xref: /linux-6.15/include/linux/kvm_host.h (revision df225205)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <asm/signal.h>
33 
34 #include <linux/kvm.h>
35 #include <linux/kvm_para.h>
36 
37 #include <linux/kvm_types.h>
38 
39 #include <asm/kvm_host.h>
40 #include <linux/kvm_dirty_ring.h>
41 
42 #ifndef KVM_MAX_VCPU_IDS
43 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
44 #endif
45 
46 /*
47  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
48  * in kvm, other bits are visible for userspace which are defined in
49  * include/linux/kvm_h.
50  */
51 #define KVM_MEMSLOT_INVALID	(1UL << 16)
52 
53 /*
54  * Bit 63 of the memslot generation number is an "update in-progress flag",
55  * e.g. is temporarily set for the duration of install_new_memslots().
56  * This flag effectively creates a unique generation number that is used to
57  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
58  * i.e. may (or may not) have come from the previous memslots generation.
59  *
60  * This is necessary because the actual memslots update is not atomic with
61  * respect to the generation number update.  Updating the generation number
62  * first would allow a vCPU to cache a spte from the old memslots using the
63  * new generation number, and updating the generation number after switching
64  * to the new memslots would allow cache hits using the old generation number
65  * to reference the defunct memslots.
66  *
67  * This mechanism is used to prevent getting hits in KVM's caches while a
68  * memslot update is in-progress, and to prevent cache hits *after* updating
69  * the actual generation number against accesses that were inserted into the
70  * cache *before* the memslots were updated.
71  */
72 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
73 
74 /* Two fragments for cross MMIO pages. */
75 #define KVM_MAX_MMIO_FRAGMENTS	2
76 
77 #ifndef KVM_ADDRESS_SPACE_NUM
78 #define KVM_ADDRESS_SPACE_NUM	1
79 #endif
80 
81 /*
82  * For the normal pfn, the highest 12 bits should be zero,
83  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
84  * mask bit 63 to indicate the noslot pfn.
85  */
86 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
87 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
88 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
89 
90 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
91 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
92 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
93 
94 /*
95  * error pfns indicate that the gfn is in slot but faild to
96  * translate it to pfn on host.
97  */
98 static inline bool is_error_pfn(kvm_pfn_t pfn)
99 {
100 	return !!(pfn & KVM_PFN_ERR_MASK);
101 }
102 
103 /*
104  * error_noslot pfns indicate that the gfn can not be
105  * translated to pfn - it is not in slot or failed to
106  * translate it to pfn.
107  */
108 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
109 {
110 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
111 }
112 
113 /* noslot pfn indicates that the gfn is not in slot. */
114 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
115 {
116 	return pfn == KVM_PFN_NOSLOT;
117 }
118 
119 /*
120  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
121  * provide own defines and kvm_is_error_hva
122  */
123 #ifndef KVM_HVA_ERR_BAD
124 
125 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
126 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
127 
128 static inline bool kvm_is_error_hva(unsigned long addr)
129 {
130 	return addr >= PAGE_OFFSET;
131 }
132 
133 #endif
134 
135 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
136 
137 static inline bool is_error_page(struct page *page)
138 {
139 	return IS_ERR(page);
140 }
141 
142 #define KVM_REQUEST_MASK           GENMASK(7,0)
143 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
144 #define KVM_REQUEST_WAIT           BIT(9)
145 /*
146  * Architecture-independent vcpu->requests bit members
147  * Bits 4-7 are reserved for more arch-independent bits.
148  */
149 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
151 #define KVM_REQ_UNBLOCK           2
152 #define KVM_REQ_UNHALT            3
153 #define KVM_REQ_VM_BUGGED         (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
154 #define KVM_REQUEST_ARCH_BASE     8
155 
156 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
157 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
158 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
159 })
160 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
161 
162 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
163 				 unsigned long *vcpu_bitmap);
164 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
165 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
166 				      struct kvm_vcpu *except);
167 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
168 				unsigned long *vcpu_bitmap);
169 
170 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
171 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
172 
173 extern struct mutex kvm_lock;
174 extern struct list_head vm_list;
175 
176 struct kvm_io_range {
177 	gpa_t addr;
178 	int len;
179 	struct kvm_io_device *dev;
180 };
181 
182 #define NR_IOBUS_DEVS 1000
183 
184 struct kvm_io_bus {
185 	int dev_count;
186 	int ioeventfd_count;
187 	struct kvm_io_range range[];
188 };
189 
190 enum kvm_bus {
191 	KVM_MMIO_BUS,
192 	KVM_PIO_BUS,
193 	KVM_VIRTIO_CCW_NOTIFY_BUS,
194 	KVM_FAST_MMIO_BUS,
195 	KVM_NR_BUSES
196 };
197 
198 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
199 		     int len, const void *val);
200 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
201 			    gpa_t addr, int len, const void *val, long cookie);
202 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
203 		    int len, void *val);
204 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
205 			    int len, struct kvm_io_device *dev);
206 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
207 			      struct kvm_io_device *dev);
208 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
209 					 gpa_t addr);
210 
211 #ifdef CONFIG_KVM_ASYNC_PF
212 struct kvm_async_pf {
213 	struct work_struct work;
214 	struct list_head link;
215 	struct list_head queue;
216 	struct kvm_vcpu *vcpu;
217 	struct mm_struct *mm;
218 	gpa_t cr2_or_gpa;
219 	unsigned long addr;
220 	struct kvm_arch_async_pf arch;
221 	bool   wakeup_all;
222 	bool notpresent_injected;
223 };
224 
225 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
226 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
227 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
228 			unsigned long hva, struct kvm_arch_async_pf *arch);
229 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
230 #endif
231 
232 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
233 struct kvm_gfn_range {
234 	struct kvm_memory_slot *slot;
235 	gfn_t start;
236 	gfn_t end;
237 	pte_t pte;
238 	bool may_block;
239 };
240 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
241 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
242 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
243 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
244 #endif
245 
246 enum {
247 	OUTSIDE_GUEST_MODE,
248 	IN_GUEST_MODE,
249 	EXITING_GUEST_MODE,
250 	READING_SHADOW_PAGE_TABLES,
251 };
252 
253 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
254 
255 struct kvm_host_map {
256 	/*
257 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
258 	 * a 'struct page' for it. When using mem= kernel parameter some memory
259 	 * can be used as guest memory but they are not managed by host
260 	 * kernel).
261 	 * If 'pfn' is not managed by the host kernel, this field is
262 	 * initialized to KVM_UNMAPPED_PAGE.
263 	 */
264 	struct page *page;
265 	void *hva;
266 	kvm_pfn_t pfn;
267 	kvm_pfn_t gfn;
268 };
269 
270 /*
271  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
272  * directly to check for that.
273  */
274 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
275 {
276 	return !!map->hva;
277 }
278 
279 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
280 {
281 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
282 }
283 
284 /*
285  * Sometimes a large or cross-page mmio needs to be broken up into separate
286  * exits for userspace servicing.
287  */
288 struct kvm_mmio_fragment {
289 	gpa_t gpa;
290 	void *data;
291 	unsigned len;
292 };
293 
294 struct kvm_vcpu {
295 	struct kvm *kvm;
296 #ifdef CONFIG_PREEMPT_NOTIFIERS
297 	struct preempt_notifier preempt_notifier;
298 #endif
299 	int cpu;
300 	int vcpu_id; /* id given by userspace at creation */
301 	int vcpu_idx; /* index in kvm->vcpus array */
302 	int srcu_idx;
303 	int mode;
304 	u64 requests;
305 	unsigned long guest_debug;
306 
307 	int pre_pcpu;
308 	struct list_head blocked_vcpu_list;
309 
310 	struct mutex mutex;
311 	struct kvm_run *run;
312 
313 	struct rcuwait wait;
314 	struct pid __rcu *pid;
315 	int sigset_active;
316 	sigset_t sigset;
317 	unsigned int halt_poll_ns;
318 	bool valid_wakeup;
319 
320 #ifdef CONFIG_HAS_IOMEM
321 	int mmio_needed;
322 	int mmio_read_completed;
323 	int mmio_is_write;
324 	int mmio_cur_fragment;
325 	int mmio_nr_fragments;
326 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
327 #endif
328 
329 #ifdef CONFIG_KVM_ASYNC_PF
330 	struct {
331 		u32 queued;
332 		struct list_head queue;
333 		struct list_head done;
334 		spinlock_t lock;
335 	} async_pf;
336 #endif
337 
338 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
339 	/*
340 	 * Cpu relax intercept or pause loop exit optimization
341 	 * in_spin_loop: set when a vcpu does a pause loop exit
342 	 *  or cpu relax intercepted.
343 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
344 	 */
345 	struct {
346 		bool in_spin_loop;
347 		bool dy_eligible;
348 	} spin_loop;
349 #endif
350 	bool preempted;
351 	bool ready;
352 	struct kvm_vcpu_arch arch;
353 	struct kvm_vcpu_stat stat;
354 	char stats_id[KVM_STATS_NAME_SIZE];
355 	struct kvm_dirty_ring dirty_ring;
356 
357 	/*
358 	 * The index of the most recently used memslot by this vCPU. It's ok
359 	 * if this becomes stale due to memslot changes since we always check
360 	 * it is a valid slot.
361 	 */
362 	int last_used_slot;
363 };
364 
365 /* must be called with irqs disabled */
366 static __always_inline void guest_enter_irqoff(void)
367 {
368 	/*
369 	 * This is running in ioctl context so its safe to assume that it's the
370 	 * stime pending cputime to flush.
371 	 */
372 	instrumentation_begin();
373 	vtime_account_guest_enter();
374 	instrumentation_end();
375 
376 	/*
377 	 * KVM does not hold any references to rcu protected data when it
378 	 * switches CPU into a guest mode. In fact switching to a guest mode
379 	 * is very similar to exiting to userspace from rcu point of view. In
380 	 * addition CPU may stay in a guest mode for quite a long time (up to
381 	 * one time slice). Lets treat guest mode as quiescent state, just like
382 	 * we do with user-mode execution.
383 	 */
384 	if (!context_tracking_guest_enter()) {
385 		instrumentation_begin();
386 		rcu_virt_note_context_switch(smp_processor_id());
387 		instrumentation_end();
388 	}
389 }
390 
391 static __always_inline void guest_exit_irqoff(void)
392 {
393 	context_tracking_guest_exit();
394 
395 	instrumentation_begin();
396 	/* Flush the guest cputime we spent on the guest */
397 	vtime_account_guest_exit();
398 	instrumentation_end();
399 }
400 
401 static inline void guest_exit(void)
402 {
403 	unsigned long flags;
404 
405 	local_irq_save(flags);
406 	guest_exit_irqoff();
407 	local_irq_restore(flags);
408 }
409 
410 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
411 {
412 	/*
413 	 * The memory barrier ensures a previous write to vcpu->requests cannot
414 	 * be reordered with the read of vcpu->mode.  It pairs with the general
415 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
416 	 */
417 	smp_mb__before_atomic();
418 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
419 }
420 
421 /*
422  * Some of the bitops functions do not support too long bitmaps.
423  * This number must be determined not to exceed such limits.
424  */
425 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
426 
427 struct kvm_memory_slot {
428 	gfn_t base_gfn;
429 	unsigned long npages;
430 	unsigned long *dirty_bitmap;
431 	struct kvm_arch_memory_slot arch;
432 	unsigned long userspace_addr;
433 	u32 flags;
434 	short id;
435 	u16 as_id;
436 };
437 
438 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
439 {
440 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
441 }
442 
443 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
444 {
445 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
446 }
447 
448 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
449 {
450 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
451 
452 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
453 }
454 
455 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
456 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
457 #endif
458 
459 struct kvm_s390_adapter_int {
460 	u64 ind_addr;
461 	u64 summary_addr;
462 	u64 ind_offset;
463 	u32 summary_offset;
464 	u32 adapter_id;
465 };
466 
467 struct kvm_hv_sint {
468 	u32 vcpu;
469 	u32 sint;
470 };
471 
472 struct kvm_kernel_irq_routing_entry {
473 	u32 gsi;
474 	u32 type;
475 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
476 		   struct kvm *kvm, int irq_source_id, int level,
477 		   bool line_status);
478 	union {
479 		struct {
480 			unsigned irqchip;
481 			unsigned pin;
482 		} irqchip;
483 		struct {
484 			u32 address_lo;
485 			u32 address_hi;
486 			u32 data;
487 			u32 flags;
488 			u32 devid;
489 		} msi;
490 		struct kvm_s390_adapter_int adapter;
491 		struct kvm_hv_sint hv_sint;
492 	};
493 	struct hlist_node link;
494 };
495 
496 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
497 struct kvm_irq_routing_table {
498 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
499 	u32 nr_rt_entries;
500 	/*
501 	 * Array indexed by gsi. Each entry contains list of irq chips
502 	 * the gsi is connected to.
503 	 */
504 	struct hlist_head map[];
505 };
506 #endif
507 
508 #ifndef KVM_PRIVATE_MEM_SLOTS
509 #define KVM_PRIVATE_MEM_SLOTS 0
510 #endif
511 
512 #define KVM_MEM_SLOTS_NUM SHRT_MAX
513 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
514 
515 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
516 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
517 {
518 	return 0;
519 }
520 #endif
521 
522 /*
523  * Note:
524  * memslots are not sorted by id anymore, please use id_to_memslot()
525  * to get the memslot by its id.
526  */
527 struct kvm_memslots {
528 	u64 generation;
529 	/* The mapping table from slot id to the index in memslots[]. */
530 	short id_to_index[KVM_MEM_SLOTS_NUM];
531 	atomic_t last_used_slot;
532 	int used_slots;
533 	struct kvm_memory_slot memslots[];
534 };
535 
536 struct kvm {
537 #ifdef KVM_HAVE_MMU_RWLOCK
538 	rwlock_t mmu_lock;
539 #else
540 	spinlock_t mmu_lock;
541 #endif /* KVM_HAVE_MMU_RWLOCK */
542 
543 	struct mutex slots_lock;
544 
545 	/*
546 	 * Protects the arch-specific fields of struct kvm_memory_slots in
547 	 * use by the VM. To be used under the slots_lock (above) or in a
548 	 * kvm->srcu critical section where acquiring the slots_lock would
549 	 * lead to deadlock with the synchronize_srcu in
550 	 * install_new_memslots.
551 	 */
552 	struct mutex slots_arch_lock;
553 	struct mm_struct *mm; /* userspace tied to this vm */
554 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
555 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
556 
557 	/* Used to wait for completion of MMU notifiers.  */
558 	spinlock_t mn_invalidate_lock;
559 	unsigned long mn_active_invalidate_count;
560 	struct rcuwait mn_memslots_update_rcuwait;
561 
562 	/*
563 	 * created_vcpus is protected by kvm->lock, and is incremented
564 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
565 	 * incremented after storing the kvm_vcpu pointer in vcpus,
566 	 * and is accessed atomically.
567 	 */
568 	atomic_t online_vcpus;
569 	int created_vcpus;
570 	int last_boosted_vcpu;
571 	struct list_head vm_list;
572 	struct mutex lock;
573 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
574 #ifdef CONFIG_HAVE_KVM_EVENTFD
575 	struct {
576 		spinlock_t        lock;
577 		struct list_head  items;
578 		struct list_head  resampler_list;
579 		struct mutex      resampler_lock;
580 	} irqfds;
581 	struct list_head ioeventfds;
582 #endif
583 	struct kvm_vm_stat stat;
584 	struct kvm_arch arch;
585 	refcount_t users_count;
586 #ifdef CONFIG_KVM_MMIO
587 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
588 	spinlock_t ring_lock;
589 	struct list_head coalesced_zones;
590 #endif
591 
592 	struct mutex irq_lock;
593 #ifdef CONFIG_HAVE_KVM_IRQCHIP
594 	/*
595 	 * Update side is protected by irq_lock.
596 	 */
597 	struct kvm_irq_routing_table __rcu *irq_routing;
598 #endif
599 #ifdef CONFIG_HAVE_KVM_IRQFD
600 	struct hlist_head irq_ack_notifier_list;
601 #endif
602 
603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 	struct mmu_notifier mmu_notifier;
605 	unsigned long mmu_notifier_seq;
606 	long mmu_notifier_count;
607 	unsigned long mmu_notifier_range_start;
608 	unsigned long mmu_notifier_range_end;
609 #endif
610 	struct list_head devices;
611 	u64 manual_dirty_log_protect;
612 	struct dentry *debugfs_dentry;
613 	struct kvm_stat_data **debugfs_stat_data;
614 	struct srcu_struct srcu;
615 	struct srcu_struct irq_srcu;
616 	pid_t userspace_pid;
617 	unsigned int max_halt_poll_ns;
618 	u32 dirty_ring_size;
619 	bool vm_bugged;
620 
621 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
622 	struct notifier_block pm_notifier;
623 #endif
624 	char stats_id[KVM_STATS_NAME_SIZE];
625 };
626 
627 #define kvm_err(fmt, ...) \
628 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
629 #define kvm_info(fmt, ...) \
630 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
631 #define kvm_debug(fmt, ...) \
632 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
633 #define kvm_debug_ratelimited(fmt, ...) \
634 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
635 			     ## __VA_ARGS__)
636 #define kvm_pr_unimpl(fmt, ...) \
637 	pr_err_ratelimited("kvm [%i]: " fmt, \
638 			   task_tgid_nr(current), ## __VA_ARGS__)
639 
640 /* The guest did something we don't support. */
641 #define vcpu_unimpl(vcpu, fmt, ...)					\
642 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
643 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
644 
645 #define vcpu_debug(vcpu, fmt, ...)					\
646 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
647 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
648 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
649 			      ## __VA_ARGS__)
650 #define vcpu_err(vcpu, fmt, ...)					\
651 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
652 
653 static inline void kvm_vm_bugged(struct kvm *kvm)
654 {
655 	kvm->vm_bugged = true;
656 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_BUGGED);
657 }
658 
659 #define KVM_BUG(cond, kvm, fmt...)				\
660 ({								\
661 	int __ret = (cond);					\
662 								\
663 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
664 		kvm_vm_bugged(kvm);				\
665 	unlikely(__ret);					\
666 })
667 
668 #define KVM_BUG_ON(cond, kvm)					\
669 ({								\
670 	int __ret = (cond);					\
671 								\
672 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
673 		kvm_vm_bugged(kvm);				\
674 	unlikely(__ret);					\
675 })
676 
677 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
678 {
679 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
680 }
681 
682 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
683 {
684 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
685 				      lockdep_is_held(&kvm->slots_lock) ||
686 				      !refcount_read(&kvm->users_count));
687 }
688 
689 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
690 {
691 	int num_vcpus = atomic_read(&kvm->online_vcpus);
692 	i = array_index_nospec(i, num_vcpus);
693 
694 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
695 	smp_rmb();
696 	return kvm->vcpus[i];
697 }
698 
699 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
700 	for (idx = 0; \
701 	     idx < atomic_read(&kvm->online_vcpus) && \
702 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
703 	     idx++)
704 
705 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
706 {
707 	struct kvm_vcpu *vcpu = NULL;
708 	int i;
709 
710 	if (id < 0)
711 		return NULL;
712 	if (id < KVM_MAX_VCPUS)
713 		vcpu = kvm_get_vcpu(kvm, id);
714 	if (vcpu && vcpu->vcpu_id == id)
715 		return vcpu;
716 	kvm_for_each_vcpu(i, vcpu, kvm)
717 		if (vcpu->vcpu_id == id)
718 			return vcpu;
719 	return NULL;
720 }
721 
722 #define kvm_for_each_memslot(memslot, slots)				\
723 	for (memslot = &slots->memslots[0];				\
724 	     memslot < slots->memslots + slots->used_slots; memslot++)	\
725 		if (WARN_ON_ONCE(!memslot->npages)) {			\
726 		} else
727 
728 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
729 
730 void vcpu_load(struct kvm_vcpu *vcpu);
731 void vcpu_put(struct kvm_vcpu *vcpu);
732 
733 #ifdef __KVM_HAVE_IOAPIC
734 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
735 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
736 #else
737 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
738 {
739 }
740 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
741 {
742 }
743 #endif
744 
745 #ifdef CONFIG_HAVE_KVM_IRQFD
746 int kvm_irqfd_init(void);
747 void kvm_irqfd_exit(void);
748 #else
749 static inline int kvm_irqfd_init(void)
750 {
751 	return 0;
752 }
753 
754 static inline void kvm_irqfd_exit(void)
755 {
756 }
757 #endif
758 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
759 		  struct module *module);
760 void kvm_exit(void);
761 
762 void kvm_get_kvm(struct kvm *kvm);
763 bool kvm_get_kvm_safe(struct kvm *kvm);
764 void kvm_put_kvm(struct kvm *kvm);
765 bool file_is_kvm(struct file *file);
766 void kvm_put_kvm_no_destroy(struct kvm *kvm);
767 
768 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
769 {
770 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
771 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
772 			lockdep_is_held(&kvm->slots_lock) ||
773 			!refcount_read(&kvm->users_count));
774 }
775 
776 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
777 {
778 	return __kvm_memslots(kvm, 0);
779 }
780 
781 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
782 {
783 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
784 
785 	return __kvm_memslots(vcpu->kvm, as_id);
786 }
787 
788 static inline
789 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
790 {
791 	int index = slots->id_to_index[id];
792 	struct kvm_memory_slot *slot;
793 
794 	if (index < 0)
795 		return NULL;
796 
797 	slot = &slots->memslots[index];
798 
799 	WARN_ON(slot->id != id);
800 	return slot;
801 }
802 
803 /*
804  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
805  * - create a new memory slot
806  * - delete an existing memory slot
807  * - modify an existing memory slot
808  *   -- move it in the guest physical memory space
809  *   -- just change its flags
810  *
811  * Since flags can be changed by some of these operations, the following
812  * differentiation is the best we can do for __kvm_set_memory_region():
813  */
814 enum kvm_mr_change {
815 	KVM_MR_CREATE,
816 	KVM_MR_DELETE,
817 	KVM_MR_MOVE,
818 	KVM_MR_FLAGS_ONLY,
819 };
820 
821 int kvm_set_memory_region(struct kvm *kvm,
822 			  const struct kvm_userspace_memory_region *mem);
823 int __kvm_set_memory_region(struct kvm *kvm,
824 			    const struct kvm_userspace_memory_region *mem);
825 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
826 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
827 int kvm_arch_prepare_memory_region(struct kvm *kvm,
828 				struct kvm_memory_slot *memslot,
829 				const struct kvm_userspace_memory_region *mem,
830 				enum kvm_mr_change change);
831 void kvm_arch_commit_memory_region(struct kvm *kvm,
832 				const struct kvm_userspace_memory_region *mem,
833 				struct kvm_memory_slot *old,
834 				const struct kvm_memory_slot *new,
835 				enum kvm_mr_change change);
836 /* flush all memory translations */
837 void kvm_arch_flush_shadow_all(struct kvm *kvm);
838 /* flush memory translations pointing to 'slot' */
839 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
840 				   struct kvm_memory_slot *slot);
841 
842 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
843 			    struct page **pages, int nr_pages);
844 
845 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
846 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
847 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
848 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
849 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
850 				      bool *writable);
851 void kvm_release_page_clean(struct page *page);
852 void kvm_release_page_dirty(struct page *page);
853 void kvm_set_page_accessed(struct page *page);
854 
855 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
856 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
857 		      bool *writable);
858 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
859 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
860 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
861 			       bool atomic, bool *async, bool write_fault,
862 			       bool *writable, hva_t *hva);
863 
864 void kvm_release_pfn_clean(kvm_pfn_t pfn);
865 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
866 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
867 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
868 
869 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
870 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
871 			int len);
872 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
873 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
874 			   void *data, unsigned long len);
875 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
876 				 void *data, unsigned int offset,
877 				 unsigned long len);
878 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
879 			 int offset, int len);
880 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
881 		    unsigned long len);
882 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
883 			   void *data, unsigned long len);
884 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
885 				  void *data, unsigned int offset,
886 				  unsigned long len);
887 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
888 			      gpa_t gpa, unsigned long len);
889 
890 #define __kvm_get_guest(kvm, gfn, offset, v)				\
891 ({									\
892 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
893 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
894 	int __ret = -EFAULT;						\
895 									\
896 	if (!kvm_is_error_hva(__addr))					\
897 		__ret = get_user(v, __uaddr);				\
898 	__ret;								\
899 })
900 
901 #define kvm_get_guest(kvm, gpa, v)					\
902 ({									\
903 	gpa_t __gpa = gpa;						\
904 	struct kvm *__kvm = kvm;					\
905 									\
906 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
907 			offset_in_page(__gpa), v);			\
908 })
909 
910 #define __kvm_put_guest(kvm, gfn, offset, v)				\
911 ({									\
912 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
913 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
914 	int __ret = -EFAULT;						\
915 									\
916 	if (!kvm_is_error_hva(__addr))					\
917 		__ret = put_user(v, __uaddr);				\
918 	if (!__ret)							\
919 		mark_page_dirty(kvm, gfn);				\
920 	__ret;								\
921 })
922 
923 #define kvm_put_guest(kvm, gpa, v)					\
924 ({									\
925 	gpa_t __gpa = gpa;						\
926 	struct kvm *__kvm = kvm;					\
927 									\
928 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
929 			offset_in_page(__gpa), v);			\
930 })
931 
932 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
933 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
934 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
935 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
936 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
937 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
938 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
939 
940 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
941 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
942 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
943 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
944 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
945 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
946 		struct gfn_to_pfn_cache *cache, bool atomic);
947 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
948 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
949 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
950 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
951 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
952 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
953 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
954 			     int len);
955 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
956 			       unsigned long len);
957 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
958 			unsigned long len);
959 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
960 			      int offset, int len);
961 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
962 			 unsigned long len);
963 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
964 
965 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
966 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
967 
968 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
969 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
970 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
971 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
972 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
973 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
974 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
975 
976 void kvm_flush_remote_tlbs(struct kvm *kvm);
977 void kvm_reload_remote_mmus(struct kvm *kvm);
978 
979 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
980 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
981 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
982 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
983 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
984 #endif
985 
986 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
987 				   unsigned long end);
988 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
989 				   unsigned long end);
990 
991 long kvm_arch_dev_ioctl(struct file *filp,
992 			unsigned int ioctl, unsigned long arg);
993 long kvm_arch_vcpu_ioctl(struct file *filp,
994 			 unsigned int ioctl, unsigned long arg);
995 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
996 
997 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
998 
999 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1000 					struct kvm_memory_slot *slot,
1001 					gfn_t gfn_offset,
1002 					unsigned long mask);
1003 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1004 
1005 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1006 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1007 					const struct kvm_memory_slot *memslot);
1008 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1009 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1010 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1011 		      int *is_dirty, struct kvm_memory_slot **memslot);
1012 #endif
1013 
1014 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1015 			bool line_status);
1016 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1017 			    struct kvm_enable_cap *cap);
1018 long kvm_arch_vm_ioctl(struct file *filp,
1019 		       unsigned int ioctl, unsigned long arg);
1020 
1021 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1022 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1023 
1024 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1025 				    struct kvm_translation *tr);
1026 
1027 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1028 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1029 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1030 				  struct kvm_sregs *sregs);
1031 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1032 				  struct kvm_sregs *sregs);
1033 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1034 				    struct kvm_mp_state *mp_state);
1035 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1036 				    struct kvm_mp_state *mp_state);
1037 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1038 					struct kvm_guest_debug *dbg);
1039 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1040 
1041 int kvm_arch_init(void *opaque);
1042 void kvm_arch_exit(void);
1043 
1044 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1045 
1046 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1047 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1048 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1049 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1050 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1051 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1052 
1053 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1054 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1055 #endif
1056 
1057 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1058 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1059 #endif
1060 
1061 int kvm_arch_hardware_enable(void);
1062 void kvm_arch_hardware_disable(void);
1063 int kvm_arch_hardware_setup(void *opaque);
1064 void kvm_arch_hardware_unsetup(void);
1065 int kvm_arch_check_processor_compat(void *opaque);
1066 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1067 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1068 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1069 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1070 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1071 int kvm_arch_post_init_vm(struct kvm *kvm);
1072 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1073 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1074 
1075 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1076 /*
1077  * All architectures that want to use vzalloc currently also
1078  * need their own kvm_arch_alloc_vm implementation.
1079  */
1080 static inline struct kvm *kvm_arch_alloc_vm(void)
1081 {
1082 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1083 }
1084 #endif
1085 
1086 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1087 {
1088 	kvfree(kvm);
1089 }
1090 
1091 #ifndef __KVM_HAVE_ARCH_VM_FREE
1092 static inline void kvm_arch_free_vm(struct kvm *kvm)
1093 {
1094 	__kvm_arch_free_vm(kvm);
1095 }
1096 #endif
1097 
1098 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1099 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1100 {
1101 	return -ENOTSUPP;
1102 }
1103 #endif
1104 
1105 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1106 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1107 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1108 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1109 #else
1110 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1111 {
1112 }
1113 
1114 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1115 {
1116 }
1117 
1118 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1119 {
1120 	return false;
1121 }
1122 #endif
1123 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1124 void kvm_arch_start_assignment(struct kvm *kvm);
1125 void kvm_arch_end_assignment(struct kvm *kvm);
1126 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1127 #else
1128 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1129 {
1130 }
1131 
1132 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1133 {
1134 }
1135 
1136 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1137 {
1138 	return false;
1139 }
1140 #endif
1141 
1142 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1143 {
1144 #ifdef __KVM_HAVE_ARCH_WQP
1145 	return vcpu->arch.waitp;
1146 #else
1147 	return &vcpu->wait;
1148 #endif
1149 }
1150 
1151 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1152 /*
1153  * returns true if the virtual interrupt controller is initialized and
1154  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1155  * controller is dynamically instantiated and this is not always true.
1156  */
1157 bool kvm_arch_intc_initialized(struct kvm *kvm);
1158 #else
1159 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1160 {
1161 	return true;
1162 }
1163 #endif
1164 
1165 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1166 void kvm_arch_destroy_vm(struct kvm *kvm);
1167 void kvm_arch_sync_events(struct kvm *kvm);
1168 
1169 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1170 
1171 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1172 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1173 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1174 
1175 struct kvm_irq_ack_notifier {
1176 	struct hlist_node link;
1177 	unsigned gsi;
1178 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1179 };
1180 
1181 int kvm_irq_map_gsi(struct kvm *kvm,
1182 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1183 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1184 
1185 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1186 		bool line_status);
1187 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1188 		int irq_source_id, int level, bool line_status);
1189 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1190 			       struct kvm *kvm, int irq_source_id,
1191 			       int level, bool line_status);
1192 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1193 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1194 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1195 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1196 				   struct kvm_irq_ack_notifier *kian);
1197 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1198 				   struct kvm_irq_ack_notifier *kian);
1199 int kvm_request_irq_source_id(struct kvm *kvm);
1200 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1201 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1202 
1203 /*
1204  * Returns a pointer to the memslot at slot_index if it contains gfn.
1205  * Otherwise returns NULL.
1206  */
1207 static inline struct kvm_memory_slot *
1208 try_get_memslot(struct kvm_memslots *slots, int slot_index, gfn_t gfn)
1209 {
1210 	struct kvm_memory_slot *slot;
1211 
1212 	if (slot_index < 0 || slot_index >= slots->used_slots)
1213 		return NULL;
1214 
1215 	/*
1216 	 * slot_index can come from vcpu->last_used_slot which is not kept
1217 	 * in sync with userspace-controllable memslot deletion. So use nospec
1218 	 * to prevent the CPU from speculating past the end of memslots[].
1219 	 */
1220 	slot_index = array_index_nospec(slot_index, slots->used_slots);
1221 	slot = &slots->memslots[slot_index];
1222 
1223 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1224 		return slot;
1225 	else
1226 		return NULL;
1227 }
1228 
1229 /*
1230  * Returns a pointer to the memslot that contains gfn and records the index of
1231  * the slot in index. Otherwise returns NULL.
1232  *
1233  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1234  */
1235 static inline struct kvm_memory_slot *
1236 search_memslots(struct kvm_memslots *slots, gfn_t gfn, int *index)
1237 {
1238 	int start = 0, end = slots->used_slots;
1239 	struct kvm_memory_slot *memslots = slots->memslots;
1240 	struct kvm_memory_slot *slot;
1241 
1242 	if (unlikely(!slots->used_slots))
1243 		return NULL;
1244 
1245 	while (start < end) {
1246 		int slot = start + (end - start) / 2;
1247 
1248 		if (gfn >= memslots[slot].base_gfn)
1249 			end = slot;
1250 		else
1251 			start = slot + 1;
1252 	}
1253 
1254 	slot = try_get_memslot(slots, start, gfn);
1255 	if (slot) {
1256 		*index = start;
1257 		return slot;
1258 	}
1259 
1260 	return NULL;
1261 }
1262 
1263 /*
1264  * __gfn_to_memslot() and its descendants are here because it is called from
1265  * non-modular code in arch/powerpc/kvm/book3s_64_vio{,_hv}.c. gfn_to_memslot()
1266  * itself isn't here as an inline because that would bloat other code too much.
1267  */
1268 static inline struct kvm_memory_slot *
1269 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1270 {
1271 	struct kvm_memory_slot *slot;
1272 	int slot_index = atomic_read(&slots->last_used_slot);
1273 
1274 	slot = try_get_memslot(slots, slot_index, gfn);
1275 	if (slot)
1276 		return slot;
1277 
1278 	slot = search_memslots(slots, gfn, &slot_index);
1279 	if (slot) {
1280 		atomic_set(&slots->last_used_slot, slot_index);
1281 		return slot;
1282 	}
1283 
1284 	return NULL;
1285 }
1286 
1287 static inline unsigned long
1288 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1289 {
1290 	/*
1291 	 * The index was checked originally in search_memslots.  To avoid
1292 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1293 	 * table walks, do not let the processor speculate loads outside
1294 	 * the guest's registered memslots.
1295 	 */
1296 	unsigned long offset = gfn - slot->base_gfn;
1297 	offset = array_index_nospec(offset, slot->npages);
1298 	return slot->userspace_addr + offset * PAGE_SIZE;
1299 }
1300 
1301 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1302 {
1303 	return gfn_to_memslot(kvm, gfn)->id;
1304 }
1305 
1306 static inline gfn_t
1307 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1308 {
1309 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1310 
1311 	return slot->base_gfn + gfn_offset;
1312 }
1313 
1314 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1315 {
1316 	return (gpa_t)gfn << PAGE_SHIFT;
1317 }
1318 
1319 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1320 {
1321 	return (gfn_t)(gpa >> PAGE_SHIFT);
1322 }
1323 
1324 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1325 {
1326 	return (hpa_t)pfn << PAGE_SHIFT;
1327 }
1328 
1329 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1330 						gpa_t gpa)
1331 {
1332 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1333 }
1334 
1335 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1336 {
1337 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1338 
1339 	return kvm_is_error_hva(hva);
1340 }
1341 
1342 enum kvm_stat_kind {
1343 	KVM_STAT_VM,
1344 	KVM_STAT_VCPU,
1345 };
1346 
1347 struct kvm_stat_data {
1348 	struct kvm *kvm;
1349 	const struct _kvm_stats_desc *desc;
1350 	enum kvm_stat_kind kind;
1351 };
1352 
1353 struct _kvm_stats_desc {
1354 	struct kvm_stats_desc desc;
1355 	char name[KVM_STATS_NAME_SIZE];
1356 };
1357 
1358 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1359 	.flags = type | unit | base |					       \
1360 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1361 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1362 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1363 	.exponent = exp,						       \
1364 	.size = sz,							       \
1365 	.bucket_size = bsz
1366 
1367 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1368 	{								       \
1369 		{							       \
1370 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1371 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1372 		},							       \
1373 		.name = #stat,						       \
1374 	}
1375 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1376 	{								       \
1377 		{							       \
1378 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1379 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1380 		},							       \
1381 		.name = #stat,						       \
1382 	}
1383 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1384 	{								       \
1385 		{							       \
1386 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1387 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1388 		},							       \
1389 		.name = #stat,						       \
1390 	}
1391 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1392 	{								       \
1393 		{							       \
1394 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1395 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1396 		},							       \
1397 		.name = #stat,						       \
1398 	}
1399 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1400 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1401 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1402 
1403 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1404 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1405 		unit, base, exponent, 1, 0)
1406 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1407 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1408 		unit, base, exponent, 1, 0)
1409 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1410 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1411 		unit, base, exponent, 1, 0)
1412 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1413 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1414 		unit, base, exponent, sz, bsz)
1415 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1416 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1417 		unit, base, exponent, sz, 0)
1418 
1419 /* Cumulative counter, read/write */
1420 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1421 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1422 		KVM_STATS_BASE_POW10, 0)
1423 /* Instantaneous counter, read only */
1424 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1425 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1426 		KVM_STATS_BASE_POW10, 0)
1427 /* Peak counter, read/write */
1428 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1429 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1430 		KVM_STATS_BASE_POW10, 0)
1431 
1432 /* Cumulative time in nanosecond */
1433 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1434 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1435 		KVM_STATS_BASE_POW10, -9)
1436 /* Linear histogram for time in nanosecond */
1437 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1438 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1439 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1440 /* Logarithmic histogram for time in nanosecond */
1441 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1442 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1443 		KVM_STATS_BASE_POW10, -9, sz)
1444 
1445 #define KVM_GENERIC_VM_STATS()						       \
1446 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1447 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1448 
1449 #define KVM_GENERIC_VCPU_STATS()					       \
1450 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1451 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1452 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1453 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1454 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1455 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1456 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1457 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1458 			HALT_POLL_HIST_COUNT),				       \
1459 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1460 			HALT_POLL_HIST_COUNT),				       \
1461 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1462 			HALT_POLL_HIST_COUNT)
1463 
1464 extern struct dentry *kvm_debugfs_dir;
1465 
1466 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1467 		       const struct _kvm_stats_desc *desc,
1468 		       void *stats, size_t size_stats,
1469 		       char __user *user_buffer, size_t size, loff_t *offset);
1470 
1471 /**
1472  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1473  * statistics data.
1474  *
1475  * @data: start address of the stats data
1476  * @size: the number of bucket of the stats data
1477  * @value: the new value used to update the linear histogram's bucket
1478  * @bucket_size: the size (width) of a bucket
1479  */
1480 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1481 						u64 value, size_t bucket_size)
1482 {
1483 	size_t index = div64_u64(value, bucket_size);
1484 
1485 	index = min(index, size - 1);
1486 	++data[index];
1487 }
1488 
1489 /**
1490  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1491  * statistics data.
1492  *
1493  * @data: start address of the stats data
1494  * @size: the number of bucket of the stats data
1495  * @value: the new value used to update the logarithmic histogram's bucket
1496  */
1497 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1498 {
1499 	size_t index = fls64(value);
1500 
1501 	index = min(index, size - 1);
1502 	++data[index];
1503 }
1504 
1505 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1506 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1507 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
1508 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1509 
1510 
1511 extern const struct kvm_stats_header kvm_vm_stats_header;
1512 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1513 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1514 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1515 
1516 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1517 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1518 {
1519 	if (unlikely(kvm->mmu_notifier_count))
1520 		return 1;
1521 	/*
1522 	 * Ensure the read of mmu_notifier_count happens before the read
1523 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1524 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1525 	 * either sees the old (non-zero) value of mmu_notifier_count or
1526 	 * the new (incremented) value of mmu_notifier_seq.
1527 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1528 	 * rather than under kvm->mmu_lock, for scalability, so
1529 	 * can't rely on kvm->mmu_lock to keep things ordered.
1530 	 */
1531 	smp_rmb();
1532 	if (kvm->mmu_notifier_seq != mmu_seq)
1533 		return 1;
1534 	return 0;
1535 }
1536 
1537 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1538 					 unsigned long mmu_seq,
1539 					 unsigned long hva)
1540 {
1541 	lockdep_assert_held(&kvm->mmu_lock);
1542 	/*
1543 	 * If mmu_notifier_count is non-zero, then the range maintained by
1544 	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1545 	 * might be being invalidated. Note that it may include some false
1546 	 * positives, due to shortcuts when handing concurrent invalidations.
1547 	 */
1548 	if (unlikely(kvm->mmu_notifier_count) &&
1549 	    hva >= kvm->mmu_notifier_range_start &&
1550 	    hva < kvm->mmu_notifier_range_end)
1551 		return 1;
1552 	if (kvm->mmu_notifier_seq != mmu_seq)
1553 		return 1;
1554 	return 0;
1555 }
1556 #endif
1557 
1558 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1559 
1560 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1561 
1562 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1563 int kvm_set_irq_routing(struct kvm *kvm,
1564 			const struct kvm_irq_routing_entry *entries,
1565 			unsigned nr,
1566 			unsigned flags);
1567 int kvm_set_routing_entry(struct kvm *kvm,
1568 			  struct kvm_kernel_irq_routing_entry *e,
1569 			  const struct kvm_irq_routing_entry *ue);
1570 void kvm_free_irq_routing(struct kvm *kvm);
1571 
1572 #else
1573 
1574 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1575 
1576 #endif
1577 
1578 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1579 
1580 #ifdef CONFIG_HAVE_KVM_EVENTFD
1581 
1582 void kvm_eventfd_init(struct kvm *kvm);
1583 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1584 
1585 #ifdef CONFIG_HAVE_KVM_IRQFD
1586 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1587 void kvm_irqfd_release(struct kvm *kvm);
1588 void kvm_irq_routing_update(struct kvm *);
1589 #else
1590 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1591 {
1592 	return -EINVAL;
1593 }
1594 
1595 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1596 #endif
1597 
1598 #else
1599 
1600 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1601 
1602 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1603 {
1604 	return -EINVAL;
1605 }
1606 
1607 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1608 
1609 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1610 static inline void kvm_irq_routing_update(struct kvm *kvm)
1611 {
1612 }
1613 #endif
1614 
1615 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1616 {
1617 	return -ENOSYS;
1618 }
1619 
1620 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1621 
1622 void kvm_arch_irq_routing_update(struct kvm *kvm);
1623 
1624 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1625 {
1626 	/*
1627 	 * Ensure the rest of the request is published to kvm_check_request's
1628 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1629 	 */
1630 	smp_wmb();
1631 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1632 }
1633 
1634 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1635 {
1636 	return READ_ONCE(vcpu->requests);
1637 }
1638 
1639 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1640 {
1641 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1642 }
1643 
1644 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1645 {
1646 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1647 }
1648 
1649 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1650 {
1651 	if (kvm_test_request(req, vcpu)) {
1652 		kvm_clear_request(req, vcpu);
1653 
1654 		/*
1655 		 * Ensure the rest of the request is visible to kvm_check_request's
1656 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1657 		 */
1658 		smp_mb__after_atomic();
1659 		return true;
1660 	} else {
1661 		return false;
1662 	}
1663 }
1664 
1665 extern bool kvm_rebooting;
1666 
1667 extern unsigned int halt_poll_ns;
1668 extern unsigned int halt_poll_ns_grow;
1669 extern unsigned int halt_poll_ns_grow_start;
1670 extern unsigned int halt_poll_ns_shrink;
1671 
1672 struct kvm_device {
1673 	const struct kvm_device_ops *ops;
1674 	struct kvm *kvm;
1675 	void *private;
1676 	struct list_head vm_node;
1677 };
1678 
1679 /* create, destroy, and name are mandatory */
1680 struct kvm_device_ops {
1681 	const char *name;
1682 
1683 	/*
1684 	 * create is called holding kvm->lock and any operations not suitable
1685 	 * to do while holding the lock should be deferred to init (see
1686 	 * below).
1687 	 */
1688 	int (*create)(struct kvm_device *dev, u32 type);
1689 
1690 	/*
1691 	 * init is called after create if create is successful and is called
1692 	 * outside of holding kvm->lock.
1693 	 */
1694 	void (*init)(struct kvm_device *dev);
1695 
1696 	/*
1697 	 * Destroy is responsible for freeing dev.
1698 	 *
1699 	 * Destroy may be called before or after destructors are called
1700 	 * on emulated I/O regions, depending on whether a reference is
1701 	 * held by a vcpu or other kvm component that gets destroyed
1702 	 * after the emulated I/O.
1703 	 */
1704 	void (*destroy)(struct kvm_device *dev);
1705 
1706 	/*
1707 	 * Release is an alternative method to free the device. It is
1708 	 * called when the device file descriptor is closed. Once
1709 	 * release is called, the destroy method will not be called
1710 	 * anymore as the device is removed from the device list of
1711 	 * the VM. kvm->lock is held.
1712 	 */
1713 	void (*release)(struct kvm_device *dev);
1714 
1715 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1716 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1717 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1718 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1719 		      unsigned long arg);
1720 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1721 };
1722 
1723 void kvm_device_get(struct kvm_device *dev);
1724 void kvm_device_put(struct kvm_device *dev);
1725 struct kvm_device *kvm_device_from_filp(struct file *filp);
1726 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1727 void kvm_unregister_device_ops(u32 type);
1728 
1729 extern struct kvm_device_ops kvm_mpic_ops;
1730 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1731 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1732 
1733 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1734 
1735 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1736 {
1737 	vcpu->spin_loop.in_spin_loop = val;
1738 }
1739 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1740 {
1741 	vcpu->spin_loop.dy_eligible = val;
1742 }
1743 
1744 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1745 
1746 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1747 {
1748 }
1749 
1750 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1751 {
1752 }
1753 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1754 
1755 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1756 {
1757 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1758 		!(memslot->flags & KVM_MEMSLOT_INVALID));
1759 }
1760 
1761 struct kvm_vcpu *kvm_get_running_vcpu(void);
1762 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1763 
1764 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1765 bool kvm_arch_has_irq_bypass(void);
1766 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1767 			   struct irq_bypass_producer *);
1768 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1769 			   struct irq_bypass_producer *);
1770 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1771 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1772 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1773 				  uint32_t guest_irq, bool set);
1774 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
1775 				  struct kvm_kernel_irq_routing_entry *);
1776 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1777 
1778 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1779 /* If we wakeup during the poll time, was it a sucessful poll? */
1780 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1781 {
1782 	return vcpu->valid_wakeup;
1783 }
1784 
1785 #else
1786 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1787 {
1788 	return true;
1789 }
1790 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1791 
1792 #ifdef CONFIG_HAVE_KVM_NO_POLL
1793 /* Callback that tells if we must not poll */
1794 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1795 #else
1796 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1797 {
1798 	return false;
1799 }
1800 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1801 
1802 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1803 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1804 			       unsigned int ioctl, unsigned long arg);
1805 #else
1806 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1807 					     unsigned int ioctl,
1808 					     unsigned long arg)
1809 {
1810 	return -ENOIOCTLCMD;
1811 }
1812 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1813 
1814 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1815 					    unsigned long start, unsigned long end);
1816 
1817 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1818 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1819 #else
1820 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1821 {
1822 	return 0;
1823 }
1824 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1825 
1826 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1827 
1828 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1829 				uintptr_t data, const char *name,
1830 				struct task_struct **thread_ptr);
1831 
1832 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1833 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1834 {
1835 	vcpu->run->exit_reason = KVM_EXIT_INTR;
1836 	vcpu->stat.signal_exits++;
1837 }
1838 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1839 
1840 /*
1841  * This defines how many reserved entries we want to keep before we
1842  * kick the vcpu to the userspace to avoid dirty ring full.  This
1843  * value can be tuned to higher if e.g. PML is enabled on the host.
1844  */
1845 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
1846 
1847 /* Max number of entries allowed for each kvm dirty ring */
1848 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
1849 
1850 #endif
1851