1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_MAX_NR_ADDRESS_SPACES 84 #define KVM_MAX_NR_ADDRESS_SPACES 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 101 102 /* 103 * error pfns indicate that the gfn is in slot but faild to 104 * translate it to pfn on host. 105 */ 106 static inline bool is_error_pfn(kvm_pfn_t pfn) 107 { 108 return !!(pfn & KVM_PFN_ERR_MASK); 109 } 110 111 /* 112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 113 * by a pending signal. Note, the signal may or may not be fatal. 114 */ 115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 116 { 117 return pfn == KVM_PFN_ERR_SIGPENDING; 118 } 119 120 /* 121 * error_noslot pfns indicate that the gfn can not be 122 * translated to pfn - it is not in slot or failed to 123 * translate it to pfn. 124 */ 125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 126 { 127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 128 } 129 130 /* noslot pfn indicates that the gfn is not in slot. */ 131 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 132 { 133 return pfn == KVM_PFN_NOSLOT; 134 } 135 136 /* 137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 138 * provide own defines and kvm_is_error_hva 139 */ 140 #ifndef KVM_HVA_ERR_BAD 141 142 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 143 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 144 145 static inline bool kvm_is_error_hva(unsigned long addr) 146 { 147 return addr >= PAGE_OFFSET; 148 } 149 150 #endif 151 152 static inline bool kvm_is_error_gpa(gpa_t gpa) 153 { 154 return gpa == INVALID_GPA; 155 } 156 157 #define KVM_REQUEST_MASK GENMASK(7,0) 158 #define KVM_REQUEST_NO_WAKEUP BIT(8) 159 #define KVM_REQUEST_WAIT BIT(9) 160 #define KVM_REQUEST_NO_ACTION BIT(10) 161 /* 162 * Architecture-independent vcpu->requests bit members 163 * Bits 3-7 are reserved for more arch-independent bits. 164 */ 165 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 166 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_UNBLOCK 2 168 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 169 #define KVM_REQUEST_ARCH_BASE 8 170 171 /* 172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 177 * guarantee the vCPU received an IPI and has actually exited guest mode. 178 */ 179 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 180 181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 184 }) 185 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 186 187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 188 unsigned long *vcpu_bitmap); 189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 190 191 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 193 194 extern struct mutex kvm_lock; 195 extern struct list_head vm_list; 196 197 struct kvm_io_range { 198 gpa_t addr; 199 int len; 200 struct kvm_io_device *dev; 201 }; 202 203 #define NR_IOBUS_DEVS 1000 204 205 struct kvm_io_bus { 206 int dev_count; 207 int ioeventfd_count; 208 struct kvm_io_range range[]; 209 }; 210 211 enum kvm_bus { 212 KVM_MMIO_BUS, 213 KVM_PIO_BUS, 214 KVM_VIRTIO_CCW_NOTIFY_BUS, 215 KVM_FAST_MMIO_BUS, 216 KVM_IOCSR_BUS, 217 KVM_NR_BUSES 218 }; 219 220 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 221 int len, const void *val); 222 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 223 gpa_t addr, int len, const void *val, long cookie); 224 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 225 int len, void *val); 226 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 227 int len, struct kvm_io_device *dev); 228 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 229 struct kvm_io_device *dev); 230 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 231 gpa_t addr); 232 233 #ifdef CONFIG_KVM_ASYNC_PF 234 struct kvm_async_pf { 235 struct work_struct work; 236 struct list_head link; 237 struct list_head queue; 238 struct kvm_vcpu *vcpu; 239 gpa_t cr2_or_gpa; 240 unsigned long addr; 241 struct kvm_arch_async_pf arch; 242 bool wakeup_all; 243 bool notpresent_injected; 244 }; 245 246 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 247 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 248 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 249 unsigned long hva, struct kvm_arch_async_pf *arch); 250 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 251 #endif 252 253 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 254 union kvm_mmu_notifier_arg { 255 unsigned long attributes; 256 }; 257 258 enum kvm_gfn_range_filter { 259 KVM_FILTER_SHARED = BIT(0), 260 KVM_FILTER_PRIVATE = BIT(1), 261 }; 262 263 struct kvm_gfn_range { 264 struct kvm_memory_slot *slot; 265 gfn_t start; 266 gfn_t end; 267 union kvm_mmu_notifier_arg arg; 268 enum kvm_gfn_range_filter attr_filter; 269 bool may_block; 270 }; 271 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 272 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 273 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 274 #endif 275 276 enum { 277 OUTSIDE_GUEST_MODE, 278 IN_GUEST_MODE, 279 EXITING_GUEST_MODE, 280 READING_SHADOW_PAGE_TABLES, 281 }; 282 283 struct kvm_host_map { 284 /* 285 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 286 * a 'struct page' for it. When using mem= kernel parameter some memory 287 * can be used as guest memory but they are not managed by host 288 * kernel). 289 */ 290 struct page *pinned_page; 291 struct page *page; 292 void *hva; 293 kvm_pfn_t pfn; 294 kvm_pfn_t gfn; 295 bool writable; 296 }; 297 298 /* 299 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 300 * directly to check for that. 301 */ 302 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 303 { 304 return !!map->hva; 305 } 306 307 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 308 { 309 return single_task_running() && !need_resched() && ktime_before(cur, stop); 310 } 311 312 /* 313 * Sometimes a large or cross-page mmio needs to be broken up into separate 314 * exits for userspace servicing. 315 */ 316 struct kvm_mmio_fragment { 317 gpa_t gpa; 318 void *data; 319 unsigned len; 320 }; 321 322 struct kvm_vcpu { 323 struct kvm *kvm; 324 #ifdef CONFIG_PREEMPT_NOTIFIERS 325 struct preempt_notifier preempt_notifier; 326 #endif 327 int cpu; 328 int vcpu_id; /* id given by userspace at creation */ 329 int vcpu_idx; /* index into kvm->vcpu_array */ 330 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 331 #ifdef CONFIG_PROVE_RCU 332 int srcu_depth; 333 #endif 334 int mode; 335 u64 requests; 336 unsigned long guest_debug; 337 338 struct mutex mutex; 339 struct kvm_run *run; 340 341 #ifndef __KVM_HAVE_ARCH_WQP 342 struct rcuwait wait; 343 #endif 344 struct pid *pid; 345 rwlock_t pid_lock; 346 int sigset_active; 347 sigset_t sigset; 348 unsigned int halt_poll_ns; 349 bool valid_wakeup; 350 351 #ifdef CONFIG_HAS_IOMEM 352 int mmio_needed; 353 int mmio_read_completed; 354 int mmio_is_write; 355 int mmio_cur_fragment; 356 int mmio_nr_fragments; 357 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 358 #endif 359 360 #ifdef CONFIG_KVM_ASYNC_PF 361 struct { 362 u32 queued; 363 struct list_head queue; 364 struct list_head done; 365 spinlock_t lock; 366 } async_pf; 367 #endif 368 369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 370 /* 371 * Cpu relax intercept or pause loop exit optimization 372 * in_spin_loop: set when a vcpu does a pause loop exit 373 * or cpu relax intercepted. 374 * dy_eligible: indicates whether vcpu is eligible for directed yield. 375 */ 376 struct { 377 bool in_spin_loop; 378 bool dy_eligible; 379 } spin_loop; 380 #endif 381 bool wants_to_run; 382 bool preempted; 383 bool ready; 384 bool scheduled_out; 385 struct kvm_vcpu_arch arch; 386 struct kvm_vcpu_stat stat; 387 char stats_id[KVM_STATS_NAME_SIZE]; 388 struct kvm_dirty_ring dirty_ring; 389 390 /* 391 * The most recently used memslot by this vCPU and the slots generation 392 * for which it is valid. 393 * No wraparound protection is needed since generations won't overflow in 394 * thousands of years, even assuming 1M memslot operations per second. 395 */ 396 struct kvm_memory_slot *last_used_slot; 397 u64 last_used_slot_gen; 398 }; 399 400 /* 401 * Start accounting time towards a guest. 402 * Must be called before entering guest context. 403 */ 404 static __always_inline void guest_timing_enter_irqoff(void) 405 { 406 /* 407 * This is running in ioctl context so its safe to assume that it's the 408 * stime pending cputime to flush. 409 */ 410 instrumentation_begin(); 411 vtime_account_guest_enter(); 412 instrumentation_end(); 413 } 414 415 /* 416 * Enter guest context and enter an RCU extended quiescent state. 417 * 418 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 419 * unsafe to use any code which may directly or indirectly use RCU, tracing 420 * (including IRQ flag tracing), or lockdep. All code in this period must be 421 * non-instrumentable. 422 */ 423 static __always_inline void guest_context_enter_irqoff(void) 424 { 425 /* 426 * KVM does not hold any references to rcu protected data when it 427 * switches CPU into a guest mode. In fact switching to a guest mode 428 * is very similar to exiting to userspace from rcu point of view. In 429 * addition CPU may stay in a guest mode for quite a long time (up to 430 * one time slice). Lets treat guest mode as quiescent state, just like 431 * we do with user-mode execution. 432 */ 433 if (!context_tracking_guest_enter()) { 434 instrumentation_begin(); 435 rcu_virt_note_context_switch(); 436 instrumentation_end(); 437 } 438 } 439 440 /* 441 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 442 * guest_state_enter_irqoff(). 443 */ 444 static __always_inline void guest_enter_irqoff(void) 445 { 446 guest_timing_enter_irqoff(); 447 guest_context_enter_irqoff(); 448 } 449 450 /** 451 * guest_state_enter_irqoff - Fixup state when entering a guest 452 * 453 * Entry to a guest will enable interrupts, but the kernel state is interrupts 454 * disabled when this is invoked. Also tell RCU about it. 455 * 456 * 1) Trace interrupts on state 457 * 2) Invoke context tracking if enabled to adjust RCU state 458 * 3) Tell lockdep that interrupts are enabled 459 * 460 * Invoked from architecture specific code before entering a guest. 461 * Must be called with interrupts disabled and the caller must be 462 * non-instrumentable. 463 * The caller has to invoke guest_timing_enter_irqoff() before this. 464 * 465 * Note: this is analogous to exit_to_user_mode(). 466 */ 467 static __always_inline void guest_state_enter_irqoff(void) 468 { 469 instrumentation_begin(); 470 trace_hardirqs_on_prepare(); 471 lockdep_hardirqs_on_prepare(); 472 instrumentation_end(); 473 474 guest_context_enter_irqoff(); 475 lockdep_hardirqs_on(CALLER_ADDR0); 476 } 477 478 /* 479 * Exit guest context and exit an RCU extended quiescent state. 480 * 481 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 482 * unsafe to use any code which may directly or indirectly use RCU, tracing 483 * (including IRQ flag tracing), or lockdep. All code in this period must be 484 * non-instrumentable. 485 */ 486 static __always_inline void guest_context_exit_irqoff(void) 487 { 488 /* 489 * Guest mode is treated as a quiescent state, see 490 * guest_context_enter_irqoff() for more details. 491 */ 492 if (!context_tracking_guest_exit()) { 493 instrumentation_begin(); 494 rcu_virt_note_context_switch(); 495 instrumentation_end(); 496 } 497 } 498 499 /* 500 * Stop accounting time towards a guest. 501 * Must be called after exiting guest context. 502 */ 503 static __always_inline void guest_timing_exit_irqoff(void) 504 { 505 instrumentation_begin(); 506 /* Flush the guest cputime we spent on the guest */ 507 vtime_account_guest_exit(); 508 instrumentation_end(); 509 } 510 511 /* 512 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 513 * guest_timing_exit_irqoff(). 514 */ 515 static __always_inline void guest_exit_irqoff(void) 516 { 517 guest_context_exit_irqoff(); 518 guest_timing_exit_irqoff(); 519 } 520 521 static inline void guest_exit(void) 522 { 523 unsigned long flags; 524 525 local_irq_save(flags); 526 guest_exit_irqoff(); 527 local_irq_restore(flags); 528 } 529 530 /** 531 * guest_state_exit_irqoff - Establish state when returning from guest mode 532 * 533 * Entry from a guest disables interrupts, but guest mode is traced as 534 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 535 * 536 * 1) Tell lockdep that interrupts are disabled 537 * 2) Invoke context tracking if enabled to reactivate RCU 538 * 3) Trace interrupts off state 539 * 540 * Invoked from architecture specific code after exiting a guest. 541 * Must be invoked with interrupts disabled and the caller must be 542 * non-instrumentable. 543 * The caller has to invoke guest_timing_exit_irqoff() after this. 544 * 545 * Note: this is analogous to enter_from_user_mode(). 546 */ 547 static __always_inline void guest_state_exit_irqoff(void) 548 { 549 lockdep_hardirqs_off(CALLER_ADDR0); 550 guest_context_exit_irqoff(); 551 552 instrumentation_begin(); 553 trace_hardirqs_off_finish(); 554 instrumentation_end(); 555 } 556 557 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 558 { 559 /* 560 * The memory barrier ensures a previous write to vcpu->requests cannot 561 * be reordered with the read of vcpu->mode. It pairs with the general 562 * memory barrier following the write of vcpu->mode in VCPU RUN. 563 */ 564 smp_mb__before_atomic(); 565 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 566 } 567 568 /* 569 * Some of the bitops functions do not support too long bitmaps. 570 * This number must be determined not to exceed such limits. 571 */ 572 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 573 574 /* 575 * Since at idle each memslot belongs to two memslot sets it has to contain 576 * two embedded nodes for each data structure that it forms a part of. 577 * 578 * Two memslot sets (one active and one inactive) are necessary so the VM 579 * continues to run on one memslot set while the other is being modified. 580 * 581 * These two memslot sets normally point to the same set of memslots. 582 * They can, however, be desynchronized when performing a memslot management 583 * operation by replacing the memslot to be modified by its copy. 584 * After the operation is complete, both memslot sets once again point to 585 * the same, common set of memslot data. 586 * 587 * The memslots themselves are independent of each other so they can be 588 * individually added or deleted. 589 */ 590 struct kvm_memory_slot { 591 struct hlist_node id_node[2]; 592 struct interval_tree_node hva_node[2]; 593 struct rb_node gfn_node[2]; 594 gfn_t base_gfn; 595 unsigned long npages; 596 unsigned long *dirty_bitmap; 597 struct kvm_arch_memory_slot arch; 598 unsigned long userspace_addr; 599 u32 flags; 600 short id; 601 u16 as_id; 602 603 #ifdef CONFIG_KVM_PRIVATE_MEM 604 struct { 605 /* 606 * Writes protected by kvm->slots_lock. Acquiring a 607 * reference via kvm_gmem_get_file() is protected by 608 * either kvm->slots_lock or kvm->srcu. 609 */ 610 struct file *file; 611 pgoff_t pgoff; 612 } gmem; 613 #endif 614 }; 615 616 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 617 { 618 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 619 } 620 621 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 622 { 623 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 624 } 625 626 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 627 { 628 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 629 } 630 631 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 632 { 633 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 634 635 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 636 } 637 638 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 639 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 640 #endif 641 642 struct kvm_s390_adapter_int { 643 u64 ind_addr; 644 u64 summary_addr; 645 u64 ind_offset; 646 u32 summary_offset; 647 u32 adapter_id; 648 }; 649 650 struct kvm_hv_sint { 651 u32 vcpu; 652 u32 sint; 653 }; 654 655 struct kvm_xen_evtchn { 656 u32 port; 657 u32 vcpu_id; 658 int vcpu_idx; 659 u32 priority; 660 }; 661 662 struct kvm_kernel_irq_routing_entry { 663 u32 gsi; 664 u32 type; 665 int (*set)(struct kvm_kernel_irq_routing_entry *e, 666 struct kvm *kvm, int irq_source_id, int level, 667 bool line_status); 668 union { 669 struct { 670 unsigned irqchip; 671 unsigned pin; 672 } irqchip; 673 struct { 674 u32 address_lo; 675 u32 address_hi; 676 u32 data; 677 u32 flags; 678 u32 devid; 679 } msi; 680 struct kvm_s390_adapter_int adapter; 681 struct kvm_hv_sint hv_sint; 682 struct kvm_xen_evtchn xen_evtchn; 683 }; 684 struct hlist_node link; 685 }; 686 687 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 688 struct kvm_irq_routing_table { 689 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 690 u32 nr_rt_entries; 691 /* 692 * Array indexed by gsi. Each entry contains list of irq chips 693 * the gsi is connected to. 694 */ 695 struct hlist_head map[] __counted_by(nr_rt_entries); 696 }; 697 #endif 698 699 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 700 701 #ifndef KVM_INTERNAL_MEM_SLOTS 702 #define KVM_INTERNAL_MEM_SLOTS 0 703 #endif 704 705 #define KVM_MEM_SLOTS_NUM SHRT_MAX 706 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 707 708 #if KVM_MAX_NR_ADDRESS_SPACES == 1 709 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 710 { 711 return KVM_MAX_NR_ADDRESS_SPACES; 712 } 713 714 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 715 { 716 return 0; 717 } 718 #endif 719 720 /* 721 * Arch code must define kvm_arch_has_private_mem if support for private memory 722 * is enabled. 723 */ 724 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 725 static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 726 { 727 return false; 728 } 729 #endif 730 731 #ifndef kvm_arch_has_readonly_mem 732 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 733 { 734 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 735 } 736 #endif 737 738 struct kvm_memslots { 739 u64 generation; 740 atomic_long_t last_used_slot; 741 struct rb_root_cached hva_tree; 742 struct rb_root gfn_tree; 743 /* 744 * The mapping table from slot id to memslot. 745 * 746 * 7-bit bucket count matches the size of the old id to index array for 747 * 512 slots, while giving good performance with this slot count. 748 * Higher bucket counts bring only small performance improvements but 749 * always result in higher memory usage (even for lower memslot counts). 750 */ 751 DECLARE_HASHTABLE(id_hash, 7); 752 int node_idx; 753 }; 754 755 struct kvm { 756 #ifdef KVM_HAVE_MMU_RWLOCK 757 rwlock_t mmu_lock; 758 #else 759 spinlock_t mmu_lock; 760 #endif /* KVM_HAVE_MMU_RWLOCK */ 761 762 struct mutex slots_lock; 763 764 /* 765 * Protects the arch-specific fields of struct kvm_memory_slots in 766 * use by the VM. To be used under the slots_lock (above) or in a 767 * kvm->srcu critical section where acquiring the slots_lock would 768 * lead to deadlock with the synchronize_srcu in 769 * kvm_swap_active_memslots(). 770 */ 771 struct mutex slots_arch_lock; 772 struct mm_struct *mm; /* userspace tied to this vm */ 773 unsigned long nr_memslot_pages; 774 /* The two memslot sets - active and inactive (per address space) */ 775 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 776 /* The current active memslot set for each address space */ 777 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 778 struct xarray vcpu_array; 779 /* 780 * Protected by slots_lock, but can be read outside if an 781 * incorrect answer is acceptable. 782 */ 783 atomic_t nr_memslots_dirty_logging; 784 785 /* Used to wait for completion of MMU notifiers. */ 786 spinlock_t mn_invalidate_lock; 787 unsigned long mn_active_invalidate_count; 788 struct rcuwait mn_memslots_update_rcuwait; 789 790 /* For management / invalidation of gfn_to_pfn_caches */ 791 spinlock_t gpc_lock; 792 struct list_head gpc_list; 793 794 /* 795 * created_vcpus is protected by kvm->lock, and is incremented 796 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 797 * incremented after storing the kvm_vcpu pointer in vcpus, 798 * and is accessed atomically. 799 */ 800 atomic_t online_vcpus; 801 int max_vcpus; 802 int created_vcpus; 803 int last_boosted_vcpu; 804 struct list_head vm_list; 805 struct mutex lock; 806 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 807 #ifdef CONFIG_HAVE_KVM_IRQCHIP 808 struct { 809 spinlock_t lock; 810 struct list_head items; 811 /* resampler_list update side is protected by resampler_lock. */ 812 struct list_head resampler_list; 813 struct mutex resampler_lock; 814 } irqfds; 815 #endif 816 struct list_head ioeventfds; 817 struct kvm_vm_stat stat; 818 struct kvm_arch arch; 819 refcount_t users_count; 820 #ifdef CONFIG_KVM_MMIO 821 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 822 spinlock_t ring_lock; 823 struct list_head coalesced_zones; 824 #endif 825 826 struct mutex irq_lock; 827 #ifdef CONFIG_HAVE_KVM_IRQCHIP 828 /* 829 * Update side is protected by irq_lock. 830 */ 831 struct kvm_irq_routing_table __rcu *irq_routing; 832 833 struct hlist_head irq_ack_notifier_list; 834 #endif 835 836 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 837 struct mmu_notifier mmu_notifier; 838 unsigned long mmu_invalidate_seq; 839 long mmu_invalidate_in_progress; 840 gfn_t mmu_invalidate_range_start; 841 gfn_t mmu_invalidate_range_end; 842 #endif 843 struct list_head devices; 844 u64 manual_dirty_log_protect; 845 struct dentry *debugfs_dentry; 846 struct kvm_stat_data **debugfs_stat_data; 847 struct srcu_struct srcu; 848 struct srcu_struct irq_srcu; 849 pid_t userspace_pid; 850 bool override_halt_poll_ns; 851 unsigned int max_halt_poll_ns; 852 u32 dirty_ring_size; 853 bool dirty_ring_with_bitmap; 854 bool vm_bugged; 855 bool vm_dead; 856 857 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 858 struct notifier_block pm_notifier; 859 #endif 860 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 861 /* Protected by slots_locks (for writes) and RCU (for reads) */ 862 struct xarray mem_attr_array; 863 #endif 864 char stats_id[KVM_STATS_NAME_SIZE]; 865 }; 866 867 #define kvm_err(fmt, ...) \ 868 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 869 #define kvm_info(fmt, ...) \ 870 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 871 #define kvm_debug(fmt, ...) \ 872 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 873 #define kvm_debug_ratelimited(fmt, ...) \ 874 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 875 ## __VA_ARGS__) 876 #define kvm_pr_unimpl(fmt, ...) \ 877 pr_err_ratelimited("kvm [%i]: " fmt, \ 878 task_tgid_nr(current), ## __VA_ARGS__) 879 880 /* The guest did something we don't support. */ 881 #define vcpu_unimpl(vcpu, fmt, ...) \ 882 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 883 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 884 885 #define vcpu_debug(vcpu, fmt, ...) \ 886 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 887 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 888 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 889 ## __VA_ARGS__) 890 #define vcpu_err(vcpu, fmt, ...) \ 891 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 892 893 static inline void kvm_vm_dead(struct kvm *kvm) 894 { 895 kvm->vm_dead = true; 896 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 897 } 898 899 static inline void kvm_vm_bugged(struct kvm *kvm) 900 { 901 kvm->vm_bugged = true; 902 kvm_vm_dead(kvm); 903 } 904 905 906 #define KVM_BUG(cond, kvm, fmt...) \ 907 ({ \ 908 bool __ret = !!(cond); \ 909 \ 910 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 911 kvm_vm_bugged(kvm); \ 912 unlikely(__ret); \ 913 }) 914 915 #define KVM_BUG_ON(cond, kvm) \ 916 ({ \ 917 bool __ret = !!(cond); \ 918 \ 919 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 920 kvm_vm_bugged(kvm); \ 921 unlikely(__ret); \ 922 }) 923 924 /* 925 * Note, "data corruption" refers to corruption of host kernel data structures, 926 * not guest data. Guest data corruption, suspected or confirmed, that is tied 927 * and contained to a single VM should *never* BUG() and potentially panic the 928 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 929 * is corrupted and that corruption can have a cascading effect to other parts 930 * of the hosts and/or to other VMs. 931 */ 932 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 933 ({ \ 934 bool __ret = !!(cond); \ 935 \ 936 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 937 BUG_ON(__ret); \ 938 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 939 kvm_vm_bugged(kvm); \ 940 unlikely(__ret); \ 941 }) 942 943 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 944 { 945 #ifdef CONFIG_PROVE_RCU 946 WARN_ONCE(vcpu->srcu_depth++, 947 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 948 #endif 949 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 950 } 951 952 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 953 { 954 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 955 956 #ifdef CONFIG_PROVE_RCU 957 WARN_ONCE(--vcpu->srcu_depth, 958 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 959 #endif 960 } 961 962 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 963 { 964 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 965 } 966 967 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 968 { 969 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 970 lockdep_is_held(&kvm->slots_lock) || 971 !refcount_read(&kvm->users_count)); 972 } 973 974 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 975 { 976 int num_vcpus = atomic_read(&kvm->online_vcpus); 977 978 /* 979 * Explicitly verify the target vCPU is online, as the anti-speculation 980 * logic only limits the CPU's ability to speculate, e.g. given a "bad" 981 * index, clamping the index to 0 would return vCPU0, not NULL. 982 */ 983 if (i >= num_vcpus) 984 return NULL; 985 986 i = array_index_nospec(i, num_vcpus); 987 988 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 989 smp_rmb(); 990 return xa_load(&kvm->vcpu_array, i); 991 } 992 993 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 994 if (atomic_read(&kvm->online_vcpus)) \ 995 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 996 (atomic_read(&kvm->online_vcpus) - 1)) 997 998 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 999 { 1000 struct kvm_vcpu *vcpu = NULL; 1001 unsigned long i; 1002 1003 if (id < 0) 1004 return NULL; 1005 if (id < KVM_MAX_VCPUS) 1006 vcpu = kvm_get_vcpu(kvm, id); 1007 if (vcpu && vcpu->vcpu_id == id) 1008 return vcpu; 1009 kvm_for_each_vcpu(i, vcpu, kvm) 1010 if (vcpu->vcpu_id == id) 1011 return vcpu; 1012 return NULL; 1013 } 1014 1015 void kvm_destroy_vcpus(struct kvm *kvm); 1016 1017 void vcpu_load(struct kvm_vcpu *vcpu); 1018 void vcpu_put(struct kvm_vcpu *vcpu); 1019 1020 #ifdef __KVM_HAVE_IOAPIC 1021 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 1022 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 1023 #else 1024 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1025 { 1026 } 1027 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 1028 { 1029 } 1030 #endif 1031 1032 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1033 int kvm_irqfd_init(void); 1034 void kvm_irqfd_exit(void); 1035 #else 1036 static inline int kvm_irqfd_init(void) 1037 { 1038 return 0; 1039 } 1040 1041 static inline void kvm_irqfd_exit(void) 1042 { 1043 } 1044 #endif 1045 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1046 void kvm_exit(void); 1047 1048 void kvm_get_kvm(struct kvm *kvm); 1049 bool kvm_get_kvm_safe(struct kvm *kvm); 1050 void kvm_put_kvm(struct kvm *kvm); 1051 bool file_is_kvm(struct file *file); 1052 void kvm_put_kvm_no_destroy(struct kvm *kvm); 1053 1054 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1055 { 1056 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1057 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1058 lockdep_is_held(&kvm->slots_lock) || 1059 !refcount_read(&kvm->users_count)); 1060 } 1061 1062 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1063 { 1064 return __kvm_memslots(kvm, 0); 1065 } 1066 1067 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1068 { 1069 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1070 1071 return __kvm_memslots(vcpu->kvm, as_id); 1072 } 1073 1074 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1075 { 1076 return RB_EMPTY_ROOT(&slots->gfn_tree); 1077 } 1078 1079 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1080 1081 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1082 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1083 if (WARN_ON_ONCE(!memslot->npages)) { \ 1084 } else 1085 1086 static inline 1087 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1088 { 1089 struct kvm_memory_slot *slot; 1090 int idx = slots->node_idx; 1091 1092 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1093 if (slot->id == id) 1094 return slot; 1095 } 1096 1097 return NULL; 1098 } 1099 1100 /* Iterator used for walking memslots that overlap a gfn range. */ 1101 struct kvm_memslot_iter { 1102 struct kvm_memslots *slots; 1103 struct rb_node *node; 1104 struct kvm_memory_slot *slot; 1105 }; 1106 1107 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1108 { 1109 iter->node = rb_next(iter->node); 1110 if (!iter->node) 1111 return; 1112 1113 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1114 } 1115 1116 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1117 struct kvm_memslots *slots, 1118 gfn_t start) 1119 { 1120 int idx = slots->node_idx; 1121 struct rb_node *tmp; 1122 struct kvm_memory_slot *slot; 1123 1124 iter->slots = slots; 1125 1126 /* 1127 * Find the so called "upper bound" of a key - the first node that has 1128 * its key strictly greater than the searched one (the start gfn in our case). 1129 */ 1130 iter->node = NULL; 1131 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1132 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1133 if (start < slot->base_gfn) { 1134 iter->node = tmp; 1135 tmp = tmp->rb_left; 1136 } else { 1137 tmp = tmp->rb_right; 1138 } 1139 } 1140 1141 /* 1142 * Find the slot with the lowest gfn that can possibly intersect with 1143 * the range, so we'll ideally have slot start <= range start 1144 */ 1145 if (iter->node) { 1146 /* 1147 * A NULL previous node means that the very first slot 1148 * already has a higher start gfn. 1149 * In this case slot start > range start. 1150 */ 1151 tmp = rb_prev(iter->node); 1152 if (tmp) 1153 iter->node = tmp; 1154 } else { 1155 /* a NULL node below means no slots */ 1156 iter->node = rb_last(&slots->gfn_tree); 1157 } 1158 1159 if (iter->node) { 1160 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1161 1162 /* 1163 * It is possible in the slot start < range start case that the 1164 * found slot ends before or at range start (slot end <= range start) 1165 * and so it does not overlap the requested range. 1166 * 1167 * In such non-overlapping case the next slot (if it exists) will 1168 * already have slot start > range start, otherwise the logic above 1169 * would have found it instead of the current slot. 1170 */ 1171 if (iter->slot->base_gfn + iter->slot->npages <= start) 1172 kvm_memslot_iter_next(iter); 1173 } 1174 } 1175 1176 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1177 { 1178 if (!iter->node) 1179 return false; 1180 1181 /* 1182 * If this slot starts beyond or at the end of the range so does 1183 * every next one 1184 */ 1185 return iter->slot->base_gfn < end; 1186 } 1187 1188 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1189 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1190 for (kvm_memslot_iter_start(iter, slots, start); \ 1191 kvm_memslot_iter_is_valid(iter, end); \ 1192 kvm_memslot_iter_next(iter)) 1193 1194 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1195 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1196 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1197 1198 /* 1199 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1200 * - create a new memory slot 1201 * - delete an existing memory slot 1202 * - modify an existing memory slot 1203 * -- move it in the guest physical memory space 1204 * -- just change its flags 1205 * 1206 * Since flags can be changed by some of these operations, the following 1207 * differentiation is the best we can do for kvm_set_memory_region(): 1208 */ 1209 enum kvm_mr_change { 1210 KVM_MR_CREATE, 1211 KVM_MR_DELETE, 1212 KVM_MR_MOVE, 1213 KVM_MR_FLAGS_ONLY, 1214 }; 1215 1216 int kvm_set_internal_memslot(struct kvm *kvm, 1217 const struct kvm_userspace_memory_region2 *mem); 1218 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1219 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1220 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1221 const struct kvm_memory_slot *old, 1222 struct kvm_memory_slot *new, 1223 enum kvm_mr_change change); 1224 void kvm_arch_commit_memory_region(struct kvm *kvm, 1225 struct kvm_memory_slot *old, 1226 const struct kvm_memory_slot *new, 1227 enum kvm_mr_change change); 1228 /* flush all memory translations */ 1229 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1230 /* flush memory translations pointing to 'slot' */ 1231 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1232 struct kvm_memory_slot *slot); 1233 1234 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1235 struct page **pages, int nr_pages); 1236 1237 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); 1238 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1239 { 1240 return __gfn_to_page(kvm, gfn, true); 1241 } 1242 1243 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1244 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1245 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1246 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1247 bool *writable); 1248 1249 static inline void kvm_release_page_unused(struct page *page) 1250 { 1251 if (!page) 1252 return; 1253 1254 put_page(page); 1255 } 1256 1257 void kvm_release_page_clean(struct page *page); 1258 void kvm_release_page_dirty(struct page *page); 1259 1260 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, 1261 bool unused, bool dirty) 1262 { 1263 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); 1264 1265 if (!page) 1266 return; 1267 1268 /* 1269 * If the page that KVM got from the *primary MMU* is writable, and KVM 1270 * installed or reused a SPTE, mark the page/folio dirty. Note, this 1271 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if 1272 * the GFN is write-protected. Folios can't be safely marked dirty 1273 * outside of mmu_lock as doing so could race with writeback on the 1274 * folio. As a result, KVM can't mark folios dirty in the fast page 1275 * fault handler, and so KVM must (somewhat) speculatively mark the 1276 * folio dirty if KVM could locklessly make the SPTE writable. 1277 */ 1278 if (unused) 1279 kvm_release_page_unused(page); 1280 else if (dirty) 1281 kvm_release_page_dirty(page); 1282 else 1283 kvm_release_page_clean(page); 1284 } 1285 1286 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 1287 unsigned int foll, bool *writable, 1288 struct page **refcounted_page); 1289 1290 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 1291 bool write, bool *writable, 1292 struct page **refcounted_page) 1293 { 1294 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, 1295 write ? FOLL_WRITE : 0, writable, refcounted_page); 1296 } 1297 1298 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1299 int len); 1300 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1301 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1302 void *data, unsigned long len); 1303 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1304 void *data, unsigned int offset, 1305 unsigned long len); 1306 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1307 int offset, int len); 1308 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1309 unsigned long len); 1310 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1311 void *data, unsigned long len); 1312 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1313 void *data, unsigned int offset, 1314 unsigned long len); 1315 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1316 gpa_t gpa, unsigned long len); 1317 1318 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1319 ({ \ 1320 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1321 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1322 int __ret = -EFAULT; \ 1323 \ 1324 if (!kvm_is_error_hva(__addr)) \ 1325 __ret = get_user(v, __uaddr); \ 1326 __ret; \ 1327 }) 1328 1329 #define kvm_get_guest(kvm, gpa, v) \ 1330 ({ \ 1331 gpa_t __gpa = gpa; \ 1332 struct kvm *__kvm = kvm; \ 1333 \ 1334 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1335 offset_in_page(__gpa), v); \ 1336 }) 1337 1338 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1339 ({ \ 1340 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1341 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1342 int __ret = -EFAULT; \ 1343 \ 1344 if (!kvm_is_error_hva(__addr)) \ 1345 __ret = put_user(v, __uaddr); \ 1346 if (!__ret) \ 1347 mark_page_dirty(kvm, gfn); \ 1348 __ret; \ 1349 }) 1350 1351 #define kvm_put_guest(kvm, gpa, v) \ 1352 ({ \ 1353 gpa_t __gpa = gpa; \ 1354 struct kvm *__kvm = kvm; \ 1355 \ 1356 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1357 offset_in_page(__gpa), v); \ 1358 }) 1359 1360 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1361 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1362 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1363 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1364 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1365 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1366 1367 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, 1368 bool writable); 1369 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); 1370 1371 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, 1372 struct kvm_host_map *map) 1373 { 1374 return __kvm_vcpu_map(vcpu, gpa, map, true); 1375 } 1376 1377 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, 1378 struct kvm_host_map *map) 1379 { 1380 return __kvm_vcpu_map(vcpu, gpa, map, false); 1381 } 1382 1383 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1384 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1385 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1386 int len); 1387 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1388 unsigned long len); 1389 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1390 unsigned long len); 1391 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1392 int offset, int len); 1393 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1394 unsigned long len); 1395 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1396 1397 /** 1398 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1399 * 1400 * @gpc: struct gfn_to_pfn_cache object. 1401 * @kvm: pointer to kvm instance. 1402 * 1403 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1404 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1405 * the caller before init). 1406 */ 1407 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1408 1409 /** 1410 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1411 * physical address. 1412 * 1413 * @gpc: struct gfn_to_pfn_cache object. 1414 * @gpa: guest physical address to map. 1415 * @len: sanity check; the range being access must fit a single page. 1416 * 1417 * @return: 0 for success. 1418 * -EINVAL for a mapping which would cross a page boundary. 1419 * -EFAULT for an untranslatable guest physical address. 1420 * 1421 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1422 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1423 * to ensure that the cache is valid before accessing the target page. 1424 */ 1425 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1426 1427 /** 1428 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1429 * 1430 * @gpc: struct gfn_to_pfn_cache object. 1431 * @hva: userspace virtual address to map. 1432 * @len: sanity check; the range being access must fit a single page. 1433 * 1434 * @return: 0 for success. 1435 * -EINVAL for a mapping which would cross a page boundary. 1436 * -EFAULT for an untranslatable guest physical address. 1437 * 1438 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1439 * merely bypasses a layer of address translation. 1440 */ 1441 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1442 1443 /** 1444 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1445 * 1446 * @gpc: struct gfn_to_pfn_cache object. 1447 * @len: sanity check; the range being access must fit a single page. 1448 * 1449 * @return: %true if the cache is still valid and the address matches. 1450 * %false if the cache is not valid. 1451 * 1452 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1453 * while calling this function, and then continue to hold the lock until the 1454 * access is complete. 1455 * 1456 * Callers in IN_GUEST_MODE may do so without locking, although they should 1457 * still hold a read lock on kvm->scru for the memslot checks. 1458 */ 1459 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1460 1461 /** 1462 * kvm_gpc_refresh - update a previously initialized cache. 1463 * 1464 * @gpc: struct gfn_to_pfn_cache object. 1465 * @len: sanity check; the range being access must fit a single page. 1466 * 1467 * @return: 0 for success. 1468 * -EINVAL for a mapping which would cross a page boundary. 1469 * -EFAULT for an untranslatable guest physical address. 1470 * 1471 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1472 * return from this function does not mean the page can be immediately 1473 * accessed because it may have raced with an invalidation. Callers must 1474 * still lock and check the cache status, as this function does not return 1475 * with the lock still held to permit access. 1476 */ 1477 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1478 1479 /** 1480 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1481 * 1482 * @gpc: struct gfn_to_pfn_cache object. 1483 * 1484 * This removes a cache from the VM's list to be processed on MMU notifier 1485 * invocation. 1486 */ 1487 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1488 1489 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1490 { 1491 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1492 } 1493 1494 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1495 { 1496 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1497 } 1498 1499 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1500 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1501 1502 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1503 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1504 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1505 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1506 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1507 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1508 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1509 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1510 1511 void kvm_flush_remote_tlbs(struct kvm *kvm); 1512 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1513 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1514 const struct kvm_memory_slot *memslot); 1515 1516 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1517 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1518 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1519 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1520 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1521 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1522 #endif 1523 1524 void kvm_mmu_invalidate_begin(struct kvm *kvm); 1525 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1526 void kvm_mmu_invalidate_end(struct kvm *kvm); 1527 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1528 1529 long kvm_arch_dev_ioctl(struct file *filp, 1530 unsigned int ioctl, unsigned long arg); 1531 long kvm_arch_vcpu_ioctl(struct file *filp, 1532 unsigned int ioctl, unsigned long arg); 1533 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1534 1535 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1536 1537 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1538 struct kvm_memory_slot *slot, 1539 gfn_t gfn_offset, 1540 unsigned long mask); 1541 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1542 1543 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1544 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1545 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1546 int *is_dirty, struct kvm_memory_slot **memslot); 1547 #endif 1548 1549 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1550 bool line_status); 1551 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1552 struct kvm_enable_cap *cap); 1553 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1554 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1555 unsigned long arg); 1556 1557 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1558 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1559 1560 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1561 struct kvm_translation *tr); 1562 1563 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1564 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1565 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1566 struct kvm_sregs *sregs); 1567 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1568 struct kvm_sregs *sregs); 1569 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1570 struct kvm_mp_state *mp_state); 1571 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1572 struct kvm_mp_state *mp_state); 1573 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1574 struct kvm_guest_debug *dbg); 1575 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1576 1577 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1578 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1579 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1580 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1581 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1582 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1583 1584 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1585 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1586 #endif 1587 1588 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1589 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1590 #else 1591 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1592 #endif 1593 1594 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1595 /* 1596 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1597 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1598 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1599 * sequence, and at the end of the generic hardware disabling sequence. 1600 */ 1601 void kvm_arch_enable_virtualization(void); 1602 void kvm_arch_disable_virtualization(void); 1603 /* 1604 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1605 * do the actual twiddling of hardware bits. The hooks are called on all 1606 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1607 * when that CPU is onlined/offlined (including for Resume/Suspend). 1608 */ 1609 int kvm_arch_enable_virtualization_cpu(void); 1610 void kvm_arch_disable_virtualization_cpu(void); 1611 #endif 1612 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1613 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1614 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1615 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1616 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1617 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1618 int kvm_arch_post_init_vm(struct kvm *kvm); 1619 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1620 void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1621 1622 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1623 /* 1624 * All architectures that want to use vzalloc currently also 1625 * need their own kvm_arch_alloc_vm implementation. 1626 */ 1627 static inline struct kvm *kvm_arch_alloc_vm(void) 1628 { 1629 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1630 } 1631 #endif 1632 1633 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1634 { 1635 kvfree(kvm); 1636 } 1637 1638 #ifndef __KVM_HAVE_ARCH_VM_FREE 1639 static inline void kvm_arch_free_vm(struct kvm *kvm) 1640 { 1641 __kvm_arch_free_vm(kvm); 1642 } 1643 #endif 1644 1645 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1646 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1647 { 1648 return -ENOTSUPP; 1649 } 1650 #else 1651 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1652 #endif 1653 1654 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1655 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1656 gfn_t gfn, u64 nr_pages) 1657 { 1658 return -EOPNOTSUPP; 1659 } 1660 #else 1661 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1662 #endif 1663 1664 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1665 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1666 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1667 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1668 #else 1669 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1670 { 1671 } 1672 1673 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1674 { 1675 } 1676 1677 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1678 { 1679 return false; 1680 } 1681 #endif 1682 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1683 void kvm_arch_start_assignment(struct kvm *kvm); 1684 void kvm_arch_end_assignment(struct kvm *kvm); 1685 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1686 #else 1687 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1688 { 1689 } 1690 1691 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1692 { 1693 } 1694 1695 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1696 { 1697 return false; 1698 } 1699 #endif 1700 1701 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1702 { 1703 #ifdef __KVM_HAVE_ARCH_WQP 1704 return vcpu->arch.waitp; 1705 #else 1706 return &vcpu->wait; 1707 #endif 1708 } 1709 1710 /* 1711 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1712 * true if the vCPU was blocking and was awakened, false otherwise. 1713 */ 1714 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1715 { 1716 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1717 } 1718 1719 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1720 { 1721 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1722 } 1723 1724 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1725 /* 1726 * returns true if the virtual interrupt controller is initialized and 1727 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1728 * controller is dynamically instantiated and this is not always true. 1729 */ 1730 bool kvm_arch_intc_initialized(struct kvm *kvm); 1731 #else 1732 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1733 { 1734 return true; 1735 } 1736 #endif 1737 1738 #ifdef CONFIG_GUEST_PERF_EVENTS 1739 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1740 1741 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1742 void kvm_unregister_perf_callbacks(void); 1743 #else 1744 static inline void kvm_register_perf_callbacks(void *ign) {} 1745 static inline void kvm_unregister_perf_callbacks(void) {} 1746 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1747 1748 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1749 void kvm_arch_destroy_vm(struct kvm *kvm); 1750 void kvm_arch_sync_events(struct kvm *kvm); 1751 1752 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1753 1754 struct kvm_irq_ack_notifier { 1755 struct hlist_node link; 1756 unsigned gsi; 1757 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1758 }; 1759 1760 int kvm_irq_map_gsi(struct kvm *kvm, 1761 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1762 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1763 1764 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1765 bool line_status); 1766 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1767 int irq_source_id, int level, bool line_status); 1768 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1769 struct kvm *kvm, int irq_source_id, 1770 int level, bool line_status); 1771 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1772 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1773 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1774 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1775 struct kvm_irq_ack_notifier *kian); 1776 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1777 struct kvm_irq_ack_notifier *kian); 1778 int kvm_request_irq_source_id(struct kvm *kvm); 1779 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1780 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1781 1782 /* 1783 * Returns a pointer to the memslot if it contains gfn. 1784 * Otherwise returns NULL. 1785 */ 1786 static inline struct kvm_memory_slot * 1787 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1788 { 1789 if (!slot) 1790 return NULL; 1791 1792 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1793 return slot; 1794 else 1795 return NULL; 1796 } 1797 1798 /* 1799 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1800 * 1801 * With "approx" set returns the memslot also when the address falls 1802 * in a hole. In that case one of the memslots bordering the hole is 1803 * returned. 1804 */ 1805 static inline struct kvm_memory_slot * 1806 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1807 { 1808 struct kvm_memory_slot *slot; 1809 struct rb_node *node; 1810 int idx = slots->node_idx; 1811 1812 slot = NULL; 1813 for (node = slots->gfn_tree.rb_node; node; ) { 1814 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1815 if (gfn >= slot->base_gfn) { 1816 if (gfn < slot->base_gfn + slot->npages) 1817 return slot; 1818 node = node->rb_right; 1819 } else 1820 node = node->rb_left; 1821 } 1822 1823 return approx ? slot : NULL; 1824 } 1825 1826 static inline struct kvm_memory_slot * 1827 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1828 { 1829 struct kvm_memory_slot *slot; 1830 1831 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1832 slot = try_get_memslot(slot, gfn); 1833 if (slot) 1834 return slot; 1835 1836 slot = search_memslots(slots, gfn, approx); 1837 if (slot) { 1838 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1839 return slot; 1840 } 1841 1842 return NULL; 1843 } 1844 1845 /* 1846 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1847 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1848 * because that would bloat other code too much. 1849 */ 1850 static inline struct kvm_memory_slot * 1851 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1852 { 1853 return ____gfn_to_memslot(slots, gfn, false); 1854 } 1855 1856 static inline unsigned long 1857 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1858 { 1859 /* 1860 * The index was checked originally in search_memslots. To avoid 1861 * that a malicious guest builds a Spectre gadget out of e.g. page 1862 * table walks, do not let the processor speculate loads outside 1863 * the guest's registered memslots. 1864 */ 1865 unsigned long offset = gfn - slot->base_gfn; 1866 offset = array_index_nospec(offset, slot->npages); 1867 return slot->userspace_addr + offset * PAGE_SIZE; 1868 } 1869 1870 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1871 { 1872 return gfn_to_memslot(kvm, gfn)->id; 1873 } 1874 1875 static inline gfn_t 1876 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1877 { 1878 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1879 1880 return slot->base_gfn + gfn_offset; 1881 } 1882 1883 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1884 { 1885 return (gpa_t)gfn << PAGE_SHIFT; 1886 } 1887 1888 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1889 { 1890 return (gfn_t)(gpa >> PAGE_SHIFT); 1891 } 1892 1893 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1894 { 1895 return (hpa_t)pfn << PAGE_SHIFT; 1896 } 1897 1898 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1899 { 1900 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1901 1902 return !kvm_is_error_hva(hva); 1903 } 1904 1905 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1906 { 1907 lockdep_assert_held(&gpc->lock); 1908 1909 if (!gpc->memslot) 1910 return; 1911 1912 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1913 } 1914 1915 enum kvm_stat_kind { 1916 KVM_STAT_VM, 1917 KVM_STAT_VCPU, 1918 }; 1919 1920 struct kvm_stat_data { 1921 struct kvm *kvm; 1922 const struct _kvm_stats_desc *desc; 1923 enum kvm_stat_kind kind; 1924 }; 1925 1926 struct _kvm_stats_desc { 1927 struct kvm_stats_desc desc; 1928 char name[KVM_STATS_NAME_SIZE]; 1929 }; 1930 1931 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1932 .flags = type | unit | base | \ 1933 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1934 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1935 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1936 .exponent = exp, \ 1937 .size = sz, \ 1938 .bucket_size = bsz 1939 1940 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1941 { \ 1942 { \ 1943 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1944 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1945 }, \ 1946 .name = #stat, \ 1947 } 1948 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1949 { \ 1950 { \ 1951 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1952 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1953 }, \ 1954 .name = #stat, \ 1955 } 1956 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1957 { \ 1958 { \ 1959 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1960 .offset = offsetof(struct kvm_vm_stat, stat) \ 1961 }, \ 1962 .name = #stat, \ 1963 } 1964 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1965 { \ 1966 { \ 1967 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1968 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1969 }, \ 1970 .name = #stat, \ 1971 } 1972 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1973 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1974 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1975 1976 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1977 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1978 unit, base, exponent, 1, 0) 1979 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1980 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1981 unit, base, exponent, 1, 0) 1982 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1983 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1984 unit, base, exponent, 1, 0) 1985 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1986 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1987 unit, base, exponent, sz, bsz) 1988 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1989 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1990 unit, base, exponent, sz, 0) 1991 1992 /* Cumulative counter, read/write */ 1993 #define STATS_DESC_COUNTER(SCOPE, name) \ 1994 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1995 KVM_STATS_BASE_POW10, 0) 1996 /* Instantaneous counter, read only */ 1997 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1998 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1999 KVM_STATS_BASE_POW10, 0) 2000 /* Peak counter, read/write */ 2001 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 2002 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2003 KVM_STATS_BASE_POW10, 0) 2004 2005 /* Instantaneous boolean value, read only */ 2006 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 2007 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2008 KVM_STATS_BASE_POW10, 0) 2009 /* Peak (sticky) boolean value, read/write */ 2010 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 2011 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2012 KVM_STATS_BASE_POW10, 0) 2013 2014 /* Cumulative time in nanosecond */ 2015 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 2016 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2017 KVM_STATS_BASE_POW10, -9) 2018 /* Linear histogram for time in nanosecond */ 2019 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 2020 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2021 KVM_STATS_BASE_POW10, -9, sz, bsz) 2022 /* Logarithmic histogram for time in nanosecond */ 2023 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 2024 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2025 KVM_STATS_BASE_POW10, -9, sz) 2026 2027 #define KVM_GENERIC_VM_STATS() \ 2028 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 2029 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 2030 2031 #define KVM_GENERIC_VCPU_STATS() \ 2032 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 2033 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 2034 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 2035 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 2036 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 2037 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 2038 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 2039 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 2040 HALT_POLL_HIST_COUNT), \ 2041 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 2042 HALT_POLL_HIST_COUNT), \ 2043 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 2044 HALT_POLL_HIST_COUNT), \ 2045 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 2046 2047 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 2048 const struct _kvm_stats_desc *desc, 2049 void *stats, size_t size_stats, 2050 char __user *user_buffer, size_t size, loff_t *offset); 2051 2052 /** 2053 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 2054 * statistics data. 2055 * 2056 * @data: start address of the stats data 2057 * @size: the number of bucket of the stats data 2058 * @value: the new value used to update the linear histogram's bucket 2059 * @bucket_size: the size (width) of a bucket 2060 */ 2061 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 2062 u64 value, size_t bucket_size) 2063 { 2064 size_t index = div64_u64(value, bucket_size); 2065 2066 index = min(index, size - 1); 2067 ++data[index]; 2068 } 2069 2070 /** 2071 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2072 * statistics data. 2073 * 2074 * @data: start address of the stats data 2075 * @size: the number of bucket of the stats data 2076 * @value: the new value used to update the logarithmic histogram's bucket 2077 */ 2078 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2079 { 2080 size_t index = fls64(value); 2081 2082 index = min(index, size - 1); 2083 ++data[index]; 2084 } 2085 2086 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2087 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2088 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2089 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2090 2091 2092 extern const struct kvm_stats_header kvm_vm_stats_header; 2093 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2094 extern const struct kvm_stats_header kvm_vcpu_stats_header; 2095 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2096 2097 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2098 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2099 { 2100 if (unlikely(kvm->mmu_invalidate_in_progress)) 2101 return 1; 2102 /* 2103 * Ensure the read of mmu_invalidate_in_progress happens before 2104 * the read of mmu_invalidate_seq. This interacts with the 2105 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2106 * that the caller either sees the old (non-zero) value of 2107 * mmu_invalidate_in_progress or the new (incremented) value of 2108 * mmu_invalidate_seq. 2109 * 2110 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2111 * than under kvm->mmu_lock, for scalability, so can't rely on 2112 * kvm->mmu_lock to keep things ordered. 2113 */ 2114 smp_rmb(); 2115 if (kvm->mmu_invalidate_seq != mmu_seq) 2116 return 1; 2117 return 0; 2118 } 2119 2120 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2121 unsigned long mmu_seq, 2122 gfn_t gfn) 2123 { 2124 lockdep_assert_held(&kvm->mmu_lock); 2125 /* 2126 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2127 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2128 * that might be being invalidated. Note that it may include some false 2129 * positives, due to shortcuts when handing concurrent invalidations. 2130 */ 2131 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2132 /* 2133 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2134 * but before updating the range is a KVM bug. 2135 */ 2136 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2137 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2138 return 1; 2139 2140 if (gfn >= kvm->mmu_invalidate_range_start && 2141 gfn < kvm->mmu_invalidate_range_end) 2142 return 1; 2143 } 2144 2145 if (kvm->mmu_invalidate_seq != mmu_seq) 2146 return 1; 2147 return 0; 2148 } 2149 2150 /* 2151 * This lockless version of the range-based retry check *must* be paired with a 2152 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2153 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2154 * get false negatives and false positives. 2155 */ 2156 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2157 unsigned long mmu_seq, 2158 gfn_t gfn) 2159 { 2160 /* 2161 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2162 * are always read from memory, e.g. so that checking for retry in a 2163 * loop won't result in an infinite retry loop. Don't force loads for 2164 * start+end, as the key to avoiding infinite retry loops is observing 2165 * the 1=>0 transition of in-progress, i.e. getting false negatives 2166 * due to stale start+end values is acceptable. 2167 */ 2168 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2169 gfn >= kvm->mmu_invalidate_range_start && 2170 gfn < kvm->mmu_invalidate_range_end) 2171 return true; 2172 2173 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2174 } 2175 #endif 2176 2177 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2178 2179 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2180 2181 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2182 int kvm_set_irq_routing(struct kvm *kvm, 2183 const struct kvm_irq_routing_entry *entries, 2184 unsigned nr, 2185 unsigned flags); 2186 int kvm_init_irq_routing(struct kvm *kvm); 2187 int kvm_set_routing_entry(struct kvm *kvm, 2188 struct kvm_kernel_irq_routing_entry *e, 2189 const struct kvm_irq_routing_entry *ue); 2190 void kvm_free_irq_routing(struct kvm *kvm); 2191 2192 #else 2193 2194 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2195 2196 static inline int kvm_init_irq_routing(struct kvm *kvm) 2197 { 2198 return 0; 2199 } 2200 2201 #endif 2202 2203 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2204 2205 void kvm_eventfd_init(struct kvm *kvm); 2206 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2207 2208 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2209 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2210 void kvm_irqfd_release(struct kvm *kvm); 2211 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2212 unsigned int irqchip, 2213 unsigned int pin); 2214 void kvm_irq_routing_update(struct kvm *); 2215 #else 2216 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2217 { 2218 return -EINVAL; 2219 } 2220 2221 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2222 2223 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2224 unsigned int irqchip, 2225 unsigned int pin) 2226 { 2227 return false; 2228 } 2229 #endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2230 2231 void kvm_arch_irq_routing_update(struct kvm *kvm); 2232 2233 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2234 { 2235 /* 2236 * Ensure the rest of the request is published to kvm_check_request's 2237 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2238 */ 2239 smp_wmb(); 2240 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2241 } 2242 2243 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2244 { 2245 /* 2246 * Request that don't require vCPU action should never be logged in 2247 * vcpu->requests. The vCPU won't clear the request, so it will stay 2248 * logged indefinitely and prevent the vCPU from entering the guest. 2249 */ 2250 BUILD_BUG_ON(!__builtin_constant_p(req) || 2251 (req & KVM_REQUEST_NO_ACTION)); 2252 2253 __kvm_make_request(req, vcpu); 2254 } 2255 2256 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2257 { 2258 return READ_ONCE(vcpu->requests); 2259 } 2260 2261 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2262 { 2263 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2264 } 2265 2266 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2267 { 2268 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2269 } 2270 2271 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2272 { 2273 if (kvm_test_request(req, vcpu)) { 2274 kvm_clear_request(req, vcpu); 2275 2276 /* 2277 * Ensure the rest of the request is visible to kvm_check_request's 2278 * caller. Paired with the smp_wmb in kvm_make_request. 2279 */ 2280 smp_mb__after_atomic(); 2281 return true; 2282 } else { 2283 return false; 2284 } 2285 } 2286 2287 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2288 extern bool kvm_rebooting; 2289 #endif 2290 2291 extern unsigned int halt_poll_ns; 2292 extern unsigned int halt_poll_ns_grow; 2293 extern unsigned int halt_poll_ns_grow_start; 2294 extern unsigned int halt_poll_ns_shrink; 2295 2296 struct kvm_device { 2297 const struct kvm_device_ops *ops; 2298 struct kvm *kvm; 2299 void *private; 2300 struct list_head vm_node; 2301 }; 2302 2303 /* create, destroy, and name are mandatory */ 2304 struct kvm_device_ops { 2305 const char *name; 2306 2307 /* 2308 * create is called holding kvm->lock and any operations not suitable 2309 * to do while holding the lock should be deferred to init (see 2310 * below). 2311 */ 2312 int (*create)(struct kvm_device *dev, u32 type); 2313 2314 /* 2315 * init is called after create if create is successful and is called 2316 * outside of holding kvm->lock. 2317 */ 2318 void (*init)(struct kvm_device *dev); 2319 2320 /* 2321 * Destroy is responsible for freeing dev. 2322 * 2323 * Destroy may be called before or after destructors are called 2324 * on emulated I/O regions, depending on whether a reference is 2325 * held by a vcpu or other kvm component that gets destroyed 2326 * after the emulated I/O. 2327 */ 2328 void (*destroy)(struct kvm_device *dev); 2329 2330 /* 2331 * Release is an alternative method to free the device. It is 2332 * called when the device file descriptor is closed. Once 2333 * release is called, the destroy method will not be called 2334 * anymore as the device is removed from the device list of 2335 * the VM. kvm->lock is held. 2336 */ 2337 void (*release)(struct kvm_device *dev); 2338 2339 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2340 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2341 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2342 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2343 unsigned long arg); 2344 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2345 }; 2346 2347 struct kvm_device *kvm_device_from_filp(struct file *filp); 2348 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2349 void kvm_unregister_device_ops(u32 type); 2350 2351 extern struct kvm_device_ops kvm_mpic_ops; 2352 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2353 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2354 2355 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2356 2357 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2358 { 2359 vcpu->spin_loop.in_spin_loop = val; 2360 } 2361 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2362 { 2363 vcpu->spin_loop.dy_eligible = val; 2364 } 2365 2366 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2367 2368 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2369 { 2370 } 2371 2372 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2373 { 2374 } 2375 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2376 2377 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2378 { 2379 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2380 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2381 } 2382 2383 struct kvm_vcpu *kvm_get_running_vcpu(void); 2384 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2385 2386 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2387 bool kvm_arch_has_irq_bypass(void); 2388 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2389 struct irq_bypass_producer *); 2390 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2391 struct irq_bypass_producer *); 2392 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2393 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2394 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2395 uint32_t guest_irq, bool set); 2396 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2397 struct kvm_kernel_irq_routing_entry *); 2398 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2399 2400 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2401 /* If we wakeup during the poll time, was it a sucessful poll? */ 2402 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2403 { 2404 return vcpu->valid_wakeup; 2405 } 2406 2407 #else 2408 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2409 { 2410 return true; 2411 } 2412 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2413 2414 #ifdef CONFIG_HAVE_KVM_NO_POLL 2415 /* Callback that tells if we must not poll */ 2416 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2417 #else 2418 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2419 { 2420 return false; 2421 } 2422 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2423 2424 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2425 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2426 unsigned int ioctl, unsigned long arg); 2427 #else 2428 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2429 unsigned int ioctl, 2430 unsigned long arg) 2431 { 2432 return -ENOIOCTLCMD; 2433 } 2434 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2435 2436 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2437 2438 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2439 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2440 #else 2441 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2442 { 2443 return 0; 2444 } 2445 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2446 2447 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2448 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2449 { 2450 vcpu->run->exit_reason = KVM_EXIT_INTR; 2451 vcpu->stat.signal_exits++; 2452 } 2453 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2454 2455 /* 2456 * If more than one page is being (un)accounted, @virt must be the address of 2457 * the first page of a block of pages what were allocated together (i.e 2458 * accounted together). 2459 * 2460 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2461 * is thread-safe. 2462 */ 2463 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2464 { 2465 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2466 } 2467 2468 /* 2469 * This defines how many reserved entries we want to keep before we 2470 * kick the vcpu to the userspace to avoid dirty ring full. This 2471 * value can be tuned to higher if e.g. PML is enabled on the host. 2472 */ 2473 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2474 2475 /* Max number of entries allowed for each kvm dirty ring */ 2476 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2477 2478 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2479 gpa_t gpa, gpa_t size, 2480 bool is_write, bool is_exec, 2481 bool is_private) 2482 { 2483 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2484 vcpu->run->memory_fault.gpa = gpa; 2485 vcpu->run->memory_fault.size = size; 2486 2487 /* RWX flags are not (yet) defined or communicated to userspace. */ 2488 vcpu->run->memory_fault.flags = 0; 2489 if (is_private) 2490 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2491 } 2492 2493 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2494 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2495 { 2496 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2497 } 2498 2499 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2500 unsigned long mask, unsigned long attrs); 2501 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2502 struct kvm_gfn_range *range); 2503 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2504 struct kvm_gfn_range *range); 2505 2506 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2507 { 2508 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2509 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2510 } 2511 #else 2512 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2513 { 2514 return false; 2515 } 2516 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2517 2518 #ifdef CONFIG_KVM_PRIVATE_MEM 2519 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2520 gfn_t gfn, kvm_pfn_t *pfn, struct page **page, 2521 int *max_order); 2522 #else 2523 static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2524 struct kvm_memory_slot *slot, gfn_t gfn, 2525 kvm_pfn_t *pfn, struct page **page, 2526 int *max_order) 2527 { 2528 KVM_BUG_ON(1, kvm); 2529 return -EIO; 2530 } 2531 #endif /* CONFIG_KVM_PRIVATE_MEM */ 2532 2533 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2534 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2535 #endif 2536 2537 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2538 /** 2539 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2540 * 2541 * @kvm: KVM instance 2542 * @gfn: starting GFN to be populated 2543 * @src: userspace-provided buffer containing data to copy into GFN range 2544 * (passed to @post_populate, and incremented on each iteration 2545 * if not NULL) 2546 * @npages: number of pages to copy from userspace-buffer 2547 * @post_populate: callback to issue for each gmem page that backs the GPA 2548 * range 2549 * @opaque: opaque data to pass to @post_populate callback 2550 * 2551 * This is primarily intended for cases where a gmem-backed GPA range needs 2552 * to be initialized with userspace-provided data prior to being mapped into 2553 * the guest as a private page. This should be called with the slots->lock 2554 * held so that caller-enforced invariants regarding the expected memory 2555 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2556 * 2557 * Returns the number of pages that were populated. 2558 */ 2559 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2560 void __user *src, int order, void *opaque); 2561 2562 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2563 kvm_gmem_populate_cb post_populate, void *opaque); 2564 #endif 2565 2566 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2567 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2568 #endif 2569 2570 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2571 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2572 struct kvm_pre_fault_memory *range); 2573 #endif 2574 2575 #endif 2576