xref: /linux-6.15/include/linux/kvm_host.h (revision f0ada00a)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 #define KVM_PFN_ERR_NEEDS_IO	(KVM_PFN_ERR_MASK + 4)
101 
102 /*
103  * error pfns indicate that the gfn is in slot but faild to
104  * translate it to pfn on host.
105  */
106 static inline bool is_error_pfn(kvm_pfn_t pfn)
107 {
108 	return !!(pfn & KVM_PFN_ERR_MASK);
109 }
110 
111 /*
112  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
113  * by a pending signal.  Note, the signal may or may not be fatal.
114  */
115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
116 {
117 	return pfn == KVM_PFN_ERR_SIGPENDING;
118 }
119 
120 /*
121  * error_noslot pfns indicate that the gfn can not be
122  * translated to pfn - it is not in slot or failed to
123  * translate it to pfn.
124  */
125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
126 {
127 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
128 }
129 
130 /* noslot pfn indicates that the gfn is not in slot. */
131 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
132 {
133 	return pfn == KVM_PFN_NOSLOT;
134 }
135 
136 /*
137  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
138  * provide own defines and kvm_is_error_hva
139  */
140 #ifndef KVM_HVA_ERR_BAD
141 
142 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
143 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
144 
145 static inline bool kvm_is_error_hva(unsigned long addr)
146 {
147 	return addr >= PAGE_OFFSET;
148 }
149 
150 #endif
151 
152 static inline bool kvm_is_error_gpa(gpa_t gpa)
153 {
154 	return gpa == INVALID_GPA;
155 }
156 
157 #define KVM_REQUEST_MASK           GENMASK(7,0)
158 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
159 #define KVM_REQUEST_WAIT           BIT(9)
160 #define KVM_REQUEST_NO_ACTION      BIT(10)
161 /*
162  * Architecture-independent vcpu->requests bit members
163  * Bits 3-7 are reserved for more arch-independent bits.
164  */
165 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
166 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_UNBLOCK			2
168 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
169 #define KVM_REQUEST_ARCH_BASE		8
170 
171 /*
172  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
173  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
174  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
175  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
176  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
177  * guarantee the vCPU received an IPI and has actually exited guest mode.
178  */
179 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
180 
181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
182 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
183 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
184 })
185 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
186 
187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
188 				 unsigned long *vcpu_bitmap);
189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
190 
191 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
193 
194 extern struct mutex kvm_lock;
195 extern struct list_head vm_list;
196 
197 struct kvm_io_range {
198 	gpa_t addr;
199 	int len;
200 	struct kvm_io_device *dev;
201 };
202 
203 #define NR_IOBUS_DEVS 1000
204 
205 struct kvm_io_bus {
206 	int dev_count;
207 	int ioeventfd_count;
208 	struct kvm_io_range range[];
209 };
210 
211 enum kvm_bus {
212 	KVM_MMIO_BUS,
213 	KVM_PIO_BUS,
214 	KVM_VIRTIO_CCW_NOTIFY_BUS,
215 	KVM_FAST_MMIO_BUS,
216 	KVM_IOCSR_BUS,
217 	KVM_NR_BUSES
218 };
219 
220 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
221 		     int len, const void *val);
222 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
223 			    gpa_t addr, int len, const void *val, long cookie);
224 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225 		    int len, void *val);
226 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
227 			    int len, struct kvm_io_device *dev);
228 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
229 			      struct kvm_io_device *dev);
230 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
231 					 gpa_t addr);
232 
233 #ifdef CONFIG_KVM_ASYNC_PF
234 struct kvm_async_pf {
235 	struct work_struct work;
236 	struct list_head link;
237 	struct list_head queue;
238 	struct kvm_vcpu *vcpu;
239 	gpa_t cr2_or_gpa;
240 	unsigned long addr;
241 	struct kvm_arch_async_pf arch;
242 	bool   wakeup_all;
243 	bool notpresent_injected;
244 };
245 
246 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
247 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
248 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
249 			unsigned long hva, struct kvm_arch_async_pf *arch);
250 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
251 #endif
252 
253 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
254 union kvm_mmu_notifier_arg {
255 	unsigned long attributes;
256 };
257 
258 enum kvm_gfn_range_filter {
259 	KVM_FILTER_SHARED		= BIT(0),
260 	KVM_FILTER_PRIVATE		= BIT(1),
261 };
262 
263 struct kvm_gfn_range {
264 	struct kvm_memory_slot *slot;
265 	gfn_t start;
266 	gfn_t end;
267 	union kvm_mmu_notifier_arg arg;
268 	enum kvm_gfn_range_filter attr_filter;
269 	bool may_block;
270 };
271 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
272 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
273 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
274 #endif
275 
276 enum {
277 	OUTSIDE_GUEST_MODE,
278 	IN_GUEST_MODE,
279 	EXITING_GUEST_MODE,
280 	READING_SHADOW_PAGE_TABLES,
281 };
282 
283 struct kvm_host_map {
284 	/*
285 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
286 	 * a 'struct page' for it. When using mem= kernel parameter some memory
287 	 * can be used as guest memory but they are not managed by host
288 	 * kernel).
289 	 */
290 	struct page *pinned_page;
291 	struct page *page;
292 	void *hva;
293 	kvm_pfn_t pfn;
294 	kvm_pfn_t gfn;
295 	bool writable;
296 };
297 
298 /*
299  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
300  * directly to check for that.
301  */
302 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
303 {
304 	return !!map->hva;
305 }
306 
307 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
308 {
309 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
310 }
311 
312 /*
313  * Sometimes a large or cross-page mmio needs to be broken up into separate
314  * exits for userspace servicing.
315  */
316 struct kvm_mmio_fragment {
317 	gpa_t gpa;
318 	void *data;
319 	unsigned len;
320 };
321 
322 struct kvm_vcpu {
323 	struct kvm *kvm;
324 #ifdef CONFIG_PREEMPT_NOTIFIERS
325 	struct preempt_notifier preempt_notifier;
326 #endif
327 	int cpu;
328 	int vcpu_id; /* id given by userspace at creation */
329 	int vcpu_idx; /* index into kvm->vcpu_array */
330 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
331 #ifdef CONFIG_PROVE_RCU
332 	int srcu_depth;
333 #endif
334 	int mode;
335 	u64 requests;
336 	unsigned long guest_debug;
337 
338 	struct mutex mutex;
339 	struct kvm_run *run;
340 
341 #ifndef __KVM_HAVE_ARCH_WQP
342 	struct rcuwait wait;
343 #endif
344 	struct pid *pid;
345 	rwlock_t pid_lock;
346 	int sigset_active;
347 	sigset_t sigset;
348 	unsigned int halt_poll_ns;
349 	bool valid_wakeup;
350 
351 #ifdef CONFIG_HAS_IOMEM
352 	int mmio_needed;
353 	int mmio_read_completed;
354 	int mmio_is_write;
355 	int mmio_cur_fragment;
356 	int mmio_nr_fragments;
357 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
358 #endif
359 
360 #ifdef CONFIG_KVM_ASYNC_PF
361 	struct {
362 		u32 queued;
363 		struct list_head queue;
364 		struct list_head done;
365 		spinlock_t lock;
366 	} async_pf;
367 #endif
368 
369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370 	/*
371 	 * Cpu relax intercept or pause loop exit optimization
372 	 * in_spin_loop: set when a vcpu does a pause loop exit
373 	 *  or cpu relax intercepted.
374 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
375 	 */
376 	struct {
377 		bool in_spin_loop;
378 		bool dy_eligible;
379 	} spin_loop;
380 #endif
381 	bool wants_to_run;
382 	bool preempted;
383 	bool ready;
384 	bool scheduled_out;
385 	struct kvm_vcpu_arch arch;
386 	struct kvm_vcpu_stat stat;
387 	char stats_id[KVM_STATS_NAME_SIZE];
388 	struct kvm_dirty_ring dirty_ring;
389 
390 	/*
391 	 * The most recently used memslot by this vCPU and the slots generation
392 	 * for which it is valid.
393 	 * No wraparound protection is needed since generations won't overflow in
394 	 * thousands of years, even assuming 1M memslot operations per second.
395 	 */
396 	struct kvm_memory_slot *last_used_slot;
397 	u64 last_used_slot_gen;
398 };
399 
400 /*
401  * Start accounting time towards a guest.
402  * Must be called before entering guest context.
403  */
404 static __always_inline void guest_timing_enter_irqoff(void)
405 {
406 	/*
407 	 * This is running in ioctl context so its safe to assume that it's the
408 	 * stime pending cputime to flush.
409 	 */
410 	instrumentation_begin();
411 	vtime_account_guest_enter();
412 	instrumentation_end();
413 }
414 
415 /*
416  * Enter guest context and enter an RCU extended quiescent state.
417  *
418  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
419  * unsafe to use any code which may directly or indirectly use RCU, tracing
420  * (including IRQ flag tracing), or lockdep. All code in this period must be
421  * non-instrumentable.
422  */
423 static __always_inline void guest_context_enter_irqoff(void)
424 {
425 	/*
426 	 * KVM does not hold any references to rcu protected data when it
427 	 * switches CPU into a guest mode. In fact switching to a guest mode
428 	 * is very similar to exiting to userspace from rcu point of view. In
429 	 * addition CPU may stay in a guest mode for quite a long time (up to
430 	 * one time slice). Lets treat guest mode as quiescent state, just like
431 	 * we do with user-mode execution.
432 	 */
433 	if (!context_tracking_guest_enter()) {
434 		instrumentation_begin();
435 		rcu_virt_note_context_switch();
436 		instrumentation_end();
437 	}
438 }
439 
440 /*
441  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
442  * guest_state_enter_irqoff().
443  */
444 static __always_inline void guest_enter_irqoff(void)
445 {
446 	guest_timing_enter_irqoff();
447 	guest_context_enter_irqoff();
448 }
449 
450 /**
451  * guest_state_enter_irqoff - Fixup state when entering a guest
452  *
453  * Entry to a guest will enable interrupts, but the kernel state is interrupts
454  * disabled when this is invoked. Also tell RCU about it.
455  *
456  * 1) Trace interrupts on state
457  * 2) Invoke context tracking if enabled to adjust RCU state
458  * 3) Tell lockdep that interrupts are enabled
459  *
460  * Invoked from architecture specific code before entering a guest.
461  * Must be called with interrupts disabled and the caller must be
462  * non-instrumentable.
463  * The caller has to invoke guest_timing_enter_irqoff() before this.
464  *
465  * Note: this is analogous to exit_to_user_mode().
466  */
467 static __always_inline void guest_state_enter_irqoff(void)
468 {
469 	instrumentation_begin();
470 	trace_hardirqs_on_prepare();
471 	lockdep_hardirqs_on_prepare();
472 	instrumentation_end();
473 
474 	guest_context_enter_irqoff();
475 	lockdep_hardirqs_on(CALLER_ADDR0);
476 }
477 
478 /*
479  * Exit guest context and exit an RCU extended quiescent state.
480  *
481  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
482  * unsafe to use any code which may directly or indirectly use RCU, tracing
483  * (including IRQ flag tracing), or lockdep. All code in this period must be
484  * non-instrumentable.
485  */
486 static __always_inline void guest_context_exit_irqoff(void)
487 {
488 	/*
489 	 * Guest mode is treated as a quiescent state, see
490 	 * guest_context_enter_irqoff() for more details.
491 	 */
492 	if (!context_tracking_guest_exit()) {
493 		instrumentation_begin();
494 		rcu_virt_note_context_switch();
495 		instrumentation_end();
496 	}
497 }
498 
499 /*
500  * Stop accounting time towards a guest.
501  * Must be called after exiting guest context.
502  */
503 static __always_inline void guest_timing_exit_irqoff(void)
504 {
505 	instrumentation_begin();
506 	/* Flush the guest cputime we spent on the guest */
507 	vtime_account_guest_exit();
508 	instrumentation_end();
509 }
510 
511 /*
512  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
513  * guest_timing_exit_irqoff().
514  */
515 static __always_inline void guest_exit_irqoff(void)
516 {
517 	guest_context_exit_irqoff();
518 	guest_timing_exit_irqoff();
519 }
520 
521 static inline void guest_exit(void)
522 {
523 	unsigned long flags;
524 
525 	local_irq_save(flags);
526 	guest_exit_irqoff();
527 	local_irq_restore(flags);
528 }
529 
530 /**
531  * guest_state_exit_irqoff - Establish state when returning from guest mode
532  *
533  * Entry from a guest disables interrupts, but guest mode is traced as
534  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
535  *
536  * 1) Tell lockdep that interrupts are disabled
537  * 2) Invoke context tracking if enabled to reactivate RCU
538  * 3) Trace interrupts off state
539  *
540  * Invoked from architecture specific code after exiting a guest.
541  * Must be invoked with interrupts disabled and the caller must be
542  * non-instrumentable.
543  * The caller has to invoke guest_timing_exit_irqoff() after this.
544  *
545  * Note: this is analogous to enter_from_user_mode().
546  */
547 static __always_inline void guest_state_exit_irqoff(void)
548 {
549 	lockdep_hardirqs_off(CALLER_ADDR0);
550 	guest_context_exit_irqoff();
551 
552 	instrumentation_begin();
553 	trace_hardirqs_off_finish();
554 	instrumentation_end();
555 }
556 
557 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
558 {
559 	/*
560 	 * The memory barrier ensures a previous write to vcpu->requests cannot
561 	 * be reordered with the read of vcpu->mode.  It pairs with the general
562 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
563 	 */
564 	smp_mb__before_atomic();
565 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
566 }
567 
568 /*
569  * Some of the bitops functions do not support too long bitmaps.
570  * This number must be determined not to exceed such limits.
571  */
572 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
573 
574 /*
575  * Since at idle each memslot belongs to two memslot sets it has to contain
576  * two embedded nodes for each data structure that it forms a part of.
577  *
578  * Two memslot sets (one active and one inactive) are necessary so the VM
579  * continues to run on one memslot set while the other is being modified.
580  *
581  * These two memslot sets normally point to the same set of memslots.
582  * They can, however, be desynchronized when performing a memslot management
583  * operation by replacing the memslot to be modified by its copy.
584  * After the operation is complete, both memslot sets once again point to
585  * the same, common set of memslot data.
586  *
587  * The memslots themselves are independent of each other so they can be
588  * individually added or deleted.
589  */
590 struct kvm_memory_slot {
591 	struct hlist_node id_node[2];
592 	struct interval_tree_node hva_node[2];
593 	struct rb_node gfn_node[2];
594 	gfn_t base_gfn;
595 	unsigned long npages;
596 	unsigned long *dirty_bitmap;
597 	struct kvm_arch_memory_slot arch;
598 	unsigned long userspace_addr;
599 	u32 flags;
600 	short id;
601 	u16 as_id;
602 
603 #ifdef CONFIG_KVM_PRIVATE_MEM
604 	struct {
605 		/*
606 		 * Writes protected by kvm->slots_lock.  Acquiring a
607 		 * reference via kvm_gmem_get_file() is protected by
608 		 * either kvm->slots_lock or kvm->srcu.
609 		 */
610 		struct file *file;
611 		pgoff_t pgoff;
612 	} gmem;
613 #endif
614 };
615 
616 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
617 {
618 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
619 }
620 
621 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
622 {
623 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
624 }
625 
626 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
627 {
628 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
629 }
630 
631 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
632 {
633 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
634 
635 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
636 }
637 
638 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
639 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
640 #endif
641 
642 struct kvm_s390_adapter_int {
643 	u64 ind_addr;
644 	u64 summary_addr;
645 	u64 ind_offset;
646 	u32 summary_offset;
647 	u32 adapter_id;
648 };
649 
650 struct kvm_hv_sint {
651 	u32 vcpu;
652 	u32 sint;
653 };
654 
655 struct kvm_xen_evtchn {
656 	u32 port;
657 	u32 vcpu_id;
658 	int vcpu_idx;
659 	u32 priority;
660 };
661 
662 struct kvm_kernel_irq_routing_entry {
663 	u32 gsi;
664 	u32 type;
665 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
666 		   struct kvm *kvm, int irq_source_id, int level,
667 		   bool line_status);
668 	union {
669 		struct {
670 			unsigned irqchip;
671 			unsigned pin;
672 		} irqchip;
673 		struct {
674 			u32 address_lo;
675 			u32 address_hi;
676 			u32 data;
677 			u32 flags;
678 			u32 devid;
679 		} msi;
680 		struct kvm_s390_adapter_int adapter;
681 		struct kvm_hv_sint hv_sint;
682 		struct kvm_xen_evtchn xen_evtchn;
683 	};
684 	struct hlist_node link;
685 };
686 
687 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
688 struct kvm_irq_routing_table {
689 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
690 	u32 nr_rt_entries;
691 	/*
692 	 * Array indexed by gsi. Each entry contains list of irq chips
693 	 * the gsi is connected to.
694 	 */
695 	struct hlist_head map[] __counted_by(nr_rt_entries);
696 };
697 #endif
698 
699 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
700 
701 #ifndef KVM_INTERNAL_MEM_SLOTS
702 #define KVM_INTERNAL_MEM_SLOTS 0
703 #endif
704 
705 #define KVM_MEM_SLOTS_NUM SHRT_MAX
706 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
707 
708 #if KVM_MAX_NR_ADDRESS_SPACES == 1
709 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
710 {
711 	return KVM_MAX_NR_ADDRESS_SPACES;
712 }
713 
714 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
715 {
716 	return 0;
717 }
718 #endif
719 
720 /*
721  * Arch code must define kvm_arch_has_private_mem if support for private memory
722  * is enabled.
723  */
724 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
725 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
726 {
727 	return false;
728 }
729 #endif
730 
731 #ifndef kvm_arch_has_readonly_mem
732 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
733 {
734 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
735 }
736 #endif
737 
738 struct kvm_memslots {
739 	u64 generation;
740 	atomic_long_t last_used_slot;
741 	struct rb_root_cached hva_tree;
742 	struct rb_root gfn_tree;
743 	/*
744 	 * The mapping table from slot id to memslot.
745 	 *
746 	 * 7-bit bucket count matches the size of the old id to index array for
747 	 * 512 slots, while giving good performance with this slot count.
748 	 * Higher bucket counts bring only small performance improvements but
749 	 * always result in higher memory usage (even for lower memslot counts).
750 	 */
751 	DECLARE_HASHTABLE(id_hash, 7);
752 	int node_idx;
753 };
754 
755 struct kvm {
756 #ifdef KVM_HAVE_MMU_RWLOCK
757 	rwlock_t mmu_lock;
758 #else
759 	spinlock_t mmu_lock;
760 #endif /* KVM_HAVE_MMU_RWLOCK */
761 
762 	struct mutex slots_lock;
763 
764 	/*
765 	 * Protects the arch-specific fields of struct kvm_memory_slots in
766 	 * use by the VM. To be used under the slots_lock (above) or in a
767 	 * kvm->srcu critical section where acquiring the slots_lock would
768 	 * lead to deadlock with the synchronize_srcu in
769 	 * kvm_swap_active_memslots().
770 	 */
771 	struct mutex slots_arch_lock;
772 	struct mm_struct *mm; /* userspace tied to this vm */
773 	unsigned long nr_memslot_pages;
774 	/* The two memslot sets - active and inactive (per address space) */
775 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
776 	/* The current active memslot set for each address space */
777 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
778 	struct xarray vcpu_array;
779 	/*
780 	 * Protected by slots_lock, but can be read outside if an
781 	 * incorrect answer is acceptable.
782 	 */
783 	atomic_t nr_memslots_dirty_logging;
784 
785 	/* Used to wait for completion of MMU notifiers.  */
786 	spinlock_t mn_invalidate_lock;
787 	unsigned long mn_active_invalidate_count;
788 	struct rcuwait mn_memslots_update_rcuwait;
789 
790 	/* For management / invalidation of gfn_to_pfn_caches */
791 	spinlock_t gpc_lock;
792 	struct list_head gpc_list;
793 
794 	/*
795 	 * created_vcpus is protected by kvm->lock, and is incremented
796 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
797 	 * incremented after storing the kvm_vcpu pointer in vcpus,
798 	 * and is accessed atomically.
799 	 */
800 	atomic_t online_vcpus;
801 	int max_vcpus;
802 	int created_vcpus;
803 	int last_boosted_vcpu;
804 	struct list_head vm_list;
805 	struct mutex lock;
806 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
807 #ifdef CONFIG_HAVE_KVM_IRQCHIP
808 	struct {
809 		spinlock_t        lock;
810 		struct list_head  items;
811 		/* resampler_list update side is protected by resampler_lock. */
812 		struct list_head  resampler_list;
813 		struct mutex      resampler_lock;
814 	} irqfds;
815 #endif
816 	struct list_head ioeventfds;
817 	struct kvm_vm_stat stat;
818 	struct kvm_arch arch;
819 	refcount_t users_count;
820 #ifdef CONFIG_KVM_MMIO
821 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
822 	spinlock_t ring_lock;
823 	struct list_head coalesced_zones;
824 #endif
825 
826 	struct mutex irq_lock;
827 #ifdef CONFIG_HAVE_KVM_IRQCHIP
828 	/*
829 	 * Update side is protected by irq_lock.
830 	 */
831 	struct kvm_irq_routing_table __rcu *irq_routing;
832 
833 	struct hlist_head irq_ack_notifier_list;
834 #endif
835 
836 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
837 	struct mmu_notifier mmu_notifier;
838 	unsigned long mmu_invalidate_seq;
839 	long mmu_invalidate_in_progress;
840 	gfn_t mmu_invalidate_range_start;
841 	gfn_t mmu_invalidate_range_end;
842 #endif
843 	struct list_head devices;
844 	u64 manual_dirty_log_protect;
845 	struct dentry *debugfs_dentry;
846 	struct kvm_stat_data **debugfs_stat_data;
847 	struct srcu_struct srcu;
848 	struct srcu_struct irq_srcu;
849 	pid_t userspace_pid;
850 	bool override_halt_poll_ns;
851 	unsigned int max_halt_poll_ns;
852 	u32 dirty_ring_size;
853 	bool dirty_ring_with_bitmap;
854 	bool vm_bugged;
855 	bool vm_dead;
856 
857 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
858 	struct notifier_block pm_notifier;
859 #endif
860 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
861 	/* Protected by slots_locks (for writes) and RCU (for reads) */
862 	struct xarray mem_attr_array;
863 #endif
864 	char stats_id[KVM_STATS_NAME_SIZE];
865 };
866 
867 #define kvm_err(fmt, ...) \
868 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
869 #define kvm_info(fmt, ...) \
870 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
871 #define kvm_debug(fmt, ...) \
872 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
873 #define kvm_debug_ratelimited(fmt, ...) \
874 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
875 			     ## __VA_ARGS__)
876 #define kvm_pr_unimpl(fmt, ...) \
877 	pr_err_ratelimited("kvm [%i]: " fmt, \
878 			   task_tgid_nr(current), ## __VA_ARGS__)
879 
880 /* The guest did something we don't support. */
881 #define vcpu_unimpl(vcpu, fmt, ...)					\
882 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
883 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
884 
885 #define vcpu_debug(vcpu, fmt, ...)					\
886 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
887 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
888 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
889 			      ## __VA_ARGS__)
890 #define vcpu_err(vcpu, fmt, ...)					\
891 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
892 
893 static inline void kvm_vm_dead(struct kvm *kvm)
894 {
895 	kvm->vm_dead = true;
896 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
897 }
898 
899 static inline void kvm_vm_bugged(struct kvm *kvm)
900 {
901 	kvm->vm_bugged = true;
902 	kvm_vm_dead(kvm);
903 }
904 
905 
906 #define KVM_BUG(cond, kvm, fmt...)				\
907 ({								\
908 	bool __ret = !!(cond);					\
909 								\
910 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
911 		kvm_vm_bugged(kvm);				\
912 	unlikely(__ret);					\
913 })
914 
915 #define KVM_BUG_ON(cond, kvm)					\
916 ({								\
917 	bool __ret = !!(cond);					\
918 								\
919 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
920 		kvm_vm_bugged(kvm);				\
921 	unlikely(__ret);					\
922 })
923 
924 /*
925  * Note, "data corruption" refers to corruption of host kernel data structures,
926  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
927  * and contained to a single VM should *never* BUG() and potentially panic the
928  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
929  * is corrupted and that corruption can have a cascading effect to other parts
930  * of the hosts and/or to other VMs.
931  */
932 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
933 ({								\
934 	bool __ret = !!(cond);					\
935 								\
936 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
937 		BUG_ON(__ret);					\
938 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
939 		kvm_vm_bugged(kvm);				\
940 	unlikely(__ret);					\
941 })
942 
943 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
944 {
945 #ifdef CONFIG_PROVE_RCU
946 	WARN_ONCE(vcpu->srcu_depth++,
947 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
948 #endif
949 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
950 }
951 
952 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
953 {
954 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
955 
956 #ifdef CONFIG_PROVE_RCU
957 	WARN_ONCE(--vcpu->srcu_depth,
958 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
959 #endif
960 }
961 
962 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
963 {
964 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
965 }
966 
967 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
968 {
969 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
970 				      lockdep_is_held(&kvm->slots_lock) ||
971 				      !refcount_read(&kvm->users_count));
972 }
973 
974 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
975 {
976 	int num_vcpus = atomic_read(&kvm->online_vcpus);
977 
978 	/*
979 	 * Explicitly verify the target vCPU is online, as the anti-speculation
980 	 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
981 	 * index, clamping the index to 0 would return vCPU0, not NULL.
982 	 */
983 	if (i >= num_vcpus)
984 		return NULL;
985 
986 	i = array_index_nospec(i, num_vcpus);
987 
988 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
989 	smp_rmb();
990 	return xa_load(&kvm->vcpu_array, i);
991 }
992 
993 #define kvm_for_each_vcpu(idx, vcpup, kvm)				\
994 	if (atomic_read(&kvm->online_vcpus))				\
995 		xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0,	\
996 				  (atomic_read(&kvm->online_vcpus) - 1))
997 
998 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
999 {
1000 	struct kvm_vcpu *vcpu = NULL;
1001 	unsigned long i;
1002 
1003 	if (id < 0)
1004 		return NULL;
1005 	if (id < KVM_MAX_VCPUS)
1006 		vcpu = kvm_get_vcpu(kvm, id);
1007 	if (vcpu && vcpu->vcpu_id == id)
1008 		return vcpu;
1009 	kvm_for_each_vcpu(i, vcpu, kvm)
1010 		if (vcpu->vcpu_id == id)
1011 			return vcpu;
1012 	return NULL;
1013 }
1014 
1015 void kvm_destroy_vcpus(struct kvm *kvm);
1016 
1017 void vcpu_load(struct kvm_vcpu *vcpu);
1018 void vcpu_put(struct kvm_vcpu *vcpu);
1019 
1020 #ifdef __KVM_HAVE_IOAPIC
1021 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1022 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1023 #else
1024 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1025 {
1026 }
1027 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1028 {
1029 }
1030 #endif
1031 
1032 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1033 int kvm_irqfd_init(void);
1034 void kvm_irqfd_exit(void);
1035 #else
1036 static inline int kvm_irqfd_init(void)
1037 {
1038 	return 0;
1039 }
1040 
1041 static inline void kvm_irqfd_exit(void)
1042 {
1043 }
1044 #endif
1045 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1046 void kvm_exit(void);
1047 
1048 void kvm_get_kvm(struct kvm *kvm);
1049 bool kvm_get_kvm_safe(struct kvm *kvm);
1050 void kvm_put_kvm(struct kvm *kvm);
1051 bool file_is_kvm(struct file *file);
1052 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1053 
1054 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1055 {
1056 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1057 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1058 			lockdep_is_held(&kvm->slots_lock) ||
1059 			!refcount_read(&kvm->users_count));
1060 }
1061 
1062 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1063 {
1064 	return __kvm_memslots(kvm, 0);
1065 }
1066 
1067 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1068 {
1069 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1070 
1071 	return __kvm_memslots(vcpu->kvm, as_id);
1072 }
1073 
1074 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1075 {
1076 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1077 }
1078 
1079 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1080 
1081 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1082 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1083 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1084 		} else
1085 
1086 static inline
1087 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1088 {
1089 	struct kvm_memory_slot *slot;
1090 	int idx = slots->node_idx;
1091 
1092 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1093 		if (slot->id == id)
1094 			return slot;
1095 	}
1096 
1097 	return NULL;
1098 }
1099 
1100 /* Iterator used for walking memslots that overlap a gfn range. */
1101 struct kvm_memslot_iter {
1102 	struct kvm_memslots *slots;
1103 	struct rb_node *node;
1104 	struct kvm_memory_slot *slot;
1105 };
1106 
1107 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1108 {
1109 	iter->node = rb_next(iter->node);
1110 	if (!iter->node)
1111 		return;
1112 
1113 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1114 }
1115 
1116 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1117 					  struct kvm_memslots *slots,
1118 					  gfn_t start)
1119 {
1120 	int idx = slots->node_idx;
1121 	struct rb_node *tmp;
1122 	struct kvm_memory_slot *slot;
1123 
1124 	iter->slots = slots;
1125 
1126 	/*
1127 	 * Find the so called "upper bound" of a key - the first node that has
1128 	 * its key strictly greater than the searched one (the start gfn in our case).
1129 	 */
1130 	iter->node = NULL;
1131 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1132 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1133 		if (start < slot->base_gfn) {
1134 			iter->node = tmp;
1135 			tmp = tmp->rb_left;
1136 		} else {
1137 			tmp = tmp->rb_right;
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * Find the slot with the lowest gfn that can possibly intersect with
1143 	 * the range, so we'll ideally have slot start <= range start
1144 	 */
1145 	if (iter->node) {
1146 		/*
1147 		 * A NULL previous node means that the very first slot
1148 		 * already has a higher start gfn.
1149 		 * In this case slot start > range start.
1150 		 */
1151 		tmp = rb_prev(iter->node);
1152 		if (tmp)
1153 			iter->node = tmp;
1154 	} else {
1155 		/* a NULL node below means no slots */
1156 		iter->node = rb_last(&slots->gfn_tree);
1157 	}
1158 
1159 	if (iter->node) {
1160 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1161 
1162 		/*
1163 		 * It is possible in the slot start < range start case that the
1164 		 * found slot ends before or at range start (slot end <= range start)
1165 		 * and so it does not overlap the requested range.
1166 		 *
1167 		 * In such non-overlapping case the next slot (if it exists) will
1168 		 * already have slot start > range start, otherwise the logic above
1169 		 * would have found it instead of the current slot.
1170 		 */
1171 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1172 			kvm_memslot_iter_next(iter);
1173 	}
1174 }
1175 
1176 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1177 {
1178 	if (!iter->node)
1179 		return false;
1180 
1181 	/*
1182 	 * If this slot starts beyond or at the end of the range so does
1183 	 * every next one
1184 	 */
1185 	return iter->slot->base_gfn < end;
1186 }
1187 
1188 /* Iterate over each memslot at least partially intersecting [start, end) range */
1189 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1190 	for (kvm_memslot_iter_start(iter, slots, start);		\
1191 	     kvm_memslot_iter_is_valid(iter, end);			\
1192 	     kvm_memslot_iter_next(iter))
1193 
1194 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1195 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1196 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1197 
1198 /*
1199  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1200  * - create a new memory slot
1201  * - delete an existing memory slot
1202  * - modify an existing memory slot
1203  *   -- move it in the guest physical memory space
1204  *   -- just change its flags
1205  *
1206  * Since flags can be changed by some of these operations, the following
1207  * differentiation is the best we can do for kvm_set_memory_region():
1208  */
1209 enum kvm_mr_change {
1210 	KVM_MR_CREATE,
1211 	KVM_MR_DELETE,
1212 	KVM_MR_MOVE,
1213 	KVM_MR_FLAGS_ONLY,
1214 };
1215 
1216 int kvm_set_internal_memslot(struct kvm *kvm,
1217 			     const struct kvm_userspace_memory_region2 *mem);
1218 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1219 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1220 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1221 				const struct kvm_memory_slot *old,
1222 				struct kvm_memory_slot *new,
1223 				enum kvm_mr_change change);
1224 void kvm_arch_commit_memory_region(struct kvm *kvm,
1225 				struct kvm_memory_slot *old,
1226 				const struct kvm_memory_slot *new,
1227 				enum kvm_mr_change change);
1228 /* flush all memory translations */
1229 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1230 /* flush memory translations pointing to 'slot' */
1231 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1232 				   struct kvm_memory_slot *slot);
1233 
1234 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1235 		       struct page **pages, int nr_pages);
1236 
1237 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
1238 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1239 {
1240 	return __gfn_to_page(kvm, gfn, true);
1241 }
1242 
1243 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1244 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1245 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1246 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1247 				      bool *writable);
1248 
1249 static inline void kvm_release_page_unused(struct page *page)
1250 {
1251 	if (!page)
1252 		return;
1253 
1254 	put_page(page);
1255 }
1256 
1257 void kvm_release_page_clean(struct page *page);
1258 void kvm_release_page_dirty(struct page *page);
1259 
1260 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1261 					    bool unused, bool dirty)
1262 {
1263 	lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1264 
1265 	if (!page)
1266 		return;
1267 
1268 	/*
1269 	 * If the page that KVM got from the *primary MMU* is writable, and KVM
1270 	 * installed or reused a SPTE, mark the page/folio dirty.  Note, this
1271 	 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1272 	 * the GFN is write-protected.  Folios can't be safely marked dirty
1273 	 * outside of mmu_lock as doing so could race with writeback on the
1274 	 * folio.  As a result, KVM can't mark folios dirty in the fast page
1275 	 * fault handler, and so KVM must (somewhat) speculatively mark the
1276 	 * folio dirty if KVM could locklessly make the SPTE writable.
1277 	 */
1278 	if (unused)
1279 		kvm_release_page_unused(page);
1280 	else if (dirty)
1281 		kvm_release_page_dirty(page);
1282 	else
1283 		kvm_release_page_clean(page);
1284 }
1285 
1286 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1287 			    unsigned int foll, bool *writable,
1288 			    struct page **refcounted_page);
1289 
1290 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1291 					bool write, bool *writable,
1292 					struct page **refcounted_page)
1293 {
1294 	return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1295 				 write ? FOLL_WRITE : 0, writable, refcounted_page);
1296 }
1297 
1298 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1299 			int len);
1300 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1301 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1302 			   void *data, unsigned long len);
1303 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1304 				 void *data, unsigned int offset,
1305 				 unsigned long len);
1306 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1307 			 int offset, int len);
1308 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1309 		    unsigned long len);
1310 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1311 			   void *data, unsigned long len);
1312 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1313 				  void *data, unsigned int offset,
1314 				  unsigned long len);
1315 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1316 			      gpa_t gpa, unsigned long len);
1317 
1318 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1319 ({									\
1320 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1321 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1322 	int __ret = -EFAULT;						\
1323 									\
1324 	if (!kvm_is_error_hva(__addr))					\
1325 		__ret = get_user(v, __uaddr);				\
1326 	__ret;								\
1327 })
1328 
1329 #define kvm_get_guest(kvm, gpa, v)					\
1330 ({									\
1331 	gpa_t __gpa = gpa;						\
1332 	struct kvm *__kvm = kvm;					\
1333 									\
1334 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1335 			offset_in_page(__gpa), v);			\
1336 })
1337 
1338 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1339 ({									\
1340 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1341 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1342 	int __ret = -EFAULT;						\
1343 									\
1344 	if (!kvm_is_error_hva(__addr))					\
1345 		__ret = put_user(v, __uaddr);				\
1346 	if (!__ret)							\
1347 		mark_page_dirty(kvm, gfn);				\
1348 	__ret;								\
1349 })
1350 
1351 #define kvm_put_guest(kvm, gpa, v)					\
1352 ({									\
1353 	gpa_t __gpa = gpa;						\
1354 	struct kvm *__kvm = kvm;					\
1355 									\
1356 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1357 			offset_in_page(__gpa), v);			\
1358 })
1359 
1360 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1361 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1362 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1363 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1364 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1365 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1366 
1367 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1368 		   bool writable);
1369 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1370 
1371 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1372 			       struct kvm_host_map *map)
1373 {
1374 	return __kvm_vcpu_map(vcpu, gpa, map, true);
1375 }
1376 
1377 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1378 					struct kvm_host_map *map)
1379 {
1380 	return __kvm_vcpu_map(vcpu, gpa, map, false);
1381 }
1382 
1383 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1384 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1385 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1386 			     int len);
1387 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1388 			       unsigned long len);
1389 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1390 			unsigned long len);
1391 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1392 			      int offset, int len);
1393 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1394 			 unsigned long len);
1395 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1396 
1397 /**
1398  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1399  *
1400  * @gpc:	   struct gfn_to_pfn_cache object.
1401  * @kvm:	   pointer to kvm instance.
1402  *
1403  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1404  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1405  * the caller before init).
1406  */
1407 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1408 
1409 /**
1410  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1411  *                    physical address.
1412  *
1413  * @gpc:	   struct gfn_to_pfn_cache object.
1414  * @gpa:	   guest physical address to map.
1415  * @len:	   sanity check; the range being access must fit a single page.
1416  *
1417  * @return:	   0 for success.
1418  *		   -EINVAL for a mapping which would cross a page boundary.
1419  *		   -EFAULT for an untranslatable guest physical address.
1420  *
1421  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1422  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1423  * to ensure that the cache is valid before accessing the target page.
1424  */
1425 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1426 
1427 /**
1428  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1429  *
1430  * @gpc:          struct gfn_to_pfn_cache object.
1431  * @hva:          userspace virtual address to map.
1432  * @len:          sanity check; the range being access must fit a single page.
1433  *
1434  * @return:       0 for success.
1435  *                -EINVAL for a mapping which would cross a page boundary.
1436  *                -EFAULT for an untranslatable guest physical address.
1437  *
1438  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1439  * merely bypasses a layer of address translation.
1440  */
1441 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1442 
1443 /**
1444  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1445  *
1446  * @gpc:	   struct gfn_to_pfn_cache object.
1447  * @len:	   sanity check; the range being access must fit a single page.
1448  *
1449  * @return:	   %true if the cache is still valid and the address matches.
1450  *		   %false if the cache is not valid.
1451  *
1452  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1453  * while calling this function, and then continue to hold the lock until the
1454  * access is complete.
1455  *
1456  * Callers in IN_GUEST_MODE may do so without locking, although they should
1457  * still hold a read lock on kvm->scru for the memslot checks.
1458  */
1459 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1460 
1461 /**
1462  * kvm_gpc_refresh - update a previously initialized cache.
1463  *
1464  * @gpc:	   struct gfn_to_pfn_cache object.
1465  * @len:	   sanity check; the range being access must fit a single page.
1466  *
1467  * @return:	   0 for success.
1468  *		   -EINVAL for a mapping which would cross a page boundary.
1469  *		   -EFAULT for an untranslatable guest physical address.
1470  *
1471  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1472  * return from this function does not mean the page can be immediately
1473  * accessed because it may have raced with an invalidation. Callers must
1474  * still lock and check the cache status, as this function does not return
1475  * with the lock still held to permit access.
1476  */
1477 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1478 
1479 /**
1480  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1481  *
1482  * @gpc:	   struct gfn_to_pfn_cache object.
1483  *
1484  * This removes a cache from the VM's list to be processed on MMU notifier
1485  * invocation.
1486  */
1487 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1488 
1489 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1490 {
1491 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1492 }
1493 
1494 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1495 {
1496 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1497 }
1498 
1499 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1500 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1501 
1502 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1503 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1504 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1505 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1506 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1507 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1508 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1509 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1510 
1511 void kvm_flush_remote_tlbs(struct kvm *kvm);
1512 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1513 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1514 				   const struct kvm_memory_slot *memslot);
1515 
1516 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1517 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1518 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1519 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1520 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1521 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1522 #endif
1523 
1524 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1525 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1526 void kvm_mmu_invalidate_end(struct kvm *kvm);
1527 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1528 
1529 long kvm_arch_dev_ioctl(struct file *filp,
1530 			unsigned int ioctl, unsigned long arg);
1531 long kvm_arch_vcpu_ioctl(struct file *filp,
1532 			 unsigned int ioctl, unsigned long arg);
1533 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1534 
1535 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1536 
1537 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1538 					struct kvm_memory_slot *slot,
1539 					gfn_t gfn_offset,
1540 					unsigned long mask);
1541 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1542 
1543 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1544 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1545 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1546 		      int *is_dirty, struct kvm_memory_slot **memslot);
1547 #endif
1548 
1549 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1550 			bool line_status);
1551 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1552 			    struct kvm_enable_cap *cap);
1553 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1554 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1555 			      unsigned long arg);
1556 
1557 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1558 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1559 
1560 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1561 				    struct kvm_translation *tr);
1562 
1563 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1564 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1565 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1566 				  struct kvm_sregs *sregs);
1567 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1568 				  struct kvm_sregs *sregs);
1569 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1570 				    struct kvm_mp_state *mp_state);
1571 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1572 				    struct kvm_mp_state *mp_state);
1573 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1574 					struct kvm_guest_debug *dbg);
1575 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1576 
1577 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1578 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1579 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1580 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1581 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1582 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1583 
1584 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1585 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1586 #endif
1587 
1588 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1589 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1590 #else
1591 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1592 #endif
1593 
1594 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1595 /*
1596  * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1597  * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1598  * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1599  * sequence, and at the end of the generic hardware disabling sequence.
1600  */
1601 void kvm_arch_enable_virtualization(void);
1602 void kvm_arch_disable_virtualization(void);
1603 /*
1604  * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1605  * do the actual twiddling of hardware bits.  The hooks are called on all
1606  * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1607  * when that CPU is onlined/offlined (including for Resume/Suspend).
1608  */
1609 int kvm_arch_enable_virtualization_cpu(void);
1610 void kvm_arch_disable_virtualization_cpu(void);
1611 #endif
1612 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1613 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1614 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1615 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1616 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1617 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1618 int kvm_arch_post_init_vm(struct kvm *kvm);
1619 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1620 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1621 
1622 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1623 /*
1624  * All architectures that want to use vzalloc currently also
1625  * need their own kvm_arch_alloc_vm implementation.
1626  */
1627 static inline struct kvm *kvm_arch_alloc_vm(void)
1628 {
1629 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1630 }
1631 #endif
1632 
1633 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1634 {
1635 	kvfree(kvm);
1636 }
1637 
1638 #ifndef __KVM_HAVE_ARCH_VM_FREE
1639 static inline void kvm_arch_free_vm(struct kvm *kvm)
1640 {
1641 	__kvm_arch_free_vm(kvm);
1642 }
1643 #endif
1644 
1645 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1646 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1647 {
1648 	return -ENOTSUPP;
1649 }
1650 #else
1651 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1652 #endif
1653 
1654 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1655 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1656 						    gfn_t gfn, u64 nr_pages)
1657 {
1658 	return -EOPNOTSUPP;
1659 }
1660 #else
1661 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1662 #endif
1663 
1664 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1665 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1666 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1667 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1668 #else
1669 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1670 {
1671 }
1672 
1673 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1674 {
1675 }
1676 
1677 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1678 {
1679 	return false;
1680 }
1681 #endif
1682 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1683 void kvm_arch_start_assignment(struct kvm *kvm);
1684 void kvm_arch_end_assignment(struct kvm *kvm);
1685 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1686 #else
1687 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1688 {
1689 }
1690 
1691 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1692 {
1693 }
1694 
1695 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1696 {
1697 	return false;
1698 }
1699 #endif
1700 
1701 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1702 {
1703 #ifdef __KVM_HAVE_ARCH_WQP
1704 	return vcpu->arch.waitp;
1705 #else
1706 	return &vcpu->wait;
1707 #endif
1708 }
1709 
1710 /*
1711  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1712  * true if the vCPU was blocking and was awakened, false otherwise.
1713  */
1714 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1715 {
1716 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1717 }
1718 
1719 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1720 {
1721 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1722 }
1723 
1724 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1725 /*
1726  * returns true if the virtual interrupt controller is initialized and
1727  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1728  * controller is dynamically instantiated and this is not always true.
1729  */
1730 bool kvm_arch_intc_initialized(struct kvm *kvm);
1731 #else
1732 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1733 {
1734 	return true;
1735 }
1736 #endif
1737 
1738 #ifdef CONFIG_GUEST_PERF_EVENTS
1739 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1740 
1741 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1742 void kvm_unregister_perf_callbacks(void);
1743 #else
1744 static inline void kvm_register_perf_callbacks(void *ign) {}
1745 static inline void kvm_unregister_perf_callbacks(void) {}
1746 #endif /* CONFIG_GUEST_PERF_EVENTS */
1747 
1748 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1749 void kvm_arch_destroy_vm(struct kvm *kvm);
1750 void kvm_arch_sync_events(struct kvm *kvm);
1751 
1752 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1753 
1754 struct kvm_irq_ack_notifier {
1755 	struct hlist_node link;
1756 	unsigned gsi;
1757 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1758 };
1759 
1760 int kvm_irq_map_gsi(struct kvm *kvm,
1761 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1762 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1763 
1764 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1765 		bool line_status);
1766 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1767 		int irq_source_id, int level, bool line_status);
1768 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1769 			       struct kvm *kvm, int irq_source_id,
1770 			       int level, bool line_status);
1771 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1772 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1773 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1774 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1775 				   struct kvm_irq_ack_notifier *kian);
1776 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1777 				   struct kvm_irq_ack_notifier *kian);
1778 int kvm_request_irq_source_id(struct kvm *kvm);
1779 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1780 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1781 
1782 /*
1783  * Returns a pointer to the memslot if it contains gfn.
1784  * Otherwise returns NULL.
1785  */
1786 static inline struct kvm_memory_slot *
1787 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1788 {
1789 	if (!slot)
1790 		return NULL;
1791 
1792 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1793 		return slot;
1794 	else
1795 		return NULL;
1796 }
1797 
1798 /*
1799  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1800  *
1801  * With "approx" set returns the memslot also when the address falls
1802  * in a hole. In that case one of the memslots bordering the hole is
1803  * returned.
1804  */
1805 static inline struct kvm_memory_slot *
1806 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1807 {
1808 	struct kvm_memory_slot *slot;
1809 	struct rb_node *node;
1810 	int idx = slots->node_idx;
1811 
1812 	slot = NULL;
1813 	for (node = slots->gfn_tree.rb_node; node; ) {
1814 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1815 		if (gfn >= slot->base_gfn) {
1816 			if (gfn < slot->base_gfn + slot->npages)
1817 				return slot;
1818 			node = node->rb_right;
1819 		} else
1820 			node = node->rb_left;
1821 	}
1822 
1823 	return approx ? slot : NULL;
1824 }
1825 
1826 static inline struct kvm_memory_slot *
1827 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1828 {
1829 	struct kvm_memory_slot *slot;
1830 
1831 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1832 	slot = try_get_memslot(slot, gfn);
1833 	if (slot)
1834 		return slot;
1835 
1836 	slot = search_memslots(slots, gfn, approx);
1837 	if (slot) {
1838 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1839 		return slot;
1840 	}
1841 
1842 	return NULL;
1843 }
1844 
1845 /*
1846  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1847  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1848  * because that would bloat other code too much.
1849  */
1850 static inline struct kvm_memory_slot *
1851 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1852 {
1853 	return ____gfn_to_memslot(slots, gfn, false);
1854 }
1855 
1856 static inline unsigned long
1857 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1858 {
1859 	/*
1860 	 * The index was checked originally in search_memslots.  To avoid
1861 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1862 	 * table walks, do not let the processor speculate loads outside
1863 	 * the guest's registered memslots.
1864 	 */
1865 	unsigned long offset = gfn - slot->base_gfn;
1866 	offset = array_index_nospec(offset, slot->npages);
1867 	return slot->userspace_addr + offset * PAGE_SIZE;
1868 }
1869 
1870 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1871 {
1872 	return gfn_to_memslot(kvm, gfn)->id;
1873 }
1874 
1875 static inline gfn_t
1876 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1877 {
1878 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1879 
1880 	return slot->base_gfn + gfn_offset;
1881 }
1882 
1883 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1884 {
1885 	return (gpa_t)gfn << PAGE_SHIFT;
1886 }
1887 
1888 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1889 {
1890 	return (gfn_t)(gpa >> PAGE_SHIFT);
1891 }
1892 
1893 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1894 {
1895 	return (hpa_t)pfn << PAGE_SHIFT;
1896 }
1897 
1898 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1899 {
1900 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1901 
1902 	return !kvm_is_error_hva(hva);
1903 }
1904 
1905 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1906 {
1907 	lockdep_assert_held(&gpc->lock);
1908 
1909 	if (!gpc->memslot)
1910 		return;
1911 
1912 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1913 }
1914 
1915 enum kvm_stat_kind {
1916 	KVM_STAT_VM,
1917 	KVM_STAT_VCPU,
1918 };
1919 
1920 struct kvm_stat_data {
1921 	struct kvm *kvm;
1922 	const struct _kvm_stats_desc *desc;
1923 	enum kvm_stat_kind kind;
1924 };
1925 
1926 struct _kvm_stats_desc {
1927 	struct kvm_stats_desc desc;
1928 	char name[KVM_STATS_NAME_SIZE];
1929 };
1930 
1931 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1932 	.flags = type | unit | base |					       \
1933 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1934 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1935 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1936 	.exponent = exp,						       \
1937 	.size = sz,							       \
1938 	.bucket_size = bsz
1939 
1940 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1941 	{								       \
1942 		{							       \
1943 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1944 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1945 		},							       \
1946 		.name = #stat,						       \
1947 	}
1948 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1949 	{								       \
1950 		{							       \
1951 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1952 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1953 		},							       \
1954 		.name = #stat,						       \
1955 	}
1956 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1957 	{								       \
1958 		{							       \
1959 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1960 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1961 		},							       \
1962 		.name = #stat,						       \
1963 	}
1964 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1965 	{								       \
1966 		{							       \
1967 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1968 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1969 		},							       \
1970 		.name = #stat,						       \
1971 	}
1972 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1973 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1974 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1975 
1976 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1977 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1978 		unit, base, exponent, 1, 0)
1979 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1980 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1981 		unit, base, exponent, 1, 0)
1982 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1983 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1984 		unit, base, exponent, 1, 0)
1985 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1986 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1987 		unit, base, exponent, sz, bsz)
1988 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1989 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1990 		unit, base, exponent, sz, 0)
1991 
1992 /* Cumulative counter, read/write */
1993 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1994 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1995 		KVM_STATS_BASE_POW10, 0)
1996 /* Instantaneous counter, read only */
1997 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1998 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1999 		KVM_STATS_BASE_POW10, 0)
2000 /* Peak counter, read/write */
2001 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
2002 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
2003 		KVM_STATS_BASE_POW10, 0)
2004 
2005 /* Instantaneous boolean value, read only */
2006 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
2007 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2008 		KVM_STATS_BASE_POW10, 0)
2009 /* Peak (sticky) boolean value, read/write */
2010 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
2011 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2012 		KVM_STATS_BASE_POW10, 0)
2013 
2014 /* Cumulative time in nanosecond */
2015 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
2016 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2017 		KVM_STATS_BASE_POW10, -9)
2018 /* Linear histogram for time in nanosecond */
2019 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
2020 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2021 		KVM_STATS_BASE_POW10, -9, sz, bsz)
2022 /* Logarithmic histogram for time in nanosecond */
2023 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
2024 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2025 		KVM_STATS_BASE_POW10, -9, sz)
2026 
2027 #define KVM_GENERIC_VM_STATS()						       \
2028 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
2029 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2030 
2031 #define KVM_GENERIC_VCPU_STATS()					       \
2032 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
2033 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
2034 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
2035 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
2036 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
2037 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
2038 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
2039 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
2040 			HALT_POLL_HIST_COUNT),				       \
2041 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
2042 			HALT_POLL_HIST_COUNT),				       \
2043 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
2044 			HALT_POLL_HIST_COUNT),				       \
2045 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2046 
2047 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2048 		       const struct _kvm_stats_desc *desc,
2049 		       void *stats, size_t size_stats,
2050 		       char __user *user_buffer, size_t size, loff_t *offset);
2051 
2052 /**
2053  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2054  * statistics data.
2055  *
2056  * @data: start address of the stats data
2057  * @size: the number of bucket of the stats data
2058  * @value: the new value used to update the linear histogram's bucket
2059  * @bucket_size: the size (width) of a bucket
2060  */
2061 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2062 						u64 value, size_t bucket_size)
2063 {
2064 	size_t index = div64_u64(value, bucket_size);
2065 
2066 	index = min(index, size - 1);
2067 	++data[index];
2068 }
2069 
2070 /**
2071  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2072  * statistics data.
2073  *
2074  * @data: start address of the stats data
2075  * @size: the number of bucket of the stats data
2076  * @value: the new value used to update the logarithmic histogram's bucket
2077  */
2078 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2079 {
2080 	size_t index = fls64(value);
2081 
2082 	index = min(index, size - 1);
2083 	++data[index];
2084 }
2085 
2086 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2087 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2088 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2089 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2090 
2091 
2092 extern const struct kvm_stats_header kvm_vm_stats_header;
2093 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2094 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2095 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2096 
2097 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2098 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2099 {
2100 	if (unlikely(kvm->mmu_invalidate_in_progress))
2101 		return 1;
2102 	/*
2103 	 * Ensure the read of mmu_invalidate_in_progress happens before
2104 	 * the read of mmu_invalidate_seq.  This interacts with the
2105 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2106 	 * that the caller either sees the old (non-zero) value of
2107 	 * mmu_invalidate_in_progress or the new (incremented) value of
2108 	 * mmu_invalidate_seq.
2109 	 *
2110 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2111 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2112 	 * kvm->mmu_lock to keep things ordered.
2113 	 */
2114 	smp_rmb();
2115 	if (kvm->mmu_invalidate_seq != mmu_seq)
2116 		return 1;
2117 	return 0;
2118 }
2119 
2120 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2121 					   unsigned long mmu_seq,
2122 					   gfn_t gfn)
2123 {
2124 	lockdep_assert_held(&kvm->mmu_lock);
2125 	/*
2126 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2127 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2128 	 * that might be being invalidated. Note that it may include some false
2129 	 * positives, due to shortcuts when handing concurrent invalidations.
2130 	 */
2131 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2132 		/*
2133 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2134 		 * but before updating the range is a KVM bug.
2135 		 */
2136 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2137 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2138 			return 1;
2139 
2140 		if (gfn >= kvm->mmu_invalidate_range_start &&
2141 		    gfn < kvm->mmu_invalidate_range_end)
2142 			return 1;
2143 	}
2144 
2145 	if (kvm->mmu_invalidate_seq != mmu_seq)
2146 		return 1;
2147 	return 0;
2148 }
2149 
2150 /*
2151  * This lockless version of the range-based retry check *must* be paired with a
2152  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2153  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2154  * get false negatives and false positives.
2155  */
2156 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2157 						   unsigned long mmu_seq,
2158 						   gfn_t gfn)
2159 {
2160 	/*
2161 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2162 	 * are always read from memory, e.g. so that checking for retry in a
2163 	 * loop won't result in an infinite retry loop.  Don't force loads for
2164 	 * start+end, as the key to avoiding infinite retry loops is observing
2165 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2166 	 * due to stale start+end values is acceptable.
2167 	 */
2168 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2169 	    gfn >= kvm->mmu_invalidate_range_start &&
2170 	    gfn < kvm->mmu_invalidate_range_end)
2171 		return true;
2172 
2173 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2174 }
2175 #endif
2176 
2177 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2178 
2179 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2180 
2181 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2182 int kvm_set_irq_routing(struct kvm *kvm,
2183 			const struct kvm_irq_routing_entry *entries,
2184 			unsigned nr,
2185 			unsigned flags);
2186 int kvm_init_irq_routing(struct kvm *kvm);
2187 int kvm_set_routing_entry(struct kvm *kvm,
2188 			  struct kvm_kernel_irq_routing_entry *e,
2189 			  const struct kvm_irq_routing_entry *ue);
2190 void kvm_free_irq_routing(struct kvm *kvm);
2191 
2192 #else
2193 
2194 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2195 
2196 static inline int kvm_init_irq_routing(struct kvm *kvm)
2197 {
2198 	return 0;
2199 }
2200 
2201 #endif
2202 
2203 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2204 
2205 void kvm_eventfd_init(struct kvm *kvm);
2206 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2207 
2208 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2209 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2210 void kvm_irqfd_release(struct kvm *kvm);
2211 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2212 				unsigned int irqchip,
2213 				unsigned int pin);
2214 void kvm_irq_routing_update(struct kvm *);
2215 #else
2216 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2217 {
2218 	return -EINVAL;
2219 }
2220 
2221 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2222 
2223 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2224 					      unsigned int irqchip,
2225 					      unsigned int pin)
2226 {
2227 	return false;
2228 }
2229 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2230 
2231 void kvm_arch_irq_routing_update(struct kvm *kvm);
2232 
2233 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2234 {
2235 	/*
2236 	 * Ensure the rest of the request is published to kvm_check_request's
2237 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2238 	 */
2239 	smp_wmb();
2240 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2241 }
2242 
2243 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2244 {
2245 	/*
2246 	 * Request that don't require vCPU action should never be logged in
2247 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2248 	 * logged indefinitely and prevent the vCPU from entering the guest.
2249 	 */
2250 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2251 		     (req & KVM_REQUEST_NO_ACTION));
2252 
2253 	__kvm_make_request(req, vcpu);
2254 }
2255 
2256 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2257 {
2258 	return READ_ONCE(vcpu->requests);
2259 }
2260 
2261 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2262 {
2263 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2264 }
2265 
2266 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2267 {
2268 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2269 }
2270 
2271 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2272 {
2273 	if (kvm_test_request(req, vcpu)) {
2274 		kvm_clear_request(req, vcpu);
2275 
2276 		/*
2277 		 * Ensure the rest of the request is visible to kvm_check_request's
2278 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2279 		 */
2280 		smp_mb__after_atomic();
2281 		return true;
2282 	} else {
2283 		return false;
2284 	}
2285 }
2286 
2287 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2288 extern bool kvm_rebooting;
2289 #endif
2290 
2291 extern unsigned int halt_poll_ns;
2292 extern unsigned int halt_poll_ns_grow;
2293 extern unsigned int halt_poll_ns_grow_start;
2294 extern unsigned int halt_poll_ns_shrink;
2295 
2296 struct kvm_device {
2297 	const struct kvm_device_ops *ops;
2298 	struct kvm *kvm;
2299 	void *private;
2300 	struct list_head vm_node;
2301 };
2302 
2303 /* create, destroy, and name are mandatory */
2304 struct kvm_device_ops {
2305 	const char *name;
2306 
2307 	/*
2308 	 * create is called holding kvm->lock and any operations not suitable
2309 	 * to do while holding the lock should be deferred to init (see
2310 	 * below).
2311 	 */
2312 	int (*create)(struct kvm_device *dev, u32 type);
2313 
2314 	/*
2315 	 * init is called after create if create is successful and is called
2316 	 * outside of holding kvm->lock.
2317 	 */
2318 	void (*init)(struct kvm_device *dev);
2319 
2320 	/*
2321 	 * Destroy is responsible for freeing dev.
2322 	 *
2323 	 * Destroy may be called before or after destructors are called
2324 	 * on emulated I/O regions, depending on whether a reference is
2325 	 * held by a vcpu or other kvm component that gets destroyed
2326 	 * after the emulated I/O.
2327 	 */
2328 	void (*destroy)(struct kvm_device *dev);
2329 
2330 	/*
2331 	 * Release is an alternative method to free the device. It is
2332 	 * called when the device file descriptor is closed. Once
2333 	 * release is called, the destroy method will not be called
2334 	 * anymore as the device is removed from the device list of
2335 	 * the VM. kvm->lock is held.
2336 	 */
2337 	void (*release)(struct kvm_device *dev);
2338 
2339 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2340 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2341 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2342 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2343 		      unsigned long arg);
2344 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2345 };
2346 
2347 struct kvm_device *kvm_device_from_filp(struct file *filp);
2348 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2349 void kvm_unregister_device_ops(u32 type);
2350 
2351 extern struct kvm_device_ops kvm_mpic_ops;
2352 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2353 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2354 
2355 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2356 
2357 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2358 {
2359 	vcpu->spin_loop.in_spin_loop = val;
2360 }
2361 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2362 {
2363 	vcpu->spin_loop.dy_eligible = val;
2364 }
2365 
2366 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2367 
2368 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2369 {
2370 }
2371 
2372 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2373 {
2374 }
2375 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2376 
2377 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2378 {
2379 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2380 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2381 }
2382 
2383 struct kvm_vcpu *kvm_get_running_vcpu(void);
2384 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2385 
2386 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2387 bool kvm_arch_has_irq_bypass(void);
2388 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2389 			   struct irq_bypass_producer *);
2390 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2391 			   struct irq_bypass_producer *);
2392 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2393 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2394 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2395 				  uint32_t guest_irq, bool set);
2396 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2397 				  struct kvm_kernel_irq_routing_entry *);
2398 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2399 
2400 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2401 /* If we wakeup during the poll time, was it a sucessful poll? */
2402 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2403 {
2404 	return vcpu->valid_wakeup;
2405 }
2406 
2407 #else
2408 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2409 {
2410 	return true;
2411 }
2412 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2413 
2414 #ifdef CONFIG_HAVE_KVM_NO_POLL
2415 /* Callback that tells if we must not poll */
2416 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2417 #else
2418 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2419 {
2420 	return false;
2421 }
2422 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2423 
2424 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2425 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2426 			       unsigned int ioctl, unsigned long arg);
2427 #else
2428 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2429 					     unsigned int ioctl,
2430 					     unsigned long arg)
2431 {
2432 	return -ENOIOCTLCMD;
2433 }
2434 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2435 
2436 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2437 
2438 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2439 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2440 #else
2441 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2442 {
2443 	return 0;
2444 }
2445 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2446 
2447 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2448 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2449 {
2450 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2451 	vcpu->stat.signal_exits++;
2452 }
2453 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2454 
2455 /*
2456  * If more than one page is being (un)accounted, @virt must be the address of
2457  * the first page of a block of pages what were allocated together (i.e
2458  * accounted together).
2459  *
2460  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2461  * is thread-safe.
2462  */
2463 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2464 {
2465 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2466 }
2467 
2468 /*
2469  * This defines how many reserved entries we want to keep before we
2470  * kick the vcpu to the userspace to avoid dirty ring full.  This
2471  * value can be tuned to higher if e.g. PML is enabled on the host.
2472  */
2473 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2474 
2475 /* Max number of entries allowed for each kvm dirty ring */
2476 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2477 
2478 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2479 						 gpa_t gpa, gpa_t size,
2480 						 bool is_write, bool is_exec,
2481 						 bool is_private)
2482 {
2483 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2484 	vcpu->run->memory_fault.gpa = gpa;
2485 	vcpu->run->memory_fault.size = size;
2486 
2487 	/* RWX flags are not (yet) defined or communicated to userspace. */
2488 	vcpu->run->memory_fault.flags = 0;
2489 	if (is_private)
2490 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2491 }
2492 
2493 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2494 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2495 {
2496 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2497 }
2498 
2499 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2500 				     unsigned long mask, unsigned long attrs);
2501 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2502 					struct kvm_gfn_range *range);
2503 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2504 					 struct kvm_gfn_range *range);
2505 
2506 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2507 {
2508 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2509 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2510 }
2511 #else
2512 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2513 {
2514 	return false;
2515 }
2516 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2517 
2518 #ifdef CONFIG_KVM_PRIVATE_MEM
2519 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2520 		     gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2521 		     int *max_order);
2522 #else
2523 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2524 				   struct kvm_memory_slot *slot, gfn_t gfn,
2525 				   kvm_pfn_t *pfn, struct page **page,
2526 				   int *max_order)
2527 {
2528 	KVM_BUG_ON(1, kvm);
2529 	return -EIO;
2530 }
2531 #endif /* CONFIG_KVM_PRIVATE_MEM */
2532 
2533 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2534 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2535 #endif
2536 
2537 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2538 /**
2539  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2540  *
2541  * @kvm: KVM instance
2542  * @gfn: starting GFN to be populated
2543  * @src: userspace-provided buffer containing data to copy into GFN range
2544  *       (passed to @post_populate, and incremented on each iteration
2545  *       if not NULL)
2546  * @npages: number of pages to copy from userspace-buffer
2547  * @post_populate: callback to issue for each gmem page that backs the GPA
2548  *                 range
2549  * @opaque: opaque data to pass to @post_populate callback
2550  *
2551  * This is primarily intended for cases where a gmem-backed GPA range needs
2552  * to be initialized with userspace-provided data prior to being mapped into
2553  * the guest as a private page. This should be called with the slots->lock
2554  * held so that caller-enforced invariants regarding the expected memory
2555  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2556  *
2557  * Returns the number of pages that were populated.
2558  */
2559 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2560 				    void __user *src, int order, void *opaque);
2561 
2562 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2563 		       kvm_gmem_populate_cb post_populate, void *opaque);
2564 #endif
2565 
2566 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2567 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2568 #endif
2569 
2570 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2571 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2572 				    struct kvm_pre_fault_memory *range);
2573 #endif
2574 
2575 #endif
2576