1 #ifndef __KVM_HOST_H 2 #define __KVM_HOST_H 3 4 /* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9 #include <linux/types.h> 10 #include <linux/hardirq.h> 11 #include <linux/list.h> 12 #include <linux/mutex.h> 13 #include <linux/spinlock.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/bug.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/preempt.h> 20 #include <linux/msi.h> 21 #include <linux/slab.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/swait.h> 29 #include <linux/refcount.h> 30 #include <asm/signal.h> 31 32 #include <linux/kvm.h> 33 #include <linux/kvm_para.h> 34 35 #include <linux/kvm_types.h> 36 37 #include <asm/kvm_host.h> 38 39 #ifndef KVM_MAX_VCPU_ID 40 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 41 #endif 42 43 /* 44 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 45 * in kvm, other bits are visible for userspace which are defined in 46 * include/linux/kvm_h. 47 */ 48 #define KVM_MEMSLOT_INVALID (1UL << 16) 49 50 /* Two fragments for cross MMIO pages. */ 51 #define KVM_MAX_MMIO_FRAGMENTS 2 52 53 #ifndef KVM_ADDRESS_SPACE_NUM 54 #define KVM_ADDRESS_SPACE_NUM 1 55 #endif 56 57 /* 58 * For the normal pfn, the highest 12 bits should be zero, 59 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 60 * mask bit 63 to indicate the noslot pfn. 61 */ 62 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 63 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 64 #define KVM_PFN_NOSLOT (0x1ULL << 63) 65 66 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 67 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 68 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 69 70 /* 71 * error pfns indicate that the gfn is in slot but faild to 72 * translate it to pfn on host. 73 */ 74 static inline bool is_error_pfn(kvm_pfn_t pfn) 75 { 76 return !!(pfn & KVM_PFN_ERR_MASK); 77 } 78 79 /* 80 * error_noslot pfns indicate that the gfn can not be 81 * translated to pfn - it is not in slot or failed to 82 * translate it to pfn. 83 */ 84 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 85 { 86 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 87 } 88 89 /* noslot pfn indicates that the gfn is not in slot. */ 90 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 91 { 92 return pfn == KVM_PFN_NOSLOT; 93 } 94 95 /* 96 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 97 * provide own defines and kvm_is_error_hva 98 */ 99 #ifndef KVM_HVA_ERR_BAD 100 101 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 102 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 103 104 static inline bool kvm_is_error_hva(unsigned long addr) 105 { 106 return addr >= PAGE_OFFSET; 107 } 108 109 #endif 110 111 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 112 113 static inline bool is_error_page(struct page *page) 114 { 115 return IS_ERR(page); 116 } 117 118 #define KVM_REQUEST_MASK GENMASK(7,0) 119 #define KVM_REQUEST_NO_WAKEUP BIT(8) 120 #define KVM_REQUEST_WAIT BIT(9) 121 /* 122 * Architecture-independent vcpu->requests bit members 123 * Bits 4-7 are reserved for more arch-independent bits. 124 */ 125 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 127 #define KVM_REQ_PENDING_TIMER 2 128 #define KVM_REQ_UNHALT 3 129 #define KVM_REQUEST_ARCH_BASE 8 130 131 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 132 BUILD_BUG_ON((unsigned)(nr) >= 32 - KVM_REQUEST_ARCH_BASE); \ 133 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 134 }) 135 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 136 137 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 138 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 139 140 extern struct kmem_cache *kvm_vcpu_cache; 141 142 extern spinlock_t kvm_lock; 143 extern struct list_head vm_list; 144 145 struct kvm_io_range { 146 gpa_t addr; 147 int len; 148 struct kvm_io_device *dev; 149 }; 150 151 #define NR_IOBUS_DEVS 1000 152 153 struct kvm_io_bus { 154 int dev_count; 155 int ioeventfd_count; 156 struct kvm_io_range range[]; 157 }; 158 159 enum kvm_bus { 160 KVM_MMIO_BUS, 161 KVM_PIO_BUS, 162 KVM_VIRTIO_CCW_NOTIFY_BUS, 163 KVM_FAST_MMIO_BUS, 164 KVM_NR_BUSES 165 }; 166 167 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 168 int len, const void *val); 169 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 170 gpa_t addr, int len, const void *val, long cookie); 171 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 172 int len, void *val); 173 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 174 int len, struct kvm_io_device *dev); 175 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 176 struct kvm_io_device *dev); 177 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 178 gpa_t addr); 179 180 #ifdef CONFIG_KVM_ASYNC_PF 181 struct kvm_async_pf { 182 struct work_struct work; 183 struct list_head link; 184 struct list_head queue; 185 struct kvm_vcpu *vcpu; 186 struct mm_struct *mm; 187 gva_t gva; 188 unsigned long addr; 189 struct kvm_arch_async_pf arch; 190 bool wakeup_all; 191 }; 192 193 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 194 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 195 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 196 struct kvm_arch_async_pf *arch); 197 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 198 #endif 199 200 enum { 201 OUTSIDE_GUEST_MODE, 202 IN_GUEST_MODE, 203 EXITING_GUEST_MODE, 204 READING_SHADOW_PAGE_TABLES, 205 }; 206 207 /* 208 * Sometimes a large or cross-page mmio needs to be broken up into separate 209 * exits for userspace servicing. 210 */ 211 struct kvm_mmio_fragment { 212 gpa_t gpa; 213 void *data; 214 unsigned len; 215 }; 216 217 struct kvm_vcpu { 218 struct kvm *kvm; 219 #ifdef CONFIG_PREEMPT_NOTIFIERS 220 struct preempt_notifier preempt_notifier; 221 #endif 222 int cpu; 223 int vcpu_id; 224 int srcu_idx; 225 int mode; 226 unsigned long requests; 227 unsigned long guest_debug; 228 229 int pre_pcpu; 230 struct list_head blocked_vcpu_list; 231 232 struct mutex mutex; 233 struct kvm_run *run; 234 235 int guest_xcr0_loaded; 236 struct swait_queue_head wq; 237 struct pid __rcu *pid; 238 int sigset_active; 239 sigset_t sigset; 240 struct kvm_vcpu_stat stat; 241 unsigned int halt_poll_ns; 242 bool valid_wakeup; 243 244 #ifdef CONFIG_HAS_IOMEM 245 int mmio_needed; 246 int mmio_read_completed; 247 int mmio_is_write; 248 int mmio_cur_fragment; 249 int mmio_nr_fragments; 250 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 251 #endif 252 253 #ifdef CONFIG_KVM_ASYNC_PF 254 struct { 255 u32 queued; 256 struct list_head queue; 257 struct list_head done; 258 spinlock_t lock; 259 } async_pf; 260 #endif 261 262 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 263 /* 264 * Cpu relax intercept or pause loop exit optimization 265 * in_spin_loop: set when a vcpu does a pause loop exit 266 * or cpu relax intercepted. 267 * dy_eligible: indicates whether vcpu is eligible for directed yield. 268 */ 269 struct { 270 bool in_spin_loop; 271 bool dy_eligible; 272 } spin_loop; 273 #endif 274 bool preempted; 275 struct kvm_vcpu_arch arch; 276 struct dentry *debugfs_dentry; 277 }; 278 279 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 280 { 281 /* 282 * The memory barrier ensures a previous write to vcpu->requests cannot 283 * be reordered with the read of vcpu->mode. It pairs with the general 284 * memory barrier following the write of vcpu->mode in VCPU RUN. 285 */ 286 smp_mb__before_atomic(); 287 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 288 } 289 290 /* 291 * Some of the bitops functions do not support too long bitmaps. 292 * This number must be determined not to exceed such limits. 293 */ 294 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 295 296 struct kvm_memory_slot { 297 gfn_t base_gfn; 298 unsigned long npages; 299 unsigned long *dirty_bitmap; 300 struct kvm_arch_memory_slot arch; 301 unsigned long userspace_addr; 302 u32 flags; 303 short id; 304 }; 305 306 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 307 { 308 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 309 } 310 311 struct kvm_s390_adapter_int { 312 u64 ind_addr; 313 u64 summary_addr; 314 u64 ind_offset; 315 u32 summary_offset; 316 u32 adapter_id; 317 }; 318 319 struct kvm_hv_sint { 320 u32 vcpu; 321 u32 sint; 322 }; 323 324 struct kvm_kernel_irq_routing_entry { 325 u32 gsi; 326 u32 type; 327 int (*set)(struct kvm_kernel_irq_routing_entry *e, 328 struct kvm *kvm, int irq_source_id, int level, 329 bool line_status); 330 union { 331 struct { 332 unsigned irqchip; 333 unsigned pin; 334 } irqchip; 335 struct { 336 u32 address_lo; 337 u32 address_hi; 338 u32 data; 339 u32 flags; 340 u32 devid; 341 } msi; 342 struct kvm_s390_adapter_int adapter; 343 struct kvm_hv_sint hv_sint; 344 }; 345 struct hlist_node link; 346 }; 347 348 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 349 struct kvm_irq_routing_table { 350 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 351 u32 nr_rt_entries; 352 /* 353 * Array indexed by gsi. Each entry contains list of irq chips 354 * the gsi is connected to. 355 */ 356 struct hlist_head map[0]; 357 }; 358 #endif 359 360 #ifndef KVM_PRIVATE_MEM_SLOTS 361 #define KVM_PRIVATE_MEM_SLOTS 0 362 #endif 363 364 #ifndef KVM_MEM_SLOTS_NUM 365 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 366 #endif 367 368 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 369 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 370 { 371 return 0; 372 } 373 #endif 374 375 /* 376 * Note: 377 * memslots are not sorted by id anymore, please use id_to_memslot() 378 * to get the memslot by its id. 379 */ 380 struct kvm_memslots { 381 u64 generation; 382 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 383 /* The mapping table from slot id to the index in memslots[]. */ 384 short id_to_index[KVM_MEM_SLOTS_NUM]; 385 atomic_t lru_slot; 386 int used_slots; 387 }; 388 389 struct kvm { 390 spinlock_t mmu_lock; 391 struct mutex slots_lock; 392 struct mm_struct *mm; /* userspace tied to this vm */ 393 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 394 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 395 396 /* 397 * created_vcpus is protected by kvm->lock, and is incremented 398 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 399 * incremented after storing the kvm_vcpu pointer in vcpus, 400 * and is accessed atomically. 401 */ 402 atomic_t online_vcpus; 403 int created_vcpus; 404 int last_boosted_vcpu; 405 struct list_head vm_list; 406 struct mutex lock; 407 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 408 #ifdef CONFIG_HAVE_KVM_EVENTFD 409 struct { 410 spinlock_t lock; 411 struct list_head items; 412 struct list_head resampler_list; 413 struct mutex resampler_lock; 414 } irqfds; 415 struct list_head ioeventfds; 416 #endif 417 struct kvm_vm_stat stat; 418 struct kvm_arch arch; 419 refcount_t users_count; 420 #ifdef CONFIG_KVM_MMIO 421 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 422 spinlock_t ring_lock; 423 struct list_head coalesced_zones; 424 #endif 425 426 struct mutex irq_lock; 427 #ifdef CONFIG_HAVE_KVM_IRQCHIP 428 /* 429 * Update side is protected by irq_lock. 430 */ 431 struct kvm_irq_routing_table __rcu *irq_routing; 432 #endif 433 #ifdef CONFIG_HAVE_KVM_IRQFD 434 struct hlist_head irq_ack_notifier_list; 435 #endif 436 437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 438 struct mmu_notifier mmu_notifier; 439 unsigned long mmu_notifier_seq; 440 long mmu_notifier_count; 441 #endif 442 long tlbs_dirty; 443 struct list_head devices; 444 struct dentry *debugfs_dentry; 445 struct kvm_stat_data **debugfs_stat_data; 446 struct srcu_struct srcu; 447 struct srcu_struct irq_srcu; 448 pid_t userspace_pid; 449 }; 450 451 #define kvm_err(fmt, ...) \ 452 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 453 #define kvm_info(fmt, ...) \ 454 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 455 #define kvm_debug(fmt, ...) \ 456 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 457 #define kvm_debug_ratelimited(fmt, ...) \ 458 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 459 ## __VA_ARGS__) 460 #define kvm_pr_unimpl(fmt, ...) \ 461 pr_err_ratelimited("kvm [%i]: " fmt, \ 462 task_tgid_nr(current), ## __VA_ARGS__) 463 464 /* The guest did something we don't support. */ 465 #define vcpu_unimpl(vcpu, fmt, ...) \ 466 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 467 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 468 469 #define vcpu_debug(vcpu, fmt, ...) \ 470 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 471 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 472 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 473 ## __VA_ARGS__) 474 #define vcpu_err(vcpu, fmt, ...) \ 475 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 476 477 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 478 { 479 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 480 lockdep_is_held(&kvm->slots_lock) || 481 !refcount_read(&kvm->users_count)); 482 } 483 484 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 485 { 486 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case 487 * the caller has read kvm->online_vcpus before (as is the case 488 * for kvm_for_each_vcpu, for example). 489 */ 490 smp_rmb(); 491 return kvm->vcpus[i]; 492 } 493 494 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 495 for (idx = 0; \ 496 idx < atomic_read(&kvm->online_vcpus) && \ 497 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 498 idx++) 499 500 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 501 { 502 struct kvm_vcpu *vcpu = NULL; 503 int i; 504 505 if (id < 0) 506 return NULL; 507 if (id < KVM_MAX_VCPUS) 508 vcpu = kvm_get_vcpu(kvm, id); 509 if (vcpu && vcpu->vcpu_id == id) 510 return vcpu; 511 kvm_for_each_vcpu(i, vcpu, kvm) 512 if (vcpu->vcpu_id == id) 513 return vcpu; 514 return NULL; 515 } 516 517 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 518 { 519 struct kvm_vcpu *tmp; 520 int idx; 521 522 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 523 if (tmp == vcpu) 524 return idx; 525 BUG(); 526 } 527 528 #define kvm_for_each_memslot(memslot, slots) \ 529 for (memslot = &slots->memslots[0]; \ 530 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 531 memslot++) 532 533 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 534 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 535 536 int __must_check vcpu_load(struct kvm_vcpu *vcpu); 537 void vcpu_put(struct kvm_vcpu *vcpu); 538 539 #ifdef __KVM_HAVE_IOAPIC 540 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 541 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 542 #else 543 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 544 { 545 } 546 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 547 { 548 } 549 #endif 550 551 #ifdef CONFIG_HAVE_KVM_IRQFD 552 int kvm_irqfd_init(void); 553 void kvm_irqfd_exit(void); 554 #else 555 static inline int kvm_irqfd_init(void) 556 { 557 return 0; 558 } 559 560 static inline void kvm_irqfd_exit(void) 561 { 562 } 563 #endif 564 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 565 struct module *module); 566 void kvm_exit(void); 567 568 void kvm_get_kvm(struct kvm *kvm); 569 void kvm_put_kvm(struct kvm *kvm); 570 571 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 572 { 573 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 574 lockdep_is_held(&kvm->slots_lock) || 575 !refcount_read(&kvm->users_count)); 576 } 577 578 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 579 { 580 return __kvm_memslots(kvm, 0); 581 } 582 583 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 584 { 585 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 586 587 return __kvm_memslots(vcpu->kvm, as_id); 588 } 589 590 static inline struct kvm_memory_slot * 591 id_to_memslot(struct kvm_memslots *slots, int id) 592 { 593 int index = slots->id_to_index[id]; 594 struct kvm_memory_slot *slot; 595 596 slot = &slots->memslots[index]; 597 598 WARN_ON(slot->id != id); 599 return slot; 600 } 601 602 /* 603 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 604 * - create a new memory slot 605 * - delete an existing memory slot 606 * - modify an existing memory slot 607 * -- move it in the guest physical memory space 608 * -- just change its flags 609 * 610 * Since flags can be changed by some of these operations, the following 611 * differentiation is the best we can do for __kvm_set_memory_region(): 612 */ 613 enum kvm_mr_change { 614 KVM_MR_CREATE, 615 KVM_MR_DELETE, 616 KVM_MR_MOVE, 617 KVM_MR_FLAGS_ONLY, 618 }; 619 620 int kvm_set_memory_region(struct kvm *kvm, 621 const struct kvm_userspace_memory_region *mem); 622 int __kvm_set_memory_region(struct kvm *kvm, 623 const struct kvm_userspace_memory_region *mem); 624 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 625 struct kvm_memory_slot *dont); 626 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 627 unsigned long npages); 628 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots); 629 int kvm_arch_prepare_memory_region(struct kvm *kvm, 630 struct kvm_memory_slot *memslot, 631 const struct kvm_userspace_memory_region *mem, 632 enum kvm_mr_change change); 633 void kvm_arch_commit_memory_region(struct kvm *kvm, 634 const struct kvm_userspace_memory_region *mem, 635 const struct kvm_memory_slot *old, 636 const struct kvm_memory_slot *new, 637 enum kvm_mr_change change); 638 bool kvm_largepages_enabled(void); 639 void kvm_disable_largepages(void); 640 /* flush all memory translations */ 641 void kvm_arch_flush_shadow_all(struct kvm *kvm); 642 /* flush memory translations pointing to 'slot' */ 643 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 644 struct kvm_memory_slot *slot); 645 646 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 647 struct page **pages, int nr_pages); 648 649 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 650 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 651 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 652 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 653 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 654 bool *writable); 655 void kvm_release_page_clean(struct page *page); 656 void kvm_release_page_dirty(struct page *page); 657 void kvm_set_page_accessed(struct page *page); 658 659 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 660 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 661 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 662 bool *writable); 663 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 664 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 665 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 666 bool atomic, bool *async, bool write_fault, 667 bool *writable); 668 669 void kvm_release_pfn_clean(kvm_pfn_t pfn); 670 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 671 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 672 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 673 void kvm_get_pfn(kvm_pfn_t pfn); 674 675 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 676 int len); 677 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 678 unsigned long len); 679 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 680 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 681 void *data, unsigned long len); 682 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 683 int offset, int len); 684 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 685 unsigned long len); 686 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 687 void *data, unsigned long len); 688 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 689 void *data, int offset, unsigned long len); 690 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 691 gpa_t gpa, unsigned long len); 692 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 693 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 694 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 695 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 696 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 697 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 698 699 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 700 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 701 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 702 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 703 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 704 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 705 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 706 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 707 int len); 708 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 709 unsigned long len); 710 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 711 unsigned long len); 712 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 713 int offset, int len); 714 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 715 unsigned long len); 716 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 717 718 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 719 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 720 721 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 722 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 723 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 724 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 725 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 726 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 727 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 728 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu); 729 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu); 730 731 void kvm_flush_remote_tlbs(struct kvm *kvm); 732 void kvm_reload_remote_mmus(struct kvm *kvm); 733 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 734 735 long kvm_arch_dev_ioctl(struct file *filp, 736 unsigned int ioctl, unsigned long arg); 737 long kvm_arch_vcpu_ioctl(struct file *filp, 738 unsigned int ioctl, unsigned long arg); 739 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 740 741 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 742 743 int kvm_get_dirty_log(struct kvm *kvm, 744 struct kvm_dirty_log *log, int *is_dirty); 745 746 int kvm_get_dirty_log_protect(struct kvm *kvm, 747 struct kvm_dirty_log *log, bool *is_dirty); 748 749 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 750 struct kvm_memory_slot *slot, 751 gfn_t gfn_offset, 752 unsigned long mask); 753 754 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 755 struct kvm_dirty_log *log); 756 757 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 758 bool line_status); 759 long kvm_arch_vm_ioctl(struct file *filp, 760 unsigned int ioctl, unsigned long arg); 761 762 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 763 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 764 765 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 766 struct kvm_translation *tr); 767 768 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 769 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 770 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 771 struct kvm_sregs *sregs); 772 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 773 struct kvm_sregs *sregs); 774 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 775 struct kvm_mp_state *mp_state); 776 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 777 struct kvm_mp_state *mp_state); 778 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 779 struct kvm_guest_debug *dbg); 780 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 781 782 int kvm_arch_init(void *opaque); 783 void kvm_arch_exit(void); 784 785 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 786 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 787 788 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 789 790 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 791 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 792 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 793 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 794 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 795 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 796 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 797 798 bool kvm_arch_has_vcpu_debugfs(void); 799 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 800 801 int kvm_arch_hardware_enable(void); 802 void kvm_arch_hardware_disable(void); 803 int kvm_arch_hardware_setup(void); 804 void kvm_arch_hardware_unsetup(void); 805 void kvm_arch_check_processor_compat(void *rtn); 806 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 807 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 808 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 809 810 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 811 static inline struct kvm *kvm_arch_alloc_vm(void) 812 { 813 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 814 } 815 816 static inline void kvm_arch_free_vm(struct kvm *kvm) 817 { 818 kfree(kvm); 819 } 820 #endif 821 822 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 823 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 824 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 825 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 826 #else 827 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 828 { 829 } 830 831 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 832 { 833 } 834 835 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 836 { 837 return false; 838 } 839 #endif 840 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 841 void kvm_arch_start_assignment(struct kvm *kvm); 842 void kvm_arch_end_assignment(struct kvm *kvm); 843 bool kvm_arch_has_assigned_device(struct kvm *kvm); 844 #else 845 static inline void kvm_arch_start_assignment(struct kvm *kvm) 846 { 847 } 848 849 static inline void kvm_arch_end_assignment(struct kvm *kvm) 850 { 851 } 852 853 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 854 { 855 return false; 856 } 857 #endif 858 859 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 860 { 861 #ifdef __KVM_HAVE_ARCH_WQP 862 return vcpu->arch.wqp; 863 #else 864 return &vcpu->wq; 865 #endif 866 } 867 868 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 869 /* 870 * returns true if the virtual interrupt controller is initialized and 871 * ready to accept virtual IRQ. On some architectures the virtual interrupt 872 * controller is dynamically instantiated and this is not always true. 873 */ 874 bool kvm_arch_intc_initialized(struct kvm *kvm); 875 #else 876 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 877 { 878 return true; 879 } 880 #endif 881 882 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 883 void kvm_arch_destroy_vm(struct kvm *kvm); 884 void kvm_arch_sync_events(struct kvm *kvm); 885 886 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 887 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 888 889 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 890 891 struct kvm_irq_ack_notifier { 892 struct hlist_node link; 893 unsigned gsi; 894 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 895 }; 896 897 int kvm_irq_map_gsi(struct kvm *kvm, 898 struct kvm_kernel_irq_routing_entry *entries, int gsi); 899 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 900 901 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 902 bool line_status); 903 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 904 int irq_source_id, int level, bool line_status); 905 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 906 struct kvm *kvm, int irq_source_id, 907 int level, bool line_status); 908 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 909 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 910 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 911 void kvm_register_irq_ack_notifier(struct kvm *kvm, 912 struct kvm_irq_ack_notifier *kian); 913 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 914 struct kvm_irq_ack_notifier *kian); 915 int kvm_request_irq_source_id(struct kvm *kvm); 916 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 917 918 /* 919 * search_memslots() and __gfn_to_memslot() are here because they are 920 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 921 * gfn_to_memslot() itself isn't here as an inline because that would 922 * bloat other code too much. 923 */ 924 static inline struct kvm_memory_slot * 925 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 926 { 927 int start = 0, end = slots->used_slots; 928 int slot = atomic_read(&slots->lru_slot); 929 struct kvm_memory_slot *memslots = slots->memslots; 930 931 if (gfn >= memslots[slot].base_gfn && 932 gfn < memslots[slot].base_gfn + memslots[slot].npages) 933 return &memslots[slot]; 934 935 while (start < end) { 936 slot = start + (end - start) / 2; 937 938 if (gfn >= memslots[slot].base_gfn) 939 end = slot; 940 else 941 start = slot + 1; 942 } 943 944 if (gfn >= memslots[start].base_gfn && 945 gfn < memslots[start].base_gfn + memslots[start].npages) { 946 atomic_set(&slots->lru_slot, start); 947 return &memslots[start]; 948 } 949 950 return NULL; 951 } 952 953 static inline struct kvm_memory_slot * 954 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 955 { 956 return search_memslots(slots, gfn); 957 } 958 959 static inline unsigned long 960 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 961 { 962 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 963 } 964 965 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 966 { 967 return gfn_to_memslot(kvm, gfn)->id; 968 } 969 970 static inline gfn_t 971 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 972 { 973 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 974 975 return slot->base_gfn + gfn_offset; 976 } 977 978 static inline gpa_t gfn_to_gpa(gfn_t gfn) 979 { 980 return (gpa_t)gfn << PAGE_SHIFT; 981 } 982 983 static inline gfn_t gpa_to_gfn(gpa_t gpa) 984 { 985 return (gfn_t)(gpa >> PAGE_SHIFT); 986 } 987 988 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 989 { 990 return (hpa_t)pfn << PAGE_SHIFT; 991 } 992 993 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 994 gpa_t gpa) 995 { 996 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 997 } 998 999 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1000 { 1001 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1002 1003 return kvm_is_error_hva(hva); 1004 } 1005 1006 enum kvm_stat_kind { 1007 KVM_STAT_VM, 1008 KVM_STAT_VCPU, 1009 }; 1010 1011 struct kvm_stat_data { 1012 int offset; 1013 struct kvm *kvm; 1014 }; 1015 1016 struct kvm_stats_debugfs_item { 1017 const char *name; 1018 int offset; 1019 enum kvm_stat_kind kind; 1020 }; 1021 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1022 extern struct dentry *kvm_debugfs_dir; 1023 1024 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1025 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1026 { 1027 if (unlikely(kvm->mmu_notifier_count)) 1028 return 1; 1029 /* 1030 * Ensure the read of mmu_notifier_count happens before the read 1031 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1032 * mmu_notifier_invalidate_range_end to make sure that the caller 1033 * either sees the old (non-zero) value of mmu_notifier_count or 1034 * the new (incremented) value of mmu_notifier_seq. 1035 * PowerPC Book3s HV KVM calls this under a per-page lock 1036 * rather than under kvm->mmu_lock, for scalability, so 1037 * can't rely on kvm->mmu_lock to keep things ordered. 1038 */ 1039 smp_rmb(); 1040 if (kvm->mmu_notifier_seq != mmu_seq) 1041 return 1; 1042 return 0; 1043 } 1044 #endif 1045 1046 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1047 1048 #ifdef CONFIG_S390 1049 #define KVM_MAX_IRQ_ROUTES 4096 //FIXME: we can have more than that... 1050 #elif defined(CONFIG_ARM64) 1051 #define KVM_MAX_IRQ_ROUTES 4096 1052 #else 1053 #define KVM_MAX_IRQ_ROUTES 1024 1054 #endif 1055 1056 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1057 int kvm_set_irq_routing(struct kvm *kvm, 1058 const struct kvm_irq_routing_entry *entries, 1059 unsigned nr, 1060 unsigned flags); 1061 int kvm_set_routing_entry(struct kvm *kvm, 1062 struct kvm_kernel_irq_routing_entry *e, 1063 const struct kvm_irq_routing_entry *ue); 1064 void kvm_free_irq_routing(struct kvm *kvm); 1065 1066 #else 1067 1068 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1069 1070 #endif 1071 1072 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1073 1074 #ifdef CONFIG_HAVE_KVM_EVENTFD 1075 1076 void kvm_eventfd_init(struct kvm *kvm); 1077 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1078 1079 #ifdef CONFIG_HAVE_KVM_IRQFD 1080 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1081 void kvm_irqfd_release(struct kvm *kvm); 1082 void kvm_irq_routing_update(struct kvm *); 1083 #else 1084 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1085 { 1086 return -EINVAL; 1087 } 1088 1089 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1090 #endif 1091 1092 #else 1093 1094 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1095 1096 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1097 { 1098 return -EINVAL; 1099 } 1100 1101 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1102 1103 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1104 static inline void kvm_irq_routing_update(struct kvm *kvm) 1105 { 1106 } 1107 #endif 1108 void kvm_arch_irq_routing_update(struct kvm *kvm); 1109 1110 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1111 { 1112 return -ENOSYS; 1113 } 1114 1115 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1116 1117 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1118 { 1119 /* 1120 * Ensure the rest of the request is published to kvm_check_request's 1121 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1122 */ 1123 smp_wmb(); 1124 set_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1125 } 1126 1127 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1128 { 1129 return READ_ONCE(vcpu->requests); 1130 } 1131 1132 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1133 { 1134 return test_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1135 } 1136 1137 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1138 { 1139 clear_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1140 } 1141 1142 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1143 { 1144 if (kvm_test_request(req, vcpu)) { 1145 kvm_clear_request(req, vcpu); 1146 1147 /* 1148 * Ensure the rest of the request is visible to kvm_check_request's 1149 * caller. Paired with the smp_wmb in kvm_make_request. 1150 */ 1151 smp_mb__after_atomic(); 1152 return true; 1153 } else { 1154 return false; 1155 } 1156 } 1157 1158 extern bool kvm_rebooting; 1159 1160 extern unsigned int halt_poll_ns; 1161 extern unsigned int halt_poll_ns_grow; 1162 extern unsigned int halt_poll_ns_shrink; 1163 1164 struct kvm_device { 1165 struct kvm_device_ops *ops; 1166 struct kvm *kvm; 1167 void *private; 1168 struct list_head vm_node; 1169 }; 1170 1171 /* create, destroy, and name are mandatory */ 1172 struct kvm_device_ops { 1173 const char *name; 1174 1175 /* 1176 * create is called holding kvm->lock and any operations not suitable 1177 * to do while holding the lock should be deferred to init (see 1178 * below). 1179 */ 1180 int (*create)(struct kvm_device *dev, u32 type); 1181 1182 /* 1183 * init is called after create if create is successful and is called 1184 * outside of holding kvm->lock. 1185 */ 1186 void (*init)(struct kvm_device *dev); 1187 1188 /* 1189 * Destroy is responsible for freeing dev. 1190 * 1191 * Destroy may be called before or after destructors are called 1192 * on emulated I/O regions, depending on whether a reference is 1193 * held by a vcpu or other kvm component that gets destroyed 1194 * after the emulated I/O. 1195 */ 1196 void (*destroy)(struct kvm_device *dev); 1197 1198 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1199 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1200 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1201 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1202 unsigned long arg); 1203 }; 1204 1205 void kvm_device_get(struct kvm_device *dev); 1206 void kvm_device_put(struct kvm_device *dev); 1207 struct kvm_device *kvm_device_from_filp(struct file *filp); 1208 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1209 void kvm_unregister_device_ops(u32 type); 1210 1211 extern struct kvm_device_ops kvm_mpic_ops; 1212 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1213 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1214 1215 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1216 1217 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1218 { 1219 vcpu->spin_loop.in_spin_loop = val; 1220 } 1221 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1222 { 1223 vcpu->spin_loop.dy_eligible = val; 1224 } 1225 1226 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1227 1228 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1229 { 1230 } 1231 1232 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1233 { 1234 } 1235 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1236 1237 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1238 bool kvm_arch_has_irq_bypass(void); 1239 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1240 struct irq_bypass_producer *); 1241 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1242 struct irq_bypass_producer *); 1243 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1244 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1245 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1246 uint32_t guest_irq, bool set); 1247 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1248 1249 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1250 /* If we wakeup during the poll time, was it a sucessful poll? */ 1251 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1252 { 1253 return vcpu->valid_wakeup; 1254 } 1255 1256 #else 1257 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1258 { 1259 return true; 1260 } 1261 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1262 1263 #endif 1264