613 }
614 
615 #define kvm_for_each_memslot(memslot, slots)				\
616 	for (memslot = &slots->memslots[0];				\
617 	     memslot < slots->memslots + slots->used_slots; memslot++)	\
618 		if (WARN_ON_ONCE(!memslot->npages)) {			\
619 		} else
620 
621 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
622 
623 void vcpu_load(struct kvm_vcpu *vcpu);
624 void vcpu_put(struct kvm_vcpu *vcpu);
625 
626 #ifdef __KVM_HAVE_IOAPIC
627 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
628 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
629 #else
630 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
631 {
632 }
633 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
634 {
635 }
636 #endif
637 
638 #ifdef CONFIG_HAVE_KVM_IRQFD
639 int kvm_irqfd_init(void);
640 void kvm_irqfd_exit(void);
641 #else
642 static inline int kvm_irqfd_init(void)
643 {
644 	return 0;
645 }
646 
647 static inline void kvm_irqfd_exit(void)
648 {
649 }
650 #endif
651 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
652 		  struct module *module);
653 void kvm_exit(void);
654 
655 void kvm_get_kvm(struct kvm *kvm);
656 void kvm_put_kvm(struct kvm *kvm);
657 bool file_is_kvm(struct file *file);
658 void kvm_put_kvm_no_destroy(struct kvm *kvm);
659 
660 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
661 {
662 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
663 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
664 			lockdep_is_held(&kvm->slots_lock) ||
665 			!refcount_read(&kvm->users_count));
666 }
667 
668 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
669 {
670 	return __kvm_memslots(kvm, 0);
671 }
672 
673 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
674 {
675 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
676 
677 	return __kvm_memslots(vcpu->kvm, as_id);
678 }
679 
680 static inline
681 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
682 {
683 	int index = slots->id_to_index[id];
684 	struct kvm_memory_slot *slot;
685 
686 	if (index < 0)
687 		return NULL;
688 
689 	slot = &slots->memslots[index];
690 
691 	WARN_ON(slot->id != id);
692 	return slot;
693 }
694 
695 /*
696  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
697  * - create a new memory slot
698  * - delete an existing memory slot
699  * - modify an existing memory slot
700  *   -- move it in the guest physical memory space
701  *   -- just change its flags
702  *
703  * Since flags can be changed by some of these operations, the following
704  * differentiation is the best we can do for __kvm_set_memory_region():
705  */
706 enum kvm_mr_change {
707 	KVM_MR_CREATE,
708 	KVM_MR_DELETE,
709 	KVM_MR_MOVE,
710 	KVM_MR_FLAGS_ONLY,
711 };
712 
713 int kvm_set_memory_region(struct kvm *kvm,
714 			  const struct kvm_userspace_memory_region *mem);
715 int __kvm_set_memory_region(struct kvm *kvm,
716 			    const struct kvm_userspace_memory_region *mem);
717 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
718 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
719 int kvm_arch_prepare_memory_region(struct kvm *kvm,
720 				struct kvm_memory_slot *memslot,
721 				const struct kvm_userspace_memory_region *mem,
722 				enum kvm_mr_change change);
723 void kvm_arch_commit_memory_region(struct kvm *kvm,
724 				const struct kvm_userspace_memory_region *mem,
725 				struct kvm_memory_slot *old,
726 				const struct kvm_memory_slot *new,
727 				enum kvm_mr_change change);
728 /* flush all memory translations */
729 void kvm_arch_flush_shadow_all(struct kvm *kvm);
730 /* flush memory translations pointing to 'slot' */
731 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
732 				   struct kvm_memory_slot *slot);
733 
734 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
735 			    struct page **pages, int nr_pages);
736 
737 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
738 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
739 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
740 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
741 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
742 				      bool *writable);
743 void kvm_release_page_clean(struct page *page);
744 void kvm_release_page_dirty(struct page *page);
745 void kvm_set_page_accessed(struct page *page);
746 
747 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
748 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
749 		      bool *writable);
750 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
751 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
752 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
753 			       bool atomic, bool *async, bool write_fault,
754 			       bool *writable, hva_t *hva);
755 
756 void kvm_release_pfn_clean(kvm_pfn_t pfn);
757 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
758 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
759 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
760 void kvm_get_pfn(kvm_pfn_t pfn);
761 
762 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
763 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
764 			int len);
765 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
766 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
767 			   void *data, unsigned long len);
768 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
769 				 void *data, unsigned int offset,
770 				 unsigned long len);
771 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
772 			 int offset, int len);
773 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
774 		    unsigned long len);
775 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
776 			   void *data, unsigned long len);
777 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
778 				  void *data, unsigned int offset,
779 				  unsigned long len);
780 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
781 			      gpa_t gpa, unsigned long len);
782 
783 #define __kvm_get_guest(kvm, gfn, offset, v)				\
784 ({									\
785 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
786 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
787 	int __ret = -EFAULT;						\
788 									\
789 	if (!kvm_is_error_hva(__addr))					\
790 		__ret = get_user(v, __uaddr);				\
791 	__ret;								\
792 })
793 
794 #define kvm_get_guest(kvm, gpa, v)					\
795 ({									\
796 	gpa_t __gpa = gpa;						\
797 	struct kvm *__kvm = kvm;					\
798 									\
799 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
800 			offset_in_page(__gpa), v);			\
801 })
802 
803 #define __kvm_put_guest(kvm, gfn, offset, v)				\
804 ({									\
805 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
806 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
807 	int __ret = -EFAULT;						\
808 									\
809 	if (!kvm_is_error_hva(__addr))					\
810 		__ret = put_user(v, __uaddr);				\
811 	if (!__ret)							\
812 		mark_page_dirty(kvm, gfn);				\
813 	__ret;								\
814 })
815 
816 #define kvm_put_guest(kvm, gpa, v)					\
817 ({									\
818 	gpa_t __gpa = gpa;						\
819 	struct kvm *__kvm = kvm;					\
820 									\
821 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
822 			offset_in_page(__gpa), v);			\
823 })
824 
825 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
826 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
827 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
828 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
829 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
830 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
831 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
832 
833 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
834 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
835 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
836 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
837 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
838 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
839 		struct gfn_to_pfn_cache *cache, bool atomic);
840 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
841 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
842 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
843 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
844 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
845 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
846 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
847 			     int len);
848 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
849 			       unsigned long len);
850 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
851 			unsigned long len);
852 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
853 			      int offset, int len);
854 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
855 			 unsigned long len);
856 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
857 
858 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
859 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
860 
861 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
862 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
863 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
864 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
865 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
866 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
867 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
868 
869 void kvm_flush_remote_tlbs(struct kvm *kvm);
870 void kvm_reload_remote_mmus(struct kvm *kvm);
871 
872 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
873 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
874 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
875 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
876 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
877 #endif
878 
879 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
880 				 struct kvm_vcpu *except,
881 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
882 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
883 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
884 				      struct kvm_vcpu *except);
885 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
886 				unsigned long *vcpu_bitmap);
887 
888 long kvm_arch_dev_ioctl(struct file *filp,
889 			unsigned int ioctl, unsigned long arg);
890 long kvm_arch_vcpu_ioctl(struct file *filp,
891 			 unsigned int ioctl, unsigned long arg);
892 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
893 
894 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
895 
896 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
897 					struct kvm_memory_slot *slot,
898 					gfn_t gfn_offset,
899 					unsigned long mask);
900 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
901 
902 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
903 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
904 					const struct kvm_memory_slot *memslot);
905 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
906 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
907 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
908 		      int *is_dirty, struct kvm_memory_slot **memslot);
909 #endif
910 
911 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
912 			bool line_status);
913 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
914 			    struct kvm_enable_cap *cap);
915 long kvm_arch_vm_ioctl(struct file *filp,
916 		       unsigned int ioctl, unsigned long arg);
917 
918 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
919 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
920 
921 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
922 				    struct kvm_translation *tr);
923 
924 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
925 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
926 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
927 				  struct kvm_sregs *sregs);
928 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
929 				  struct kvm_sregs *sregs);
930 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
931 				    struct kvm_mp_state *mp_state);
932 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
933 				    struct kvm_mp_state *mp_state);
934 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
935 					struct kvm_guest_debug *dbg);
936 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
937 
938 int kvm_arch_init(void *opaque);
939 void kvm_arch_exit(void);
940 
941 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
942 
943 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
944 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
945 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
946 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
947 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
948 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
949 
950 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
951 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
952 #endif
953 
954 int kvm_arch_hardware_enable(void);
955 void kvm_arch_hardware_disable(void);
956 int kvm_arch_hardware_setup(void *opaque);
957 void kvm_arch_hardware_unsetup(void);
958 int kvm_arch_check_processor_compat(void *opaque);
959 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
960 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
961 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
962 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
963 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
964 int kvm_arch_post_init_vm(struct kvm *kvm);
965 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
966 
967 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
968 /*
969  * All architectures that want to use vzalloc currently also
970  * need their own kvm_arch_alloc_vm implementation.
971  */
972 static inline struct kvm *kvm_arch_alloc_vm(void)
973 {
974 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
975 }
976 
977 static inline void kvm_arch_free_vm(struct kvm *kvm)
978 {
979 	kfree(kvm);
980 }
981 #endif
982 
983 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
984 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
985 {
986 	return -ENOTSUPP;
987 }
988 #endif
989 
990 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
991 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
992 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
993 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
994 #else
995 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
996 {
997 }
998 
999 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1000 {
1001 }
1002 
1003 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1004 {
1005 	return false;
1006 }
1007 #endif
1008 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1009 void kvm_arch_start_assignment(struct kvm *kvm);
1010 void kvm_arch_end_assignment(struct kvm *kvm);
1011 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1012 #else
1013 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1014 {
1015 }
1016 
1017 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1018 {
1019 }
1020 
1021 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1022 {
1023 	return false;
1024 }
1025 #endif
1026 
1027 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1028 {
1029 #ifdef __KVM_HAVE_ARCH_WQP
1030 	return vcpu->arch.waitp;
1031 #else
1032 	return &vcpu->wait;
1033 #endif
1034 }
1035 
1036 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1037 /*
1038  * returns true if the virtual interrupt controller is initialized and
1039  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1040  * controller is dynamically instantiated and this is not always true.
1041  */
1042 bool kvm_arch_intc_initialized(struct kvm *kvm);
1043 #else
1044 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1045 {
1046 	return true;
1047 }
1048 #endif
1049 
1050 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1051 void kvm_arch_destroy_vm(struct kvm *kvm);
1052 void kvm_arch_sync_events(struct kvm *kvm);
1053 
1054 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1055 
1056 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1057 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1058 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1059 
1060 struct kvm_irq_ack_notifier {
1061 	struct hlist_node link;
1062 	unsigned gsi;
1063 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1064 };
1065 
1066 int kvm_irq_map_gsi(struct kvm *kvm,
1067 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1068 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1069 
1070 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1071 		bool line_status);
1072 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1073 		int irq_source_id, int level, bool line_status);
1074 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1075 			       struct kvm *kvm, int irq_source_id,
1076 			       int level, bool line_status);
1077 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1078 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1079 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1080 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1081 				   struct kvm_irq_ack_notifier *kian);
1082 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1083 				   struct kvm_irq_ack_notifier *kian);
1084 int kvm_request_irq_source_id(struct kvm *kvm);
1085 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1086 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1087 
1088 /*
1089  * search_memslots() and __gfn_to_memslot() are here because they are
1090  * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1091  * gfn_to_memslot() itself isn't here as an inline because that would
1092  * bloat other code too much.
1093  *
1094  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1095  */
1096 static inline struct kvm_memory_slot *
1097 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1098 {
1099 	int start = 0, end = slots->used_slots;
1100 	int slot = atomic_read(&slots->lru_slot);
1101 	struct kvm_memory_slot *memslots = slots->memslots;
1102 
1103 	if (unlikely(!slots->used_slots))
1104 		return NULL;
1105 
1106 	if (gfn >= memslots[slot].base_gfn &&
1107 	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
1108 		return &memslots[slot];
1109 
1110 	while (start < end) {
1111 		slot = start + (end - start) / 2;
1112 
1113 		if (gfn >= memslots[slot].base_gfn)
1114 			end = slot;
1115 		else
1116 			start = slot + 1;
1117 	}
1118 
1119 	if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1120 	    gfn < memslots[start].base_gfn + memslots[start].npages) {
1121 		atomic_set(&slots->lru_slot, start);
1122 		return &memslots[start];
1123 	}
1124 
1125 	return NULL;
1126 }
1127 
1128 static inline struct kvm_memory_slot *
1129 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1130 {
1131 	return search_memslots(slots, gfn);
1132 }
1133 
1134 static inline unsigned long
1135 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1136 {
1137 	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1138 }
1139 
1140 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1141 {
1142 	return gfn_to_memslot(kvm, gfn)->id;
1143 }
1144 
1145 static inline gfn_t
1146 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1147 {
1148 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1149 
1150 	return slot->base_gfn + gfn_offset;
1151 }
1152 
1153 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1154 {
1155 	return (gpa_t)gfn << PAGE_SHIFT;
1156 }
1157 
1158 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1159 {
1160 	return (gfn_t)(gpa >> PAGE_SHIFT);
1161 }
1162 
1163 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1164 {
1165 	return (hpa_t)pfn << PAGE_SHIFT;
1166 }
1167 
1168 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1169 						gpa_t gpa)
1170 {
1171 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1172 }
1173 
1174 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1175 {
1176 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1177 
1178 	return kvm_is_error_hva(hva);
1179 }
1180 
1181 enum kvm_stat_kind {
1182 	KVM_STAT_VM,
1183 	KVM_STAT_VCPU,
1184 };
1185 
1186 struct kvm_stat_data {
1187 	struct kvm *kvm;
1188 	struct kvm_stats_debugfs_item *dbgfs_item;
1189 };
1190 
1191 struct kvm_stats_debugfs_item {
1192 	const char *name;
1193 	int offset;
1194 	enum kvm_stat_kind kind;
1195 	int mode;
1196 };
1197 
1198 #define KVM_DBGFS_GET_MODE(dbgfs_item)                                         \
1199 	((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1200 
1201 #define VM_STAT(n, x, ...) 							\
1202 	{ n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1203 #define VCPU_STAT(n, x, ...)							\
1204 	{ n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1205 
1206 extern struct kvm_stats_debugfs_item debugfs_entries[];
1207 extern struct dentry *kvm_debugfs_dir;
1208 
1209 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1210 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1211 {
1212 	if (unlikely(kvm->mmu_notifier_count))
1213 		return 1;
1214 	/*
1215 	 * Ensure the read of mmu_notifier_count happens before the read
1216 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1217 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1218 	 * either sees the old (non-zero) value of mmu_notifier_count or
1219 	 * the new (incremented) value of mmu_notifier_seq.
1220 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1221 	 * rather than under kvm->mmu_lock, for scalability, so
1222 	 * can't rely on kvm->mmu_lock to keep things ordered.
1223 	 */
1224 	smp_rmb();
1225 	if (kvm->mmu_notifier_seq != mmu_seq)
1226 		return 1;
1227 	return 0;
1228 }
1229 
1230 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1231 					 unsigned long mmu_seq,
1232 					 unsigned long hva)
1233 {
1234 	lockdep_assert_held(&kvm->mmu_lock);
1235 	/*
1236 	 * If mmu_notifier_count is non-zero, then the range maintained by
1237 	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1238 	 * might be being invalidated. Note that it may include some false
1239 	 * positives, due to shortcuts when handing concurrent invalidations.
1240 	 */
1241 	if (unlikely(kvm->mmu_notifier_count) &&
1242 	    hva >= kvm->mmu_notifier_range_start &&
1243 	    hva < kvm->mmu_notifier_range_end)
1244 		return 1;
1245 	if (kvm->mmu_notifier_seq != mmu_seq)
1246 		return 1;
1247 	return 0;
1248 }
1249 #endif
1250 
1251 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1252 
1253 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1254 
1255 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1256 int kvm_set_irq_routing(struct kvm *kvm,
1257 			const struct kvm_irq_routing_entry *entries,
1258 			unsigned nr,
1259 			unsigned flags);
1260 int kvm_set_routing_entry(struct kvm *kvm,
1261 			  struct kvm_kernel_irq_routing_entry *e,
1262 			  const struct kvm_irq_routing_entry *ue);
1263 void kvm_free_irq_routing(struct kvm *kvm);
1264 
1265 #else
1266 
1267 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1268 
1269 #endif
1270 
1271 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1272 
1273 #ifdef CONFIG_HAVE_KVM_EVENTFD
1274 
1275 void kvm_eventfd_init(struct kvm *kvm);
1276 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1277 
1278 #ifdef CONFIG_HAVE_KVM_IRQFD
1279 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1280 void kvm_irqfd_release(struct kvm *kvm);
1281 void kvm_irq_routing_update(struct kvm *);
1282 #else
1283 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1284 {
1285 	return -EINVAL;
1286 }
1287 
1288 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1289 #endif
1290 
1291 #else
1292 
1293 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1294 
1295 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1296 {
1297 	return -EINVAL;
1298 }
1299 
1300 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1301 
1302 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1303 static inline void kvm_irq_routing_update(struct kvm *kvm)
1304 {
1305 }
1306 #endif
1307 
1308 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1309 {
1310 	return -ENOSYS;
1311 }
1312 
1313 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1314 
1315 void kvm_arch_irq_routing_update(struct kvm *kvm);
1316 
1317 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1318 {
1319 	/*
1320 	 * Ensure the rest of the request is published to kvm_check_request's
1321 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1322 	 */
1323 	smp_wmb();
1324 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1325 }
1326 
1327 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1328 {
1329 	return READ_ONCE(vcpu->requests);
1330 }
1331 
1332 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1333 {
1334 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1335 }
1336 
1337 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1338 {
1339 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1340 }
1341 
1342 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1343 {
1344 	if (kvm_test_request(req, vcpu)) {
1345 		kvm_clear_request(req, vcpu);
1346 
1347 		/*
1348 		 * Ensure the rest of the request is visible to kvm_check_request's
1349 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1350 		 */
1351 		smp_mb__after_atomic();
1352 		return true;
1353 	} else {
1354 		return false;
1355 	}
1356 }
1357 
1358 extern bool kvm_rebooting;
1359 
1360 extern unsigned int halt_poll_ns;
1361 extern unsigned int halt_poll_ns_grow;
1362 extern unsigned int halt_poll_ns_grow_start;
1363 extern unsigned int halt_poll_ns_shrink;
1364 
1365 struct kvm_device {
1366 	const struct kvm_device_ops *ops;
1367 	struct kvm *kvm;
1368 	void *private;
1369 	struct list_head vm_node;
1370 };
1371 
1372 /* create, destroy, and name are mandatory */
1373 struct kvm_device_ops {
1374 	const char *name;
1375 
1376 	/*
1377 	 * create is called holding kvm->lock and any operations not suitable
1378 	 * to do while holding the lock should be deferred to init (see
1379 	 * below).
1380 	 */
1381 	int (*create)(struct kvm_device *dev, u32 type);
1382 
1383 	/*
1384 	 * init is called after create if create is successful and is called
1385 	 * outside of holding kvm->lock.
1386 	 */
1387 	void (*init)(struct kvm_device *dev);
1388 
1389 	/*
1390 	 * Destroy is responsible for freeing dev.
1391 	 *
1392 	 * Destroy may be called before or after destructors are called
1393 	 * on emulated I/O regions, depending on whether a reference is
1394 	 * held by a vcpu or other kvm component that gets destroyed
1395 	 * after the emulated I/O.
1396 	 */
1397 	void (*destroy)(struct kvm_device *dev);
1398 
1399 	/*
1400 	 * Release is an alternative method to free the device. It is
1401 	 * called when the device file descriptor is closed. Once
1402 	 * release is called, the destroy method will not be called
1403 	 * anymore as the device is removed from the device list of
1404 	 * the VM. kvm->lock is held.
1405 	 */
1406 	void (*release)(struct kvm_device *dev);
1407 
1408 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1409 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1410 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1411 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1412 		      unsigned long arg);
1413 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1414 };
1415 
1416 void kvm_device_get(struct kvm_device *dev);
1417 void kvm_device_put(struct kvm_device *dev);
1418 struct kvm_device *kvm_device_from_filp(struct file *filp);
1419 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1420 void kvm_unregister_device_ops(u32 type);
1421 
1422 extern struct kvm_device_ops kvm_mpic_ops;
1423 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1424 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1425 
1426 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1427 
1428 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1429 {
1430 	vcpu->spin_loop.in_spin_loop = val;
1431 }
1432 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1433 {
1434 	vcpu->spin_loop.dy_eligible = val;
1435 }
1436 
1437 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1438 
1439 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1440 {
1441 }
1442 
1443 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1444 {
1445 }
1446 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1447 
1448 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1449 {
1450 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1451 		!(memslot->flags & KVM_MEMSLOT_INVALID));
1452 }
1453 
1454 struct kvm_vcpu *kvm_get_running_vcpu(void);
1455 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1456 
1457 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1458 bool kvm_arch_has_irq_bypass(void);
1459 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1460 			   struct irq_bypass_producer *);
1461 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1462 			   struct irq_bypass_producer *);
1463 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1464 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1465 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1466 				  uint32_t guest_irq, bool set);
1467 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1468 
1469 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1470 /* If we wakeup during the poll time, was it a sucessful poll? */
1471 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1472 {
1473 	return vcpu->valid_wakeup;
1474 }
1475 
1476 #else
1477 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1478 {
1479 	return true;
1480 }
1481 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1482 
1483 #ifdef CONFIG_HAVE_KVM_NO_POLL
1484 /* Callback that tells if we must not poll */
1485 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1486 #else
1487 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1488 {
1489 	return false;
1490 }
1491 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1492 
1493 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1494 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1495 			       unsigned int ioctl, unsigned long arg);
1496 #else
1497 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1498 					     unsigned int ioctl,
1499 					     unsigned long arg)
1500 {
1501 	return -ENOIOCTLCMD;
1502 }
1503 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1504 
1505 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1506 					    unsigned long start, unsigned long end);
1507 
1508 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1509 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1510 #else
1511 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1512 {
1513 	return 0;
1514 }
1515 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1516 
1517 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1518 
1519 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1520 				uintptr_t data, const char *name,
1521 				struct task_struct **thread_ptr);
1522 
1523 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1524 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1525 {
1526 	vcpu->run->exit_reason = KVM_EXIT_INTR;
1527 	vcpu->stat.signal_exits++;
1528 }
1529 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1530 
1531 /*
1532  * This defines how many reserved entries we want to keep before we
1533  * kick the vcpu to the userspace to avoid dirty ring full.  This
1534  * value can be tuned to higher if e.g. PML is enabled on the host.
1535  */
1536 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
1537 
1538 /* Max number of entries allowed for each kvm dirty ring */
1539 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
1540 
1541 #endif
1542