1 #ifndef __KVM_HOST_H 2 #define __KVM_HOST_H 3 4 /* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9 #include <linux/types.h> 10 #include <linux/hardirq.h> 11 #include <linux/list.h> 12 #include <linux/mutex.h> 13 #include <linux/spinlock.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/bug.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/preempt.h> 20 #include <linux/msi.h> 21 #include <linux/slab.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <asm/signal.h> 29 30 #include <linux/kvm.h> 31 #include <linux/kvm_para.h> 32 33 #include <linux/kvm_types.h> 34 35 #include <asm/kvm_host.h> 36 37 /* 38 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 39 * in kvm, other bits are visible for userspace which are defined in 40 * include/linux/kvm_h. 41 */ 42 #define KVM_MEMSLOT_INVALID (1UL << 16) 43 #define KVM_MEMSLOT_INCOHERENT (1UL << 17) 44 45 /* Two fragments for cross MMIO pages. */ 46 #define KVM_MAX_MMIO_FRAGMENTS 2 47 48 #ifndef KVM_ADDRESS_SPACE_NUM 49 #define KVM_ADDRESS_SPACE_NUM 1 50 #endif 51 52 /* 53 * For the normal pfn, the highest 12 bits should be zero, 54 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 55 * mask bit 63 to indicate the noslot pfn. 56 */ 57 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 58 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 59 #define KVM_PFN_NOSLOT (0x1ULL << 63) 60 61 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 62 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 63 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 64 65 /* 66 * error pfns indicate that the gfn is in slot but faild to 67 * translate it to pfn on host. 68 */ 69 static inline bool is_error_pfn(pfn_t pfn) 70 { 71 return !!(pfn & KVM_PFN_ERR_MASK); 72 } 73 74 /* 75 * error_noslot pfns indicate that the gfn can not be 76 * translated to pfn - it is not in slot or failed to 77 * translate it to pfn. 78 */ 79 static inline bool is_error_noslot_pfn(pfn_t pfn) 80 { 81 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 82 } 83 84 /* noslot pfn indicates that the gfn is not in slot. */ 85 static inline bool is_noslot_pfn(pfn_t pfn) 86 { 87 return pfn == KVM_PFN_NOSLOT; 88 } 89 90 /* 91 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 92 * provide own defines and kvm_is_error_hva 93 */ 94 #ifndef KVM_HVA_ERR_BAD 95 96 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 97 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 98 99 static inline bool kvm_is_error_hva(unsigned long addr) 100 { 101 return addr >= PAGE_OFFSET; 102 } 103 104 #endif 105 106 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 107 108 static inline bool is_error_page(struct page *page) 109 { 110 return IS_ERR(page); 111 } 112 113 /* 114 * vcpu->requests bit members 115 */ 116 #define KVM_REQ_TLB_FLUSH 0 117 #define KVM_REQ_MIGRATE_TIMER 1 118 #define KVM_REQ_REPORT_TPR_ACCESS 2 119 #define KVM_REQ_MMU_RELOAD 3 120 #define KVM_REQ_TRIPLE_FAULT 4 121 #define KVM_REQ_PENDING_TIMER 5 122 #define KVM_REQ_UNHALT 6 123 #define KVM_REQ_MMU_SYNC 7 124 #define KVM_REQ_CLOCK_UPDATE 8 125 #define KVM_REQ_KICK 9 126 #define KVM_REQ_DEACTIVATE_FPU 10 127 #define KVM_REQ_EVENT 11 128 #define KVM_REQ_APF_HALT 12 129 #define KVM_REQ_STEAL_UPDATE 13 130 #define KVM_REQ_NMI 14 131 #define KVM_REQ_PMU 15 132 #define KVM_REQ_PMI 16 133 #define KVM_REQ_WATCHDOG 17 134 #define KVM_REQ_MASTERCLOCK_UPDATE 18 135 #define KVM_REQ_MCLOCK_INPROGRESS 19 136 #define KVM_REQ_EPR_EXIT 20 137 #define KVM_REQ_SCAN_IOAPIC 21 138 #define KVM_REQ_GLOBAL_CLOCK_UPDATE 22 139 #define KVM_REQ_ENABLE_IBS 23 140 #define KVM_REQ_DISABLE_IBS 24 141 #define KVM_REQ_APIC_PAGE_RELOAD 25 142 #define KVM_REQ_SMI 26 143 #define KVM_REQ_HV_CRASH 27 144 #define KVM_REQ_IOAPIC_EOI_EXIT 28 145 #define KVM_REQ_HV_RESET 29 146 147 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 148 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 149 150 extern struct kmem_cache *kvm_vcpu_cache; 151 152 extern spinlock_t kvm_lock; 153 extern struct list_head vm_list; 154 155 struct kvm_io_range { 156 gpa_t addr; 157 int len; 158 struct kvm_io_device *dev; 159 }; 160 161 #define NR_IOBUS_DEVS 1000 162 163 struct kvm_io_bus { 164 int dev_count; 165 int ioeventfd_count; 166 struct kvm_io_range range[]; 167 }; 168 169 enum kvm_bus { 170 KVM_MMIO_BUS, 171 KVM_PIO_BUS, 172 KVM_VIRTIO_CCW_NOTIFY_BUS, 173 KVM_FAST_MMIO_BUS, 174 KVM_NR_BUSES 175 }; 176 177 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 178 int len, const void *val); 179 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 180 gpa_t addr, int len, const void *val, long cookie); 181 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 182 int len, void *val); 183 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 184 int len, struct kvm_io_device *dev); 185 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 186 struct kvm_io_device *dev); 187 188 #ifdef CONFIG_KVM_ASYNC_PF 189 struct kvm_async_pf { 190 struct work_struct work; 191 struct list_head link; 192 struct list_head queue; 193 struct kvm_vcpu *vcpu; 194 struct mm_struct *mm; 195 gva_t gva; 196 unsigned long addr; 197 struct kvm_arch_async_pf arch; 198 bool wakeup_all; 199 }; 200 201 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 202 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 203 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 204 struct kvm_arch_async_pf *arch); 205 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 206 #endif 207 208 enum { 209 OUTSIDE_GUEST_MODE, 210 IN_GUEST_MODE, 211 EXITING_GUEST_MODE, 212 READING_SHADOW_PAGE_TABLES, 213 }; 214 215 /* 216 * Sometimes a large or cross-page mmio needs to be broken up into separate 217 * exits for userspace servicing. 218 */ 219 struct kvm_mmio_fragment { 220 gpa_t gpa; 221 void *data; 222 unsigned len; 223 }; 224 225 struct kvm_vcpu { 226 struct kvm *kvm; 227 #ifdef CONFIG_PREEMPT_NOTIFIERS 228 struct preempt_notifier preempt_notifier; 229 #endif 230 int cpu; 231 int vcpu_id; 232 int srcu_idx; 233 int mode; 234 unsigned long requests; 235 unsigned long guest_debug; 236 237 int pre_pcpu; 238 struct list_head blocked_vcpu_list; 239 240 struct mutex mutex; 241 struct kvm_run *run; 242 243 int fpu_active; 244 int guest_fpu_loaded, guest_xcr0_loaded; 245 unsigned char fpu_counter; 246 wait_queue_head_t wq; 247 struct pid *pid; 248 int sigset_active; 249 sigset_t sigset; 250 struct kvm_vcpu_stat stat; 251 unsigned int halt_poll_ns; 252 253 #ifdef CONFIG_HAS_IOMEM 254 int mmio_needed; 255 int mmio_read_completed; 256 int mmio_is_write; 257 int mmio_cur_fragment; 258 int mmio_nr_fragments; 259 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 260 #endif 261 262 #ifdef CONFIG_KVM_ASYNC_PF 263 struct { 264 u32 queued; 265 struct list_head queue; 266 struct list_head done; 267 spinlock_t lock; 268 } async_pf; 269 #endif 270 271 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 272 /* 273 * Cpu relax intercept or pause loop exit optimization 274 * in_spin_loop: set when a vcpu does a pause loop exit 275 * or cpu relax intercepted. 276 * dy_eligible: indicates whether vcpu is eligible for directed yield. 277 */ 278 struct { 279 bool in_spin_loop; 280 bool dy_eligible; 281 } spin_loop; 282 #endif 283 bool preempted; 284 struct kvm_vcpu_arch arch; 285 }; 286 287 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 288 { 289 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 290 } 291 292 /* 293 * Some of the bitops functions do not support too long bitmaps. 294 * This number must be determined not to exceed such limits. 295 */ 296 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 297 298 struct kvm_memory_slot { 299 gfn_t base_gfn; 300 unsigned long npages; 301 unsigned long *dirty_bitmap; 302 struct kvm_arch_memory_slot arch; 303 unsigned long userspace_addr; 304 u32 flags; 305 short id; 306 }; 307 308 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 309 { 310 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 311 } 312 313 struct kvm_s390_adapter_int { 314 u64 ind_addr; 315 u64 summary_addr; 316 u64 ind_offset; 317 u32 summary_offset; 318 u32 adapter_id; 319 }; 320 321 struct kvm_kernel_irq_routing_entry { 322 u32 gsi; 323 u32 type; 324 int (*set)(struct kvm_kernel_irq_routing_entry *e, 325 struct kvm *kvm, int irq_source_id, int level, 326 bool line_status); 327 union { 328 struct { 329 unsigned irqchip; 330 unsigned pin; 331 } irqchip; 332 struct msi_msg msi; 333 struct kvm_s390_adapter_int adapter; 334 }; 335 struct hlist_node link; 336 }; 337 338 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 339 struct kvm_irq_routing_table { 340 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 341 u32 nr_rt_entries; 342 /* 343 * Array indexed by gsi. Each entry contains list of irq chips 344 * the gsi is connected to. 345 */ 346 struct hlist_head map[0]; 347 }; 348 #endif 349 350 #ifndef KVM_PRIVATE_MEM_SLOTS 351 #define KVM_PRIVATE_MEM_SLOTS 0 352 #endif 353 354 #ifndef KVM_MEM_SLOTS_NUM 355 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 356 #endif 357 358 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 359 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 360 { 361 return 0; 362 } 363 #endif 364 365 /* 366 * Note: 367 * memslots are not sorted by id anymore, please use id_to_memslot() 368 * to get the memslot by its id. 369 */ 370 struct kvm_memslots { 371 u64 generation; 372 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 373 /* The mapping table from slot id to the index in memslots[]. */ 374 short id_to_index[KVM_MEM_SLOTS_NUM]; 375 atomic_t lru_slot; 376 int used_slots; 377 }; 378 379 struct kvm { 380 spinlock_t mmu_lock; 381 struct mutex slots_lock; 382 struct mm_struct *mm; /* userspace tied to this vm */ 383 struct kvm_memslots *memslots[KVM_ADDRESS_SPACE_NUM]; 384 struct srcu_struct srcu; 385 struct srcu_struct irq_srcu; 386 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 387 atomic_t online_vcpus; 388 int last_boosted_vcpu; 389 struct list_head vm_list; 390 struct mutex lock; 391 struct kvm_io_bus *buses[KVM_NR_BUSES]; 392 #ifdef CONFIG_HAVE_KVM_EVENTFD 393 struct { 394 spinlock_t lock; 395 struct list_head items; 396 struct list_head resampler_list; 397 struct mutex resampler_lock; 398 } irqfds; 399 struct list_head ioeventfds; 400 #endif 401 struct kvm_vm_stat stat; 402 struct kvm_arch arch; 403 atomic_t users_count; 404 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 405 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 406 spinlock_t ring_lock; 407 struct list_head coalesced_zones; 408 #endif 409 410 struct mutex irq_lock; 411 #ifdef CONFIG_HAVE_KVM_IRQCHIP 412 /* 413 * Update side is protected by irq_lock. 414 */ 415 struct kvm_irq_routing_table __rcu *irq_routing; 416 #endif 417 #ifdef CONFIG_HAVE_KVM_IRQFD 418 struct hlist_head irq_ack_notifier_list; 419 #endif 420 421 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 422 struct mmu_notifier mmu_notifier; 423 unsigned long mmu_notifier_seq; 424 long mmu_notifier_count; 425 #endif 426 long tlbs_dirty; 427 struct list_head devices; 428 }; 429 430 #define kvm_err(fmt, ...) \ 431 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 432 #define kvm_info(fmt, ...) \ 433 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 434 #define kvm_debug(fmt, ...) \ 435 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 436 #define kvm_pr_unimpl(fmt, ...) \ 437 pr_err_ratelimited("kvm [%i]: " fmt, \ 438 task_tgid_nr(current), ## __VA_ARGS__) 439 440 /* The guest did something we don't support. */ 441 #define vcpu_unimpl(vcpu, fmt, ...) \ 442 kvm_pr_unimpl("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 443 444 #define vcpu_debug(vcpu, fmt, ...) \ 445 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 446 447 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 448 { 449 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case 450 * the caller has read kvm->online_vcpus before (as is the case 451 * for kvm_for_each_vcpu, for example). 452 */ 453 smp_rmb(); 454 return kvm->vcpus[i]; 455 } 456 457 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 458 for (idx = 0; \ 459 idx < atomic_read(&kvm->online_vcpus) && \ 460 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 461 idx++) 462 463 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 464 { 465 struct kvm_vcpu *vcpu; 466 int i; 467 468 kvm_for_each_vcpu(i, vcpu, kvm) 469 if (vcpu->vcpu_id == id) 470 return vcpu; 471 return NULL; 472 } 473 474 #define kvm_for_each_memslot(memslot, slots) \ 475 for (memslot = &slots->memslots[0]; \ 476 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 477 memslot++) 478 479 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 480 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 481 482 int __must_check vcpu_load(struct kvm_vcpu *vcpu); 483 void vcpu_put(struct kvm_vcpu *vcpu); 484 485 #ifdef __KVM_HAVE_IOAPIC 486 void kvm_vcpu_request_scan_ioapic(struct kvm *kvm); 487 void kvm_arch_irq_routing_update(struct kvm *kvm); 488 #else 489 static inline void kvm_vcpu_request_scan_ioapic(struct kvm *kvm) 490 { 491 } 492 static inline void kvm_arch_irq_routing_update(struct kvm *kvm) 493 { 494 } 495 #endif 496 497 #ifdef CONFIG_HAVE_KVM_IRQFD 498 int kvm_irqfd_init(void); 499 void kvm_irqfd_exit(void); 500 #else 501 static inline int kvm_irqfd_init(void) 502 { 503 return 0; 504 } 505 506 static inline void kvm_irqfd_exit(void) 507 { 508 } 509 #endif 510 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 511 struct module *module); 512 void kvm_exit(void); 513 514 void kvm_get_kvm(struct kvm *kvm); 515 void kvm_put_kvm(struct kvm *kvm); 516 517 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 518 { 519 return rcu_dereference_check(kvm->memslots[as_id], 520 srcu_read_lock_held(&kvm->srcu) 521 || lockdep_is_held(&kvm->slots_lock)); 522 } 523 524 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 525 { 526 return __kvm_memslots(kvm, 0); 527 } 528 529 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 530 { 531 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 532 533 return __kvm_memslots(vcpu->kvm, as_id); 534 } 535 536 static inline struct kvm_memory_slot * 537 id_to_memslot(struct kvm_memslots *slots, int id) 538 { 539 int index = slots->id_to_index[id]; 540 struct kvm_memory_slot *slot; 541 542 slot = &slots->memslots[index]; 543 544 WARN_ON(slot->id != id); 545 return slot; 546 } 547 548 /* 549 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 550 * - create a new memory slot 551 * - delete an existing memory slot 552 * - modify an existing memory slot 553 * -- move it in the guest physical memory space 554 * -- just change its flags 555 * 556 * Since flags can be changed by some of these operations, the following 557 * differentiation is the best we can do for __kvm_set_memory_region(): 558 */ 559 enum kvm_mr_change { 560 KVM_MR_CREATE, 561 KVM_MR_DELETE, 562 KVM_MR_MOVE, 563 KVM_MR_FLAGS_ONLY, 564 }; 565 566 int kvm_set_memory_region(struct kvm *kvm, 567 const struct kvm_userspace_memory_region *mem); 568 int __kvm_set_memory_region(struct kvm *kvm, 569 const struct kvm_userspace_memory_region *mem); 570 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 571 struct kvm_memory_slot *dont); 572 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 573 unsigned long npages); 574 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots); 575 int kvm_arch_prepare_memory_region(struct kvm *kvm, 576 struct kvm_memory_slot *memslot, 577 const struct kvm_userspace_memory_region *mem, 578 enum kvm_mr_change change); 579 void kvm_arch_commit_memory_region(struct kvm *kvm, 580 const struct kvm_userspace_memory_region *mem, 581 const struct kvm_memory_slot *old, 582 const struct kvm_memory_slot *new, 583 enum kvm_mr_change change); 584 bool kvm_largepages_enabled(void); 585 void kvm_disable_largepages(void); 586 /* flush all memory translations */ 587 void kvm_arch_flush_shadow_all(struct kvm *kvm); 588 /* flush memory translations pointing to 'slot' */ 589 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 590 struct kvm_memory_slot *slot); 591 592 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 593 struct page **pages, int nr_pages); 594 595 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 596 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 597 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 598 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 599 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 600 bool *writable); 601 void kvm_release_page_clean(struct page *page); 602 void kvm_release_page_dirty(struct page *page); 603 void kvm_set_page_accessed(struct page *page); 604 605 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 606 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 607 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 608 bool *writable); 609 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 610 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 611 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 612 bool *async, bool write_fault, bool *writable); 613 614 void kvm_release_pfn_clean(pfn_t pfn); 615 void kvm_set_pfn_dirty(pfn_t pfn); 616 void kvm_set_pfn_accessed(pfn_t pfn); 617 void kvm_get_pfn(pfn_t pfn); 618 619 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 620 int len); 621 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 622 unsigned long len); 623 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 624 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 625 void *data, unsigned long len); 626 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 627 int offset, int len); 628 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 629 unsigned long len); 630 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 631 void *data, unsigned long len); 632 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 633 gpa_t gpa, unsigned long len); 634 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 635 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 636 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 637 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 638 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 639 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 640 641 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 642 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 643 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 644 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 645 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 646 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 647 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 648 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 649 int len); 650 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 651 unsigned long len); 652 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 653 unsigned long len); 654 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 655 int offset, int len); 656 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 657 unsigned long len); 658 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 659 660 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 661 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 662 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 663 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 664 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 665 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu); 666 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu); 667 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu); 668 669 void kvm_flush_remote_tlbs(struct kvm *kvm); 670 void kvm_reload_remote_mmus(struct kvm *kvm); 671 void kvm_make_mclock_inprogress_request(struct kvm *kvm); 672 void kvm_make_scan_ioapic_request(struct kvm *kvm); 673 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 674 675 long kvm_arch_dev_ioctl(struct file *filp, 676 unsigned int ioctl, unsigned long arg); 677 long kvm_arch_vcpu_ioctl(struct file *filp, 678 unsigned int ioctl, unsigned long arg); 679 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 680 681 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 682 683 int kvm_get_dirty_log(struct kvm *kvm, 684 struct kvm_dirty_log *log, int *is_dirty); 685 686 int kvm_get_dirty_log_protect(struct kvm *kvm, 687 struct kvm_dirty_log *log, bool *is_dirty); 688 689 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 690 struct kvm_memory_slot *slot, 691 gfn_t gfn_offset, 692 unsigned long mask); 693 694 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 695 struct kvm_dirty_log *log); 696 697 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 698 bool line_status); 699 long kvm_arch_vm_ioctl(struct file *filp, 700 unsigned int ioctl, unsigned long arg); 701 702 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 703 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 704 705 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 706 struct kvm_translation *tr); 707 708 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 709 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 710 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 711 struct kvm_sregs *sregs); 712 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 713 struct kvm_sregs *sregs); 714 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 715 struct kvm_mp_state *mp_state); 716 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 717 struct kvm_mp_state *mp_state); 718 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 719 struct kvm_guest_debug *dbg); 720 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 721 722 int kvm_arch_init(void *opaque); 723 void kvm_arch_exit(void); 724 725 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 726 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 727 728 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 729 730 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 731 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 732 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 733 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 734 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 735 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 736 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 737 738 int kvm_arch_hardware_enable(void); 739 void kvm_arch_hardware_disable(void); 740 int kvm_arch_hardware_setup(void); 741 void kvm_arch_hardware_unsetup(void); 742 void kvm_arch_check_processor_compat(void *rtn); 743 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 744 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 745 746 void *kvm_kvzalloc(unsigned long size); 747 748 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 749 static inline struct kvm *kvm_arch_alloc_vm(void) 750 { 751 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 752 } 753 754 static inline void kvm_arch_free_vm(struct kvm *kvm) 755 { 756 kfree(kvm); 757 } 758 #endif 759 760 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 761 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 762 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 763 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 764 #else 765 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 766 { 767 } 768 769 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 770 { 771 } 772 773 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 774 { 775 return false; 776 } 777 #endif 778 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 779 void kvm_arch_start_assignment(struct kvm *kvm); 780 void kvm_arch_end_assignment(struct kvm *kvm); 781 bool kvm_arch_has_assigned_device(struct kvm *kvm); 782 #else 783 static inline void kvm_arch_start_assignment(struct kvm *kvm) 784 { 785 } 786 787 static inline void kvm_arch_end_assignment(struct kvm *kvm) 788 { 789 } 790 791 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 792 { 793 return false; 794 } 795 #endif 796 797 static inline wait_queue_head_t *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 798 { 799 #ifdef __KVM_HAVE_ARCH_WQP 800 return vcpu->arch.wqp; 801 #else 802 return &vcpu->wq; 803 #endif 804 } 805 806 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 807 /* 808 * returns true if the virtual interrupt controller is initialized and 809 * ready to accept virtual IRQ. On some architectures the virtual interrupt 810 * controller is dynamically instantiated and this is not always true. 811 */ 812 bool kvm_arch_intc_initialized(struct kvm *kvm); 813 #else 814 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 815 { 816 return true; 817 } 818 #endif 819 820 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 821 void kvm_arch_destroy_vm(struct kvm *kvm); 822 void kvm_arch_sync_events(struct kvm *kvm); 823 824 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 825 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 826 827 bool kvm_is_reserved_pfn(pfn_t pfn); 828 829 struct kvm_irq_ack_notifier { 830 struct hlist_node link; 831 unsigned gsi; 832 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 833 }; 834 835 int kvm_irq_map_gsi(struct kvm *kvm, 836 struct kvm_kernel_irq_routing_entry *entries, int gsi); 837 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 838 839 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 840 bool line_status); 841 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 842 int irq_source_id, int level, bool line_status); 843 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 844 struct kvm *kvm, int irq_source_id, 845 int level, bool line_status); 846 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 847 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 848 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 849 void kvm_register_irq_ack_notifier(struct kvm *kvm, 850 struct kvm_irq_ack_notifier *kian); 851 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 852 struct kvm_irq_ack_notifier *kian); 853 int kvm_request_irq_source_id(struct kvm *kvm); 854 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 855 856 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 857 int kvm_iommu_map_pages(struct kvm *kvm, struct kvm_memory_slot *slot); 858 void kvm_iommu_unmap_pages(struct kvm *kvm, struct kvm_memory_slot *slot); 859 #else 860 static inline int kvm_iommu_map_pages(struct kvm *kvm, 861 struct kvm_memory_slot *slot) 862 { 863 return 0; 864 } 865 866 static inline void kvm_iommu_unmap_pages(struct kvm *kvm, 867 struct kvm_memory_slot *slot) 868 { 869 } 870 #endif 871 872 /* must be called with irqs disabled */ 873 static inline void __kvm_guest_enter(void) 874 { 875 guest_enter(); 876 /* KVM does not hold any references to rcu protected data when it 877 * switches CPU into a guest mode. In fact switching to a guest mode 878 * is very similar to exiting to userspace from rcu point of view. In 879 * addition CPU may stay in a guest mode for quite a long time (up to 880 * one time slice). Lets treat guest mode as quiescent state, just like 881 * we do with user-mode execution. 882 */ 883 if (!context_tracking_cpu_is_enabled()) 884 rcu_virt_note_context_switch(smp_processor_id()); 885 } 886 887 /* must be called with irqs disabled */ 888 static inline void __kvm_guest_exit(void) 889 { 890 guest_exit(); 891 } 892 893 static inline void kvm_guest_enter(void) 894 { 895 unsigned long flags; 896 897 local_irq_save(flags); 898 __kvm_guest_enter(); 899 local_irq_restore(flags); 900 } 901 902 static inline void kvm_guest_exit(void) 903 { 904 unsigned long flags; 905 906 local_irq_save(flags); 907 __kvm_guest_exit(); 908 local_irq_restore(flags); 909 } 910 911 /* 912 * search_memslots() and __gfn_to_memslot() are here because they are 913 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 914 * gfn_to_memslot() itself isn't here as an inline because that would 915 * bloat other code too much. 916 */ 917 static inline struct kvm_memory_slot * 918 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 919 { 920 int start = 0, end = slots->used_slots; 921 int slot = atomic_read(&slots->lru_slot); 922 struct kvm_memory_slot *memslots = slots->memslots; 923 924 if (gfn >= memslots[slot].base_gfn && 925 gfn < memslots[slot].base_gfn + memslots[slot].npages) 926 return &memslots[slot]; 927 928 while (start < end) { 929 slot = start + (end - start) / 2; 930 931 if (gfn >= memslots[slot].base_gfn) 932 end = slot; 933 else 934 start = slot + 1; 935 } 936 937 if (gfn >= memslots[start].base_gfn && 938 gfn < memslots[start].base_gfn + memslots[start].npages) { 939 atomic_set(&slots->lru_slot, start); 940 return &memslots[start]; 941 } 942 943 return NULL; 944 } 945 946 static inline struct kvm_memory_slot * 947 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 948 { 949 return search_memslots(slots, gfn); 950 } 951 952 static inline unsigned long 953 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 954 { 955 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 956 } 957 958 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 959 { 960 return gfn_to_memslot(kvm, gfn)->id; 961 } 962 963 static inline gfn_t 964 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 965 { 966 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 967 968 return slot->base_gfn + gfn_offset; 969 } 970 971 static inline gpa_t gfn_to_gpa(gfn_t gfn) 972 { 973 return (gpa_t)gfn << PAGE_SHIFT; 974 } 975 976 static inline gfn_t gpa_to_gfn(gpa_t gpa) 977 { 978 return (gfn_t)(gpa >> PAGE_SHIFT); 979 } 980 981 static inline hpa_t pfn_to_hpa(pfn_t pfn) 982 { 983 return (hpa_t)pfn << PAGE_SHIFT; 984 } 985 986 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 987 { 988 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 989 990 return kvm_is_error_hva(hva); 991 } 992 993 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu) 994 { 995 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests); 996 } 997 998 enum kvm_stat_kind { 999 KVM_STAT_VM, 1000 KVM_STAT_VCPU, 1001 }; 1002 1003 struct kvm_stats_debugfs_item { 1004 const char *name; 1005 int offset; 1006 enum kvm_stat_kind kind; 1007 struct dentry *dentry; 1008 }; 1009 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1010 extern struct dentry *kvm_debugfs_dir; 1011 1012 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1013 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1014 { 1015 if (unlikely(kvm->mmu_notifier_count)) 1016 return 1; 1017 /* 1018 * Ensure the read of mmu_notifier_count happens before the read 1019 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1020 * mmu_notifier_invalidate_range_end to make sure that the caller 1021 * either sees the old (non-zero) value of mmu_notifier_count or 1022 * the new (incremented) value of mmu_notifier_seq. 1023 * PowerPC Book3s HV KVM calls this under a per-page lock 1024 * rather than under kvm->mmu_lock, for scalability, so 1025 * can't rely on kvm->mmu_lock to keep things ordered. 1026 */ 1027 smp_rmb(); 1028 if (kvm->mmu_notifier_seq != mmu_seq) 1029 return 1; 1030 return 0; 1031 } 1032 #endif 1033 1034 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1035 1036 #ifdef CONFIG_S390 1037 #define KVM_MAX_IRQ_ROUTES 4096 //FIXME: we can have more than that... 1038 #else 1039 #define KVM_MAX_IRQ_ROUTES 1024 1040 #endif 1041 1042 int kvm_setup_default_irq_routing(struct kvm *kvm); 1043 int kvm_setup_empty_irq_routing(struct kvm *kvm); 1044 int kvm_set_irq_routing(struct kvm *kvm, 1045 const struct kvm_irq_routing_entry *entries, 1046 unsigned nr, 1047 unsigned flags); 1048 int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e, 1049 const struct kvm_irq_routing_entry *ue); 1050 void kvm_free_irq_routing(struct kvm *kvm); 1051 1052 #else 1053 1054 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1055 1056 #endif 1057 1058 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1059 1060 #ifdef CONFIG_HAVE_KVM_EVENTFD 1061 1062 void kvm_eventfd_init(struct kvm *kvm); 1063 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1064 1065 #ifdef CONFIG_HAVE_KVM_IRQFD 1066 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1067 void kvm_irqfd_release(struct kvm *kvm); 1068 void kvm_irq_routing_update(struct kvm *); 1069 #else 1070 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1071 { 1072 return -EINVAL; 1073 } 1074 1075 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1076 #endif 1077 1078 #else 1079 1080 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1081 1082 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1083 { 1084 return -EINVAL; 1085 } 1086 1087 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1088 1089 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1090 static inline void kvm_irq_routing_update(struct kvm *kvm) 1091 { 1092 } 1093 #endif 1094 1095 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1096 { 1097 return -ENOSYS; 1098 } 1099 1100 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1101 1102 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 1103 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu); 1104 #else 1105 static inline bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) { return true; } 1106 #endif 1107 1108 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1109 { 1110 set_bit(req, &vcpu->requests); 1111 } 1112 1113 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1114 { 1115 if (test_bit(req, &vcpu->requests)) { 1116 clear_bit(req, &vcpu->requests); 1117 return true; 1118 } else { 1119 return false; 1120 } 1121 } 1122 1123 extern bool kvm_rebooting; 1124 1125 struct kvm_device { 1126 struct kvm_device_ops *ops; 1127 struct kvm *kvm; 1128 void *private; 1129 struct list_head vm_node; 1130 }; 1131 1132 /* create, destroy, and name are mandatory */ 1133 struct kvm_device_ops { 1134 const char *name; 1135 int (*create)(struct kvm_device *dev, u32 type); 1136 1137 /* 1138 * Destroy is responsible for freeing dev. 1139 * 1140 * Destroy may be called before or after destructors are called 1141 * on emulated I/O regions, depending on whether a reference is 1142 * held by a vcpu or other kvm component that gets destroyed 1143 * after the emulated I/O. 1144 */ 1145 void (*destroy)(struct kvm_device *dev); 1146 1147 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1148 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1149 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1150 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1151 unsigned long arg); 1152 }; 1153 1154 void kvm_device_get(struct kvm_device *dev); 1155 void kvm_device_put(struct kvm_device *dev); 1156 struct kvm_device *kvm_device_from_filp(struct file *filp); 1157 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1158 void kvm_unregister_device_ops(u32 type); 1159 1160 extern struct kvm_device_ops kvm_mpic_ops; 1161 extern struct kvm_device_ops kvm_xics_ops; 1162 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1163 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1164 1165 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1166 1167 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1168 { 1169 vcpu->spin_loop.in_spin_loop = val; 1170 } 1171 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1172 { 1173 vcpu->spin_loop.dy_eligible = val; 1174 } 1175 1176 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1177 1178 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1179 { 1180 } 1181 1182 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1183 { 1184 } 1185 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1186 1187 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1188 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1189 struct irq_bypass_producer *); 1190 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1191 struct irq_bypass_producer *); 1192 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1193 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1194 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1195 uint32_t guest_irq, bool set); 1196 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1197 1198 #endif 1199