xref: /linux-6.15/include/linux/kvm_host.h (revision dae2d288)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <asm/signal.h>
33 
34 #include <linux/kvm.h>
35 #include <linux/kvm_para.h>
36 
37 #include <linux/kvm_types.h>
38 
39 #include <asm/kvm_host.h>
40 #include <linux/kvm_dirty_ring.h>
41 
42 #ifndef KVM_MAX_VCPU_ID
43 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
44 #endif
45 
46 /*
47  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
48  * in kvm, other bits are visible for userspace which are defined in
49  * include/linux/kvm_h.
50  */
51 #define KVM_MEMSLOT_INVALID	(1UL << 16)
52 
53 /*
54  * Bit 63 of the memslot generation number is an "update in-progress flag",
55  * e.g. is temporarily set for the duration of install_new_memslots().
56  * This flag effectively creates a unique generation number that is used to
57  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
58  * i.e. may (or may not) have come from the previous memslots generation.
59  *
60  * This is necessary because the actual memslots update is not atomic with
61  * respect to the generation number update.  Updating the generation number
62  * first would allow a vCPU to cache a spte from the old memslots using the
63  * new generation number, and updating the generation number after switching
64  * to the new memslots would allow cache hits using the old generation number
65  * to reference the defunct memslots.
66  *
67  * This mechanism is used to prevent getting hits in KVM's caches while a
68  * memslot update is in-progress, and to prevent cache hits *after* updating
69  * the actual generation number against accesses that were inserted into the
70  * cache *before* the memslots were updated.
71  */
72 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
73 
74 /* Two fragments for cross MMIO pages. */
75 #define KVM_MAX_MMIO_FRAGMENTS	2
76 
77 #ifndef KVM_ADDRESS_SPACE_NUM
78 #define KVM_ADDRESS_SPACE_NUM	1
79 #endif
80 
81 /*
82  * For the normal pfn, the highest 12 bits should be zero,
83  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
84  * mask bit 63 to indicate the noslot pfn.
85  */
86 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
87 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
88 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
89 
90 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
91 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
92 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
93 
94 /*
95  * error pfns indicate that the gfn is in slot but faild to
96  * translate it to pfn on host.
97  */
98 static inline bool is_error_pfn(kvm_pfn_t pfn)
99 {
100 	return !!(pfn & KVM_PFN_ERR_MASK);
101 }
102 
103 /*
104  * error_noslot pfns indicate that the gfn can not be
105  * translated to pfn - it is not in slot or failed to
106  * translate it to pfn.
107  */
108 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
109 {
110 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
111 }
112 
113 /* noslot pfn indicates that the gfn is not in slot. */
114 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
115 {
116 	return pfn == KVM_PFN_NOSLOT;
117 }
118 
119 /*
120  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
121  * provide own defines and kvm_is_error_hva
122  */
123 #ifndef KVM_HVA_ERR_BAD
124 
125 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
126 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
127 
128 static inline bool kvm_is_error_hva(unsigned long addr)
129 {
130 	return addr >= PAGE_OFFSET;
131 }
132 
133 #endif
134 
135 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
136 
137 static inline bool is_error_page(struct page *page)
138 {
139 	return IS_ERR(page);
140 }
141 
142 #define KVM_REQUEST_MASK           GENMASK(7,0)
143 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
144 #define KVM_REQUEST_WAIT           BIT(9)
145 /*
146  * Architecture-independent vcpu->requests bit members
147  * Bits 4-7 are reserved for more arch-independent bits.
148  */
149 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
151 #define KVM_REQ_UNBLOCK           2
152 #define KVM_REQ_UNHALT            3
153 #define KVM_REQUEST_ARCH_BASE     8
154 
155 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
156 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
157 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
158 })
159 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
160 
161 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
162 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
163 
164 extern struct mutex kvm_lock;
165 extern struct list_head vm_list;
166 
167 struct kvm_io_range {
168 	gpa_t addr;
169 	int len;
170 	struct kvm_io_device *dev;
171 };
172 
173 #define NR_IOBUS_DEVS 1000
174 
175 struct kvm_io_bus {
176 	int dev_count;
177 	int ioeventfd_count;
178 	struct kvm_io_range range[];
179 };
180 
181 enum kvm_bus {
182 	KVM_MMIO_BUS,
183 	KVM_PIO_BUS,
184 	KVM_VIRTIO_CCW_NOTIFY_BUS,
185 	KVM_FAST_MMIO_BUS,
186 	KVM_NR_BUSES
187 };
188 
189 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
190 		     int len, const void *val);
191 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
192 			    gpa_t addr, int len, const void *val, long cookie);
193 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
194 		    int len, void *val);
195 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
196 			    int len, struct kvm_io_device *dev);
197 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 			      struct kvm_io_device *dev);
199 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
200 					 gpa_t addr);
201 
202 #ifdef CONFIG_KVM_ASYNC_PF
203 struct kvm_async_pf {
204 	struct work_struct work;
205 	struct list_head link;
206 	struct list_head queue;
207 	struct kvm_vcpu *vcpu;
208 	struct mm_struct *mm;
209 	gpa_t cr2_or_gpa;
210 	unsigned long addr;
211 	struct kvm_arch_async_pf arch;
212 	bool   wakeup_all;
213 	bool notpresent_injected;
214 };
215 
216 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
217 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
218 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
219 			unsigned long hva, struct kvm_arch_async_pf *arch);
220 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
221 #endif
222 
223 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
224 struct kvm_gfn_range {
225 	struct kvm_memory_slot *slot;
226 	gfn_t start;
227 	gfn_t end;
228 	pte_t pte;
229 	bool may_block;
230 };
231 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
232 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
233 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
234 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
235 #endif
236 
237 enum {
238 	OUTSIDE_GUEST_MODE,
239 	IN_GUEST_MODE,
240 	EXITING_GUEST_MODE,
241 	READING_SHADOW_PAGE_TABLES,
242 };
243 
244 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
245 
246 struct kvm_host_map {
247 	/*
248 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
249 	 * a 'struct page' for it. When using mem= kernel parameter some memory
250 	 * can be used as guest memory but they are not managed by host
251 	 * kernel).
252 	 * If 'pfn' is not managed by the host kernel, this field is
253 	 * initialized to KVM_UNMAPPED_PAGE.
254 	 */
255 	struct page *page;
256 	void *hva;
257 	kvm_pfn_t pfn;
258 	kvm_pfn_t gfn;
259 };
260 
261 /*
262  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
263  * directly to check for that.
264  */
265 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
266 {
267 	return !!map->hva;
268 }
269 
270 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
271 {
272 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
273 }
274 
275 /*
276  * Sometimes a large or cross-page mmio needs to be broken up into separate
277  * exits for userspace servicing.
278  */
279 struct kvm_mmio_fragment {
280 	gpa_t gpa;
281 	void *data;
282 	unsigned len;
283 };
284 
285 struct kvm_vcpu {
286 	struct kvm *kvm;
287 #ifdef CONFIG_PREEMPT_NOTIFIERS
288 	struct preempt_notifier preempt_notifier;
289 #endif
290 	int cpu;
291 	int vcpu_id; /* id given by userspace at creation */
292 	int vcpu_idx; /* index in kvm->vcpus array */
293 	int srcu_idx;
294 	int mode;
295 	u64 requests;
296 	unsigned long guest_debug;
297 
298 	int pre_pcpu;
299 	struct list_head blocked_vcpu_list;
300 
301 	struct mutex mutex;
302 	struct kvm_run *run;
303 
304 	struct rcuwait wait;
305 	struct pid __rcu *pid;
306 	int sigset_active;
307 	sigset_t sigset;
308 	unsigned int halt_poll_ns;
309 	bool valid_wakeup;
310 
311 #ifdef CONFIG_HAS_IOMEM
312 	int mmio_needed;
313 	int mmio_read_completed;
314 	int mmio_is_write;
315 	int mmio_cur_fragment;
316 	int mmio_nr_fragments;
317 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
318 #endif
319 
320 #ifdef CONFIG_KVM_ASYNC_PF
321 	struct {
322 		u32 queued;
323 		struct list_head queue;
324 		struct list_head done;
325 		spinlock_t lock;
326 	} async_pf;
327 #endif
328 
329 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
330 	/*
331 	 * Cpu relax intercept or pause loop exit optimization
332 	 * in_spin_loop: set when a vcpu does a pause loop exit
333 	 *  or cpu relax intercepted.
334 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
335 	 */
336 	struct {
337 		bool in_spin_loop;
338 		bool dy_eligible;
339 	} spin_loop;
340 #endif
341 	bool preempted;
342 	bool ready;
343 	struct kvm_vcpu_arch arch;
344 	struct kvm_vcpu_stat stat;
345 	char stats_id[KVM_STATS_NAME_SIZE];
346 	struct kvm_dirty_ring dirty_ring;
347 };
348 
349 /* must be called with irqs disabled */
350 static __always_inline void guest_enter_irqoff(void)
351 {
352 	/*
353 	 * This is running in ioctl context so its safe to assume that it's the
354 	 * stime pending cputime to flush.
355 	 */
356 	instrumentation_begin();
357 	vtime_account_guest_enter();
358 	instrumentation_end();
359 
360 	/*
361 	 * KVM does not hold any references to rcu protected data when it
362 	 * switches CPU into a guest mode. In fact switching to a guest mode
363 	 * is very similar to exiting to userspace from rcu point of view. In
364 	 * addition CPU may stay in a guest mode for quite a long time (up to
365 	 * one time slice). Lets treat guest mode as quiescent state, just like
366 	 * we do with user-mode execution.
367 	 */
368 	if (!context_tracking_guest_enter()) {
369 		instrumentation_begin();
370 		rcu_virt_note_context_switch(smp_processor_id());
371 		instrumentation_end();
372 	}
373 }
374 
375 static __always_inline void guest_exit_irqoff(void)
376 {
377 	context_tracking_guest_exit();
378 
379 	instrumentation_begin();
380 	/* Flush the guest cputime we spent on the guest */
381 	vtime_account_guest_exit();
382 	instrumentation_end();
383 }
384 
385 static inline void guest_exit(void)
386 {
387 	unsigned long flags;
388 
389 	local_irq_save(flags);
390 	guest_exit_irqoff();
391 	local_irq_restore(flags);
392 }
393 
394 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
395 {
396 	/*
397 	 * The memory barrier ensures a previous write to vcpu->requests cannot
398 	 * be reordered with the read of vcpu->mode.  It pairs with the general
399 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
400 	 */
401 	smp_mb__before_atomic();
402 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
403 }
404 
405 /*
406  * Some of the bitops functions do not support too long bitmaps.
407  * This number must be determined not to exceed such limits.
408  */
409 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
410 
411 struct kvm_memory_slot {
412 	gfn_t base_gfn;
413 	unsigned long npages;
414 	unsigned long *dirty_bitmap;
415 	struct kvm_arch_memory_slot arch;
416 	unsigned long userspace_addr;
417 	u32 flags;
418 	short id;
419 	u16 as_id;
420 };
421 
422 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
423 {
424 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
425 }
426 
427 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
428 {
429 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
430 }
431 
432 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
433 {
434 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
435 
436 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
437 }
438 
439 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
440 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
441 #endif
442 
443 struct kvm_s390_adapter_int {
444 	u64 ind_addr;
445 	u64 summary_addr;
446 	u64 ind_offset;
447 	u32 summary_offset;
448 	u32 adapter_id;
449 };
450 
451 struct kvm_hv_sint {
452 	u32 vcpu;
453 	u32 sint;
454 };
455 
456 struct kvm_kernel_irq_routing_entry {
457 	u32 gsi;
458 	u32 type;
459 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
460 		   struct kvm *kvm, int irq_source_id, int level,
461 		   bool line_status);
462 	union {
463 		struct {
464 			unsigned irqchip;
465 			unsigned pin;
466 		} irqchip;
467 		struct {
468 			u32 address_lo;
469 			u32 address_hi;
470 			u32 data;
471 			u32 flags;
472 			u32 devid;
473 		} msi;
474 		struct kvm_s390_adapter_int adapter;
475 		struct kvm_hv_sint hv_sint;
476 	};
477 	struct hlist_node link;
478 };
479 
480 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
481 struct kvm_irq_routing_table {
482 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
483 	u32 nr_rt_entries;
484 	/*
485 	 * Array indexed by gsi. Each entry contains list of irq chips
486 	 * the gsi is connected to.
487 	 */
488 	struct hlist_head map[];
489 };
490 #endif
491 
492 #ifndef KVM_PRIVATE_MEM_SLOTS
493 #define KVM_PRIVATE_MEM_SLOTS 0
494 #endif
495 
496 #define KVM_MEM_SLOTS_NUM SHRT_MAX
497 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
498 
499 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
500 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
501 {
502 	return 0;
503 }
504 #endif
505 
506 /*
507  * Note:
508  * memslots are not sorted by id anymore, please use id_to_memslot()
509  * to get the memslot by its id.
510  */
511 struct kvm_memslots {
512 	u64 generation;
513 	/* The mapping table from slot id to the index in memslots[]. */
514 	short id_to_index[KVM_MEM_SLOTS_NUM];
515 	atomic_t lru_slot;
516 	int used_slots;
517 	struct kvm_memory_slot memslots[];
518 };
519 
520 struct kvm {
521 #ifdef KVM_HAVE_MMU_RWLOCK
522 	rwlock_t mmu_lock;
523 #else
524 	spinlock_t mmu_lock;
525 #endif /* KVM_HAVE_MMU_RWLOCK */
526 
527 	struct mutex slots_lock;
528 
529 	/*
530 	 * Protects the arch-specific fields of struct kvm_memory_slots in
531 	 * use by the VM. To be used under the slots_lock (above) or in a
532 	 * kvm->srcu critical section where acquiring the slots_lock would
533 	 * lead to deadlock with the synchronize_srcu in
534 	 * install_new_memslots.
535 	 */
536 	struct mutex slots_arch_lock;
537 	struct mm_struct *mm; /* userspace tied to this vm */
538 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
539 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
540 
541 	/*
542 	 * created_vcpus is protected by kvm->lock, and is incremented
543 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
544 	 * incremented after storing the kvm_vcpu pointer in vcpus,
545 	 * and is accessed atomically.
546 	 */
547 	atomic_t online_vcpus;
548 	int created_vcpus;
549 	int last_boosted_vcpu;
550 	struct list_head vm_list;
551 	struct mutex lock;
552 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
553 #ifdef CONFIG_HAVE_KVM_EVENTFD
554 	struct {
555 		spinlock_t        lock;
556 		struct list_head  items;
557 		struct list_head  resampler_list;
558 		struct mutex      resampler_lock;
559 	} irqfds;
560 	struct list_head ioeventfds;
561 #endif
562 	struct kvm_vm_stat stat;
563 	struct kvm_arch arch;
564 	refcount_t users_count;
565 #ifdef CONFIG_KVM_MMIO
566 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
567 	spinlock_t ring_lock;
568 	struct list_head coalesced_zones;
569 #endif
570 
571 	struct mutex irq_lock;
572 #ifdef CONFIG_HAVE_KVM_IRQCHIP
573 	/*
574 	 * Update side is protected by irq_lock.
575 	 */
576 	struct kvm_irq_routing_table __rcu *irq_routing;
577 #endif
578 #ifdef CONFIG_HAVE_KVM_IRQFD
579 	struct hlist_head irq_ack_notifier_list;
580 #endif
581 
582 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
583 	struct mmu_notifier mmu_notifier;
584 	unsigned long mmu_notifier_seq;
585 	long mmu_notifier_count;
586 	unsigned long mmu_notifier_range_start;
587 	unsigned long mmu_notifier_range_end;
588 #endif
589 	long tlbs_dirty;
590 	struct list_head devices;
591 	u64 manual_dirty_log_protect;
592 	struct dentry *debugfs_dentry;
593 	struct kvm_stat_data **debugfs_stat_data;
594 	struct srcu_struct srcu;
595 	struct srcu_struct irq_srcu;
596 	pid_t userspace_pid;
597 	unsigned int max_halt_poll_ns;
598 	u32 dirty_ring_size;
599 
600 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
601 	struct notifier_block pm_notifier;
602 #endif
603 	char stats_id[KVM_STATS_NAME_SIZE];
604 };
605 
606 #define kvm_err(fmt, ...) \
607 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
608 #define kvm_info(fmt, ...) \
609 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
610 #define kvm_debug(fmt, ...) \
611 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
612 #define kvm_debug_ratelimited(fmt, ...) \
613 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
614 			     ## __VA_ARGS__)
615 #define kvm_pr_unimpl(fmt, ...) \
616 	pr_err_ratelimited("kvm [%i]: " fmt, \
617 			   task_tgid_nr(current), ## __VA_ARGS__)
618 
619 /* The guest did something we don't support. */
620 #define vcpu_unimpl(vcpu, fmt, ...)					\
621 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
622 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
623 
624 #define vcpu_debug(vcpu, fmt, ...)					\
625 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
626 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
627 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
628 			      ## __VA_ARGS__)
629 #define vcpu_err(vcpu, fmt, ...)					\
630 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
631 
632 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
633 {
634 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
635 }
636 
637 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
638 {
639 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
640 				      lockdep_is_held(&kvm->slots_lock) ||
641 				      !refcount_read(&kvm->users_count));
642 }
643 
644 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
645 {
646 	int num_vcpus = atomic_read(&kvm->online_vcpus);
647 	i = array_index_nospec(i, num_vcpus);
648 
649 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
650 	smp_rmb();
651 	return kvm->vcpus[i];
652 }
653 
654 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
655 	for (idx = 0; \
656 	     idx < atomic_read(&kvm->online_vcpus) && \
657 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
658 	     idx++)
659 
660 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
661 {
662 	struct kvm_vcpu *vcpu = NULL;
663 	int i;
664 
665 	if (id < 0)
666 		return NULL;
667 	if (id < KVM_MAX_VCPUS)
668 		vcpu = kvm_get_vcpu(kvm, id);
669 	if (vcpu && vcpu->vcpu_id == id)
670 		return vcpu;
671 	kvm_for_each_vcpu(i, vcpu, kvm)
672 		if (vcpu->vcpu_id == id)
673 			return vcpu;
674 	return NULL;
675 }
676 
677 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
678 {
679 	return vcpu->vcpu_idx;
680 }
681 
682 #define kvm_for_each_memslot(memslot, slots)				\
683 	for (memslot = &slots->memslots[0];				\
684 	     memslot < slots->memslots + slots->used_slots; memslot++)	\
685 		if (WARN_ON_ONCE(!memslot->npages)) {			\
686 		} else
687 
688 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
689 
690 void vcpu_load(struct kvm_vcpu *vcpu);
691 void vcpu_put(struct kvm_vcpu *vcpu);
692 
693 #ifdef __KVM_HAVE_IOAPIC
694 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
695 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
696 #else
697 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
698 {
699 }
700 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
701 {
702 }
703 #endif
704 
705 #ifdef CONFIG_HAVE_KVM_IRQFD
706 int kvm_irqfd_init(void);
707 void kvm_irqfd_exit(void);
708 #else
709 static inline int kvm_irqfd_init(void)
710 {
711 	return 0;
712 }
713 
714 static inline void kvm_irqfd_exit(void)
715 {
716 }
717 #endif
718 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
719 		  struct module *module);
720 void kvm_exit(void);
721 
722 void kvm_get_kvm(struct kvm *kvm);
723 void kvm_put_kvm(struct kvm *kvm);
724 bool file_is_kvm(struct file *file);
725 void kvm_put_kvm_no_destroy(struct kvm *kvm);
726 
727 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
728 {
729 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
730 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
731 			lockdep_is_held(&kvm->slots_lock) ||
732 			!refcount_read(&kvm->users_count));
733 }
734 
735 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
736 {
737 	return __kvm_memslots(kvm, 0);
738 }
739 
740 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
741 {
742 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
743 
744 	return __kvm_memslots(vcpu->kvm, as_id);
745 }
746 
747 static inline
748 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
749 {
750 	int index = slots->id_to_index[id];
751 	struct kvm_memory_slot *slot;
752 
753 	if (index < 0)
754 		return NULL;
755 
756 	slot = &slots->memslots[index];
757 
758 	WARN_ON(slot->id != id);
759 	return slot;
760 }
761 
762 /*
763  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
764  * - create a new memory slot
765  * - delete an existing memory slot
766  * - modify an existing memory slot
767  *   -- move it in the guest physical memory space
768  *   -- just change its flags
769  *
770  * Since flags can be changed by some of these operations, the following
771  * differentiation is the best we can do for __kvm_set_memory_region():
772  */
773 enum kvm_mr_change {
774 	KVM_MR_CREATE,
775 	KVM_MR_DELETE,
776 	KVM_MR_MOVE,
777 	KVM_MR_FLAGS_ONLY,
778 };
779 
780 int kvm_set_memory_region(struct kvm *kvm,
781 			  const struct kvm_userspace_memory_region *mem);
782 int __kvm_set_memory_region(struct kvm *kvm,
783 			    const struct kvm_userspace_memory_region *mem);
784 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
785 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
786 int kvm_arch_prepare_memory_region(struct kvm *kvm,
787 				struct kvm_memory_slot *memslot,
788 				const struct kvm_userspace_memory_region *mem,
789 				enum kvm_mr_change change);
790 void kvm_arch_commit_memory_region(struct kvm *kvm,
791 				const struct kvm_userspace_memory_region *mem,
792 				struct kvm_memory_slot *old,
793 				const struct kvm_memory_slot *new,
794 				enum kvm_mr_change change);
795 /* flush all memory translations */
796 void kvm_arch_flush_shadow_all(struct kvm *kvm);
797 /* flush memory translations pointing to 'slot' */
798 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
799 				   struct kvm_memory_slot *slot);
800 
801 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
802 			    struct page **pages, int nr_pages);
803 
804 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
805 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
806 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
807 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
808 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
809 				      bool *writable);
810 void kvm_release_page_clean(struct page *page);
811 void kvm_release_page_dirty(struct page *page);
812 void kvm_set_page_accessed(struct page *page);
813 
814 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
815 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
816 		      bool *writable);
817 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
818 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
819 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
820 			       bool atomic, bool *async, bool write_fault,
821 			       bool *writable, hva_t *hva);
822 
823 void kvm_release_pfn_clean(kvm_pfn_t pfn);
824 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
825 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
826 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
827 void kvm_get_pfn(kvm_pfn_t pfn);
828 
829 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
830 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
831 			int len);
832 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
833 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
834 			   void *data, unsigned long len);
835 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
836 				 void *data, unsigned int offset,
837 				 unsigned long len);
838 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
839 			 int offset, int len);
840 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
841 		    unsigned long len);
842 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
843 			   void *data, unsigned long len);
844 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
845 				  void *data, unsigned int offset,
846 				  unsigned long len);
847 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
848 			      gpa_t gpa, unsigned long len);
849 
850 #define __kvm_get_guest(kvm, gfn, offset, v)				\
851 ({									\
852 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
853 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
854 	int __ret = -EFAULT;						\
855 									\
856 	if (!kvm_is_error_hva(__addr))					\
857 		__ret = get_user(v, __uaddr);				\
858 	__ret;								\
859 })
860 
861 #define kvm_get_guest(kvm, gpa, v)					\
862 ({									\
863 	gpa_t __gpa = gpa;						\
864 	struct kvm *__kvm = kvm;					\
865 									\
866 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
867 			offset_in_page(__gpa), v);			\
868 })
869 
870 #define __kvm_put_guest(kvm, gfn, offset, v)				\
871 ({									\
872 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
873 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
874 	int __ret = -EFAULT;						\
875 									\
876 	if (!kvm_is_error_hva(__addr))					\
877 		__ret = put_user(v, __uaddr);				\
878 	if (!__ret)							\
879 		mark_page_dirty(kvm, gfn);				\
880 	__ret;								\
881 })
882 
883 #define kvm_put_guest(kvm, gpa, v)					\
884 ({									\
885 	gpa_t __gpa = gpa;						\
886 	struct kvm *__kvm = kvm;					\
887 									\
888 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
889 			offset_in_page(__gpa), v);			\
890 })
891 
892 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
893 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
894 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
895 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
896 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
897 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
898 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
899 
900 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
901 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
902 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
903 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
904 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
905 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
906 		struct gfn_to_pfn_cache *cache, bool atomic);
907 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
908 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
909 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
910 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
911 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
912 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
913 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
914 			     int len);
915 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
916 			       unsigned long len);
917 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
918 			unsigned long len);
919 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
920 			      int offset, int len);
921 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
922 			 unsigned long len);
923 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
924 
925 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
926 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
927 
928 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
929 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
930 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
931 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
932 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
933 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
934 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
935 
936 void kvm_flush_remote_tlbs(struct kvm *kvm);
937 void kvm_reload_remote_mmus(struct kvm *kvm);
938 
939 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
940 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
941 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
942 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
943 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
944 #endif
945 
946 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
947 				 struct kvm_vcpu *except,
948 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
949 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
950 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
951 				      struct kvm_vcpu *except);
952 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
953 				unsigned long *vcpu_bitmap);
954 
955 long kvm_arch_dev_ioctl(struct file *filp,
956 			unsigned int ioctl, unsigned long arg);
957 long kvm_arch_vcpu_ioctl(struct file *filp,
958 			 unsigned int ioctl, unsigned long arg);
959 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
960 
961 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
962 
963 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
964 					struct kvm_memory_slot *slot,
965 					gfn_t gfn_offset,
966 					unsigned long mask);
967 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
968 
969 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
970 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
971 					const struct kvm_memory_slot *memslot);
972 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
973 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
974 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
975 		      int *is_dirty, struct kvm_memory_slot **memslot);
976 #endif
977 
978 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
979 			bool line_status);
980 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
981 			    struct kvm_enable_cap *cap);
982 long kvm_arch_vm_ioctl(struct file *filp,
983 		       unsigned int ioctl, unsigned long arg);
984 
985 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
986 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
987 
988 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
989 				    struct kvm_translation *tr);
990 
991 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
992 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
993 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
994 				  struct kvm_sregs *sregs);
995 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
996 				  struct kvm_sregs *sregs);
997 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
998 				    struct kvm_mp_state *mp_state);
999 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1000 				    struct kvm_mp_state *mp_state);
1001 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1002 					struct kvm_guest_debug *dbg);
1003 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1004 
1005 int kvm_arch_init(void *opaque);
1006 void kvm_arch_exit(void);
1007 
1008 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1009 
1010 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1011 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1012 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1013 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1014 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1015 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1016 
1017 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1018 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1019 #endif
1020 
1021 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1022 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1023 #endif
1024 
1025 int kvm_arch_hardware_enable(void);
1026 void kvm_arch_hardware_disable(void);
1027 int kvm_arch_hardware_setup(void *opaque);
1028 void kvm_arch_hardware_unsetup(void);
1029 int kvm_arch_check_processor_compat(void *opaque);
1030 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1031 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1032 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1033 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1034 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1035 int kvm_arch_post_init_vm(struct kvm *kvm);
1036 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1037 
1038 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1039 /*
1040  * All architectures that want to use vzalloc currently also
1041  * need their own kvm_arch_alloc_vm implementation.
1042  */
1043 static inline struct kvm *kvm_arch_alloc_vm(void)
1044 {
1045 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1046 }
1047 
1048 static inline void kvm_arch_free_vm(struct kvm *kvm)
1049 {
1050 	kfree(kvm);
1051 }
1052 #endif
1053 
1054 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1055 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1056 {
1057 	return -ENOTSUPP;
1058 }
1059 #endif
1060 
1061 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1062 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1063 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1064 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1065 #else
1066 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1067 {
1068 }
1069 
1070 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1071 {
1072 }
1073 
1074 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1075 {
1076 	return false;
1077 }
1078 #endif
1079 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1080 void kvm_arch_start_assignment(struct kvm *kvm);
1081 void kvm_arch_end_assignment(struct kvm *kvm);
1082 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1083 #else
1084 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1085 {
1086 }
1087 
1088 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1089 {
1090 }
1091 
1092 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1093 {
1094 	return false;
1095 }
1096 #endif
1097 
1098 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1099 {
1100 #ifdef __KVM_HAVE_ARCH_WQP
1101 	return vcpu->arch.waitp;
1102 #else
1103 	return &vcpu->wait;
1104 #endif
1105 }
1106 
1107 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1108 /*
1109  * returns true if the virtual interrupt controller is initialized and
1110  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1111  * controller is dynamically instantiated and this is not always true.
1112  */
1113 bool kvm_arch_intc_initialized(struct kvm *kvm);
1114 #else
1115 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1116 {
1117 	return true;
1118 }
1119 #endif
1120 
1121 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1122 void kvm_arch_destroy_vm(struct kvm *kvm);
1123 void kvm_arch_sync_events(struct kvm *kvm);
1124 
1125 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1126 
1127 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1128 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1129 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1130 
1131 struct kvm_irq_ack_notifier {
1132 	struct hlist_node link;
1133 	unsigned gsi;
1134 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1135 };
1136 
1137 int kvm_irq_map_gsi(struct kvm *kvm,
1138 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1139 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1140 
1141 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1142 		bool line_status);
1143 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1144 		int irq_source_id, int level, bool line_status);
1145 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1146 			       struct kvm *kvm, int irq_source_id,
1147 			       int level, bool line_status);
1148 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1149 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1150 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1151 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1152 				   struct kvm_irq_ack_notifier *kian);
1153 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1154 				   struct kvm_irq_ack_notifier *kian);
1155 int kvm_request_irq_source_id(struct kvm *kvm);
1156 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1157 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1158 
1159 /*
1160  * search_memslots() and __gfn_to_memslot() are here because they are
1161  * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1162  * gfn_to_memslot() itself isn't here as an inline because that would
1163  * bloat other code too much.
1164  *
1165  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1166  */
1167 static inline struct kvm_memory_slot *
1168 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1169 {
1170 	int start = 0, end = slots->used_slots;
1171 	int slot = atomic_read(&slots->lru_slot);
1172 	struct kvm_memory_slot *memslots = slots->memslots;
1173 
1174 	if (unlikely(!slots->used_slots))
1175 		return NULL;
1176 
1177 	if (gfn >= memslots[slot].base_gfn &&
1178 	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
1179 		return &memslots[slot];
1180 
1181 	while (start < end) {
1182 		slot = start + (end - start) / 2;
1183 
1184 		if (gfn >= memslots[slot].base_gfn)
1185 			end = slot;
1186 		else
1187 			start = slot + 1;
1188 	}
1189 
1190 	if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1191 	    gfn < memslots[start].base_gfn + memslots[start].npages) {
1192 		atomic_set(&slots->lru_slot, start);
1193 		return &memslots[start];
1194 	}
1195 
1196 	return NULL;
1197 }
1198 
1199 static inline struct kvm_memory_slot *
1200 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1201 {
1202 	return search_memslots(slots, gfn);
1203 }
1204 
1205 static inline unsigned long
1206 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1207 {
1208 	/*
1209 	 * The index was checked originally in search_memslots.  To avoid
1210 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1211 	 * table walks, do not let the processor speculate loads outside
1212 	 * the guest's registered memslots.
1213 	 */
1214 	unsigned long offset = gfn - slot->base_gfn;
1215 	offset = array_index_nospec(offset, slot->npages);
1216 	return slot->userspace_addr + offset * PAGE_SIZE;
1217 }
1218 
1219 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1220 {
1221 	return gfn_to_memslot(kvm, gfn)->id;
1222 }
1223 
1224 static inline gfn_t
1225 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1226 {
1227 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1228 
1229 	return slot->base_gfn + gfn_offset;
1230 }
1231 
1232 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1233 {
1234 	return (gpa_t)gfn << PAGE_SHIFT;
1235 }
1236 
1237 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1238 {
1239 	return (gfn_t)(gpa >> PAGE_SHIFT);
1240 }
1241 
1242 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1243 {
1244 	return (hpa_t)pfn << PAGE_SHIFT;
1245 }
1246 
1247 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1248 						gpa_t gpa)
1249 {
1250 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1251 }
1252 
1253 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1254 {
1255 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1256 
1257 	return kvm_is_error_hva(hva);
1258 }
1259 
1260 enum kvm_stat_kind {
1261 	KVM_STAT_VM,
1262 	KVM_STAT_VCPU,
1263 };
1264 
1265 struct kvm_stat_data {
1266 	struct kvm *kvm;
1267 	const struct _kvm_stats_desc *desc;
1268 	enum kvm_stat_kind kind;
1269 };
1270 
1271 struct _kvm_stats_desc {
1272 	struct kvm_stats_desc desc;
1273 	char name[KVM_STATS_NAME_SIZE];
1274 };
1275 
1276 #define STATS_DESC_COMMON(type, unit, base, exp)			       \
1277 	.flags = type | unit | base |					       \
1278 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1279 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1280 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1281 	.exponent = exp,						       \
1282 	.size = 1
1283 
1284 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp)		       \
1285 	{								       \
1286 		{							       \
1287 			STATS_DESC_COMMON(type, unit, base, exp),	       \
1288 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1289 		},							       \
1290 		.name = #stat,						       \
1291 	}
1292 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp)		       \
1293 	{								       \
1294 		{							       \
1295 			STATS_DESC_COMMON(type, unit, base, exp),	       \
1296 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1297 		},							       \
1298 		.name = #stat,						       \
1299 	}
1300 #define VM_STATS_DESC(stat, type, unit, base, exp)			       \
1301 	{								       \
1302 		{							       \
1303 			STATS_DESC_COMMON(type, unit, base, exp),	       \
1304 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1305 		},							       \
1306 		.name = #stat,						       \
1307 	}
1308 #define VCPU_STATS_DESC(stat, type, unit, base, exp)			       \
1309 	{								       \
1310 		{							       \
1311 			STATS_DESC_COMMON(type, unit, base, exp),	       \
1312 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1313 		},							       \
1314 		.name = #stat,						       \
1315 	}
1316 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1317 #define STATS_DESC(SCOPE, stat, type, unit, base, exp)			       \
1318 	SCOPE##_STATS_DESC(stat, type, unit, base, exp)
1319 
1320 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1321 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, unit, base, exponent)
1322 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1323 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, unit, base, exponent)
1324 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1325 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, unit, base, exponent)
1326 
1327 /* Cumulative counter, read/write */
1328 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1329 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1330 		KVM_STATS_BASE_POW10, 0)
1331 /* Instantaneous counter, read only */
1332 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1333 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1334 		KVM_STATS_BASE_POW10, 0)
1335 /* Peak counter, read/write */
1336 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1337 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1338 		KVM_STATS_BASE_POW10, 0)
1339 
1340 /* Cumulative time in nanosecond */
1341 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1342 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1343 		KVM_STATS_BASE_POW10, -9)
1344 
1345 #define KVM_GENERIC_VM_STATS()						       \
1346 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush)
1347 
1348 #define KVM_GENERIC_VCPU_STATS()					       \
1349 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1350 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1351 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1352 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1353 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1354 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns)
1355 
1356 extern struct dentry *kvm_debugfs_dir;
1357 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1358 		       const struct _kvm_stats_desc *desc,
1359 		       void *stats, size_t size_stats,
1360 		       char __user *user_buffer, size_t size, loff_t *offset);
1361 extern const struct kvm_stats_header kvm_vm_stats_header;
1362 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1363 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1364 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1365 
1366 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1367 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1368 {
1369 	if (unlikely(kvm->mmu_notifier_count))
1370 		return 1;
1371 	/*
1372 	 * Ensure the read of mmu_notifier_count happens before the read
1373 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1374 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1375 	 * either sees the old (non-zero) value of mmu_notifier_count or
1376 	 * the new (incremented) value of mmu_notifier_seq.
1377 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1378 	 * rather than under kvm->mmu_lock, for scalability, so
1379 	 * can't rely on kvm->mmu_lock to keep things ordered.
1380 	 */
1381 	smp_rmb();
1382 	if (kvm->mmu_notifier_seq != mmu_seq)
1383 		return 1;
1384 	return 0;
1385 }
1386 
1387 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1388 					 unsigned long mmu_seq,
1389 					 unsigned long hva)
1390 {
1391 	lockdep_assert_held(&kvm->mmu_lock);
1392 	/*
1393 	 * If mmu_notifier_count is non-zero, then the range maintained by
1394 	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1395 	 * might be being invalidated. Note that it may include some false
1396 	 * positives, due to shortcuts when handing concurrent invalidations.
1397 	 */
1398 	if (unlikely(kvm->mmu_notifier_count) &&
1399 	    hva >= kvm->mmu_notifier_range_start &&
1400 	    hva < kvm->mmu_notifier_range_end)
1401 		return 1;
1402 	if (kvm->mmu_notifier_seq != mmu_seq)
1403 		return 1;
1404 	return 0;
1405 }
1406 #endif
1407 
1408 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1409 
1410 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1411 
1412 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1413 int kvm_set_irq_routing(struct kvm *kvm,
1414 			const struct kvm_irq_routing_entry *entries,
1415 			unsigned nr,
1416 			unsigned flags);
1417 int kvm_set_routing_entry(struct kvm *kvm,
1418 			  struct kvm_kernel_irq_routing_entry *e,
1419 			  const struct kvm_irq_routing_entry *ue);
1420 void kvm_free_irq_routing(struct kvm *kvm);
1421 
1422 #else
1423 
1424 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1425 
1426 #endif
1427 
1428 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1429 
1430 #ifdef CONFIG_HAVE_KVM_EVENTFD
1431 
1432 void kvm_eventfd_init(struct kvm *kvm);
1433 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1434 
1435 #ifdef CONFIG_HAVE_KVM_IRQFD
1436 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1437 void kvm_irqfd_release(struct kvm *kvm);
1438 void kvm_irq_routing_update(struct kvm *);
1439 #else
1440 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1441 {
1442 	return -EINVAL;
1443 }
1444 
1445 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1446 #endif
1447 
1448 #else
1449 
1450 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1451 
1452 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1453 {
1454 	return -EINVAL;
1455 }
1456 
1457 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1458 
1459 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1460 static inline void kvm_irq_routing_update(struct kvm *kvm)
1461 {
1462 }
1463 #endif
1464 
1465 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1466 {
1467 	return -ENOSYS;
1468 }
1469 
1470 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1471 
1472 void kvm_arch_irq_routing_update(struct kvm *kvm);
1473 
1474 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1475 {
1476 	/*
1477 	 * Ensure the rest of the request is published to kvm_check_request's
1478 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1479 	 */
1480 	smp_wmb();
1481 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1482 }
1483 
1484 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1485 {
1486 	return READ_ONCE(vcpu->requests);
1487 }
1488 
1489 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1490 {
1491 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1492 }
1493 
1494 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1495 {
1496 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1497 }
1498 
1499 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1500 {
1501 	if (kvm_test_request(req, vcpu)) {
1502 		kvm_clear_request(req, vcpu);
1503 
1504 		/*
1505 		 * Ensure the rest of the request is visible to kvm_check_request's
1506 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1507 		 */
1508 		smp_mb__after_atomic();
1509 		return true;
1510 	} else {
1511 		return false;
1512 	}
1513 }
1514 
1515 extern bool kvm_rebooting;
1516 
1517 extern unsigned int halt_poll_ns;
1518 extern unsigned int halt_poll_ns_grow;
1519 extern unsigned int halt_poll_ns_grow_start;
1520 extern unsigned int halt_poll_ns_shrink;
1521 
1522 struct kvm_device {
1523 	const struct kvm_device_ops *ops;
1524 	struct kvm *kvm;
1525 	void *private;
1526 	struct list_head vm_node;
1527 };
1528 
1529 /* create, destroy, and name are mandatory */
1530 struct kvm_device_ops {
1531 	const char *name;
1532 
1533 	/*
1534 	 * create is called holding kvm->lock and any operations not suitable
1535 	 * to do while holding the lock should be deferred to init (see
1536 	 * below).
1537 	 */
1538 	int (*create)(struct kvm_device *dev, u32 type);
1539 
1540 	/*
1541 	 * init is called after create if create is successful and is called
1542 	 * outside of holding kvm->lock.
1543 	 */
1544 	void (*init)(struct kvm_device *dev);
1545 
1546 	/*
1547 	 * Destroy is responsible for freeing dev.
1548 	 *
1549 	 * Destroy may be called before or after destructors are called
1550 	 * on emulated I/O regions, depending on whether a reference is
1551 	 * held by a vcpu or other kvm component that gets destroyed
1552 	 * after the emulated I/O.
1553 	 */
1554 	void (*destroy)(struct kvm_device *dev);
1555 
1556 	/*
1557 	 * Release is an alternative method to free the device. It is
1558 	 * called when the device file descriptor is closed. Once
1559 	 * release is called, the destroy method will not be called
1560 	 * anymore as the device is removed from the device list of
1561 	 * the VM. kvm->lock is held.
1562 	 */
1563 	void (*release)(struct kvm_device *dev);
1564 
1565 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1566 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1567 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1568 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1569 		      unsigned long arg);
1570 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1571 };
1572 
1573 void kvm_device_get(struct kvm_device *dev);
1574 void kvm_device_put(struct kvm_device *dev);
1575 struct kvm_device *kvm_device_from_filp(struct file *filp);
1576 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1577 void kvm_unregister_device_ops(u32 type);
1578 
1579 extern struct kvm_device_ops kvm_mpic_ops;
1580 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1581 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1582 
1583 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1584 
1585 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1586 {
1587 	vcpu->spin_loop.in_spin_loop = val;
1588 }
1589 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1590 {
1591 	vcpu->spin_loop.dy_eligible = val;
1592 }
1593 
1594 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1595 
1596 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1597 {
1598 }
1599 
1600 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1601 {
1602 }
1603 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1604 
1605 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1606 {
1607 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1608 		!(memslot->flags & KVM_MEMSLOT_INVALID));
1609 }
1610 
1611 struct kvm_vcpu *kvm_get_running_vcpu(void);
1612 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1613 
1614 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1615 bool kvm_arch_has_irq_bypass(void);
1616 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1617 			   struct irq_bypass_producer *);
1618 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1619 			   struct irq_bypass_producer *);
1620 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1621 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1622 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1623 				  uint32_t guest_irq, bool set);
1624 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1625 
1626 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1627 /* If we wakeup during the poll time, was it a sucessful poll? */
1628 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1629 {
1630 	return vcpu->valid_wakeup;
1631 }
1632 
1633 #else
1634 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1635 {
1636 	return true;
1637 }
1638 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1639 
1640 #ifdef CONFIG_HAVE_KVM_NO_POLL
1641 /* Callback that tells if we must not poll */
1642 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1643 #else
1644 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1645 {
1646 	return false;
1647 }
1648 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1649 
1650 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1651 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1652 			       unsigned int ioctl, unsigned long arg);
1653 #else
1654 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1655 					     unsigned int ioctl,
1656 					     unsigned long arg)
1657 {
1658 	return -ENOIOCTLCMD;
1659 }
1660 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1661 
1662 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1663 					    unsigned long start, unsigned long end);
1664 
1665 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1666 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1667 #else
1668 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1669 {
1670 	return 0;
1671 }
1672 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1673 
1674 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1675 
1676 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1677 				uintptr_t data, const char *name,
1678 				struct task_struct **thread_ptr);
1679 
1680 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1681 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1682 {
1683 	vcpu->run->exit_reason = KVM_EXIT_INTR;
1684 	vcpu->stat.signal_exits++;
1685 }
1686 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1687 
1688 /*
1689  * This defines how many reserved entries we want to keep before we
1690  * kick the vcpu to the userspace to avoid dirty ring full.  This
1691  * value can be tuned to higher if e.g. PML is enabled on the host.
1692  */
1693 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
1694 
1695 /* Max number of entries allowed for each kvm dirty ring */
1696 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
1697 
1698 #endif
1699