xref: /linux-6.15/include/linux/kvm_host.h (revision c42e2f07)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 
101 /*
102  * error pfns indicate that the gfn is in slot but faild to
103  * translate it to pfn on host.
104  */
105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 	return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109 
110 /*
111  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112  * by a pending signal.  Note, the signal may or may not be fatal.
113  */
114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 	return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118 
119 /*
120  * error_noslot pfns indicate that the gfn can not be
121  * translated to pfn - it is not in slot or failed to
122  * translate it to pfn.
123  */
124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128 
129 /* noslot pfn indicates that the gfn is not in slot. */
130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 	return pfn == KVM_PFN_NOSLOT;
133 }
134 
135 /*
136  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137  * provide own defines and kvm_is_error_hva
138  */
139 #ifndef KVM_HVA_ERR_BAD
140 
141 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
143 
144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 	return addr >= PAGE_OFFSET;
147 }
148 
149 #endif
150 
151 static inline bool kvm_is_error_gpa(gpa_t gpa)
152 {
153 	return gpa == INVALID_GPA;
154 }
155 
156 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
157 
158 static inline bool is_error_page(struct page *page)
159 {
160 	return IS_ERR(page);
161 }
162 
163 #define KVM_REQUEST_MASK           GENMASK(7,0)
164 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
165 #define KVM_REQUEST_WAIT           BIT(9)
166 #define KVM_REQUEST_NO_ACTION      BIT(10)
167 /*
168  * Architecture-independent vcpu->requests bit members
169  * Bits 3-7 are reserved for more arch-independent bits.
170  */
171 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173 #define KVM_REQ_UNBLOCK			2
174 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
175 #define KVM_REQUEST_ARCH_BASE		8
176 
177 /*
178  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
182  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183  * guarantee the vCPU received an IPI and has actually exited guest mode.
184  */
185 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186 
187 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
188 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
189 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190 })
191 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
192 
193 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
194 				 unsigned long *vcpu_bitmap);
195 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
196 
197 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
198 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
199 
200 extern struct mutex kvm_lock;
201 extern struct list_head vm_list;
202 
203 struct kvm_io_range {
204 	gpa_t addr;
205 	int len;
206 	struct kvm_io_device *dev;
207 };
208 
209 #define NR_IOBUS_DEVS 1000
210 
211 struct kvm_io_bus {
212 	int dev_count;
213 	int ioeventfd_count;
214 	struct kvm_io_range range[];
215 };
216 
217 enum kvm_bus {
218 	KVM_MMIO_BUS,
219 	KVM_PIO_BUS,
220 	KVM_VIRTIO_CCW_NOTIFY_BUS,
221 	KVM_FAST_MMIO_BUS,
222 	KVM_NR_BUSES
223 };
224 
225 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
226 		     int len, const void *val);
227 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
228 			    gpa_t addr, int len, const void *val, long cookie);
229 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
230 		    int len, void *val);
231 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
232 			    int len, struct kvm_io_device *dev);
233 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234 			      struct kvm_io_device *dev);
235 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
236 					 gpa_t addr);
237 
238 #ifdef CONFIG_KVM_ASYNC_PF
239 struct kvm_async_pf {
240 	struct work_struct work;
241 	struct list_head link;
242 	struct list_head queue;
243 	struct kvm_vcpu *vcpu;
244 	gpa_t cr2_or_gpa;
245 	unsigned long addr;
246 	struct kvm_arch_async_pf arch;
247 	bool   wakeup_all;
248 	bool notpresent_injected;
249 };
250 
251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254 			unsigned long hva, struct kvm_arch_async_pf *arch);
255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256 #endif
257 
258 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
259 union kvm_mmu_notifier_arg {
260 	unsigned long attributes;
261 };
262 
263 struct kvm_gfn_range {
264 	struct kvm_memory_slot *slot;
265 	gfn_t start;
266 	gfn_t end;
267 	union kvm_mmu_notifier_arg arg;
268 	bool may_block;
269 };
270 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
271 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
272 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
273 #endif
274 
275 enum {
276 	OUTSIDE_GUEST_MODE,
277 	IN_GUEST_MODE,
278 	EXITING_GUEST_MODE,
279 	READING_SHADOW_PAGE_TABLES,
280 };
281 
282 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
283 
284 struct kvm_host_map {
285 	/*
286 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287 	 * a 'struct page' for it. When using mem= kernel parameter some memory
288 	 * can be used as guest memory but they are not managed by host
289 	 * kernel).
290 	 * If 'pfn' is not managed by the host kernel, this field is
291 	 * initialized to KVM_UNMAPPED_PAGE.
292 	 */
293 	struct page *page;
294 	void *hva;
295 	kvm_pfn_t pfn;
296 	kvm_pfn_t gfn;
297 };
298 
299 /*
300  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301  * directly to check for that.
302  */
303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304 {
305 	return !!map->hva;
306 }
307 
308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309 {
310 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
311 }
312 
313 /*
314  * Sometimes a large or cross-page mmio needs to be broken up into separate
315  * exits for userspace servicing.
316  */
317 struct kvm_mmio_fragment {
318 	gpa_t gpa;
319 	void *data;
320 	unsigned len;
321 };
322 
323 struct kvm_vcpu {
324 	struct kvm *kvm;
325 #ifdef CONFIG_PREEMPT_NOTIFIERS
326 	struct preempt_notifier preempt_notifier;
327 #endif
328 	int cpu;
329 	int vcpu_id; /* id given by userspace at creation */
330 	int vcpu_idx; /* index into kvm->vcpu_array */
331 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
332 #ifdef CONFIG_PROVE_RCU
333 	int srcu_depth;
334 #endif
335 	int mode;
336 	u64 requests;
337 	unsigned long guest_debug;
338 
339 	struct mutex mutex;
340 	struct kvm_run *run;
341 
342 #ifndef __KVM_HAVE_ARCH_WQP
343 	struct rcuwait wait;
344 #endif
345 	struct pid __rcu *pid;
346 	int sigset_active;
347 	sigset_t sigset;
348 	unsigned int halt_poll_ns;
349 	bool valid_wakeup;
350 
351 #ifdef CONFIG_HAS_IOMEM
352 	int mmio_needed;
353 	int mmio_read_completed;
354 	int mmio_is_write;
355 	int mmio_cur_fragment;
356 	int mmio_nr_fragments;
357 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
358 #endif
359 
360 #ifdef CONFIG_KVM_ASYNC_PF
361 	struct {
362 		u32 queued;
363 		struct list_head queue;
364 		struct list_head done;
365 		spinlock_t lock;
366 	} async_pf;
367 #endif
368 
369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370 	/*
371 	 * Cpu relax intercept or pause loop exit optimization
372 	 * in_spin_loop: set when a vcpu does a pause loop exit
373 	 *  or cpu relax intercepted.
374 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
375 	 */
376 	struct {
377 		bool in_spin_loop;
378 		bool dy_eligible;
379 	} spin_loop;
380 #endif
381 	bool wants_to_run;
382 	bool preempted;
383 	bool ready;
384 	bool scheduled_out;
385 	struct kvm_vcpu_arch arch;
386 	struct kvm_vcpu_stat stat;
387 	char stats_id[KVM_STATS_NAME_SIZE];
388 	struct kvm_dirty_ring dirty_ring;
389 
390 	/*
391 	 * The most recently used memslot by this vCPU and the slots generation
392 	 * for which it is valid.
393 	 * No wraparound protection is needed since generations won't overflow in
394 	 * thousands of years, even assuming 1M memslot operations per second.
395 	 */
396 	struct kvm_memory_slot *last_used_slot;
397 	u64 last_used_slot_gen;
398 };
399 
400 /*
401  * Start accounting time towards a guest.
402  * Must be called before entering guest context.
403  */
404 static __always_inline void guest_timing_enter_irqoff(void)
405 {
406 	/*
407 	 * This is running in ioctl context so its safe to assume that it's the
408 	 * stime pending cputime to flush.
409 	 */
410 	instrumentation_begin();
411 	vtime_account_guest_enter();
412 	instrumentation_end();
413 }
414 
415 /*
416  * Enter guest context and enter an RCU extended quiescent state.
417  *
418  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
419  * unsafe to use any code which may directly or indirectly use RCU, tracing
420  * (including IRQ flag tracing), or lockdep. All code in this period must be
421  * non-instrumentable.
422  */
423 static __always_inline void guest_context_enter_irqoff(void)
424 {
425 	/*
426 	 * KVM does not hold any references to rcu protected data when it
427 	 * switches CPU into a guest mode. In fact switching to a guest mode
428 	 * is very similar to exiting to userspace from rcu point of view. In
429 	 * addition CPU may stay in a guest mode for quite a long time (up to
430 	 * one time slice). Lets treat guest mode as quiescent state, just like
431 	 * we do with user-mode execution.
432 	 */
433 	if (!context_tracking_guest_enter()) {
434 		instrumentation_begin();
435 		rcu_virt_note_context_switch();
436 		instrumentation_end();
437 	}
438 }
439 
440 /*
441  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
442  * guest_state_enter_irqoff().
443  */
444 static __always_inline void guest_enter_irqoff(void)
445 {
446 	guest_timing_enter_irqoff();
447 	guest_context_enter_irqoff();
448 }
449 
450 /**
451  * guest_state_enter_irqoff - Fixup state when entering a guest
452  *
453  * Entry to a guest will enable interrupts, but the kernel state is interrupts
454  * disabled when this is invoked. Also tell RCU about it.
455  *
456  * 1) Trace interrupts on state
457  * 2) Invoke context tracking if enabled to adjust RCU state
458  * 3) Tell lockdep that interrupts are enabled
459  *
460  * Invoked from architecture specific code before entering a guest.
461  * Must be called with interrupts disabled and the caller must be
462  * non-instrumentable.
463  * The caller has to invoke guest_timing_enter_irqoff() before this.
464  *
465  * Note: this is analogous to exit_to_user_mode().
466  */
467 static __always_inline void guest_state_enter_irqoff(void)
468 {
469 	instrumentation_begin();
470 	trace_hardirqs_on_prepare();
471 	lockdep_hardirqs_on_prepare();
472 	instrumentation_end();
473 
474 	guest_context_enter_irqoff();
475 	lockdep_hardirqs_on(CALLER_ADDR0);
476 }
477 
478 /*
479  * Exit guest context and exit an RCU extended quiescent state.
480  *
481  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
482  * unsafe to use any code which may directly or indirectly use RCU, tracing
483  * (including IRQ flag tracing), or lockdep. All code in this period must be
484  * non-instrumentable.
485  */
486 static __always_inline void guest_context_exit_irqoff(void)
487 {
488 	context_tracking_guest_exit();
489 }
490 
491 /*
492  * Stop accounting time towards a guest.
493  * Must be called after exiting guest context.
494  */
495 static __always_inline void guest_timing_exit_irqoff(void)
496 {
497 	instrumentation_begin();
498 	/* Flush the guest cputime we spent on the guest */
499 	vtime_account_guest_exit();
500 	instrumentation_end();
501 }
502 
503 /*
504  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
505  * guest_timing_exit_irqoff().
506  */
507 static __always_inline void guest_exit_irqoff(void)
508 {
509 	guest_context_exit_irqoff();
510 	guest_timing_exit_irqoff();
511 }
512 
513 static inline void guest_exit(void)
514 {
515 	unsigned long flags;
516 
517 	local_irq_save(flags);
518 	guest_exit_irqoff();
519 	local_irq_restore(flags);
520 }
521 
522 /**
523  * guest_state_exit_irqoff - Establish state when returning from guest mode
524  *
525  * Entry from a guest disables interrupts, but guest mode is traced as
526  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
527  *
528  * 1) Tell lockdep that interrupts are disabled
529  * 2) Invoke context tracking if enabled to reactivate RCU
530  * 3) Trace interrupts off state
531  *
532  * Invoked from architecture specific code after exiting a guest.
533  * Must be invoked with interrupts disabled and the caller must be
534  * non-instrumentable.
535  * The caller has to invoke guest_timing_exit_irqoff() after this.
536  *
537  * Note: this is analogous to enter_from_user_mode().
538  */
539 static __always_inline void guest_state_exit_irqoff(void)
540 {
541 	lockdep_hardirqs_off(CALLER_ADDR0);
542 	guest_context_exit_irqoff();
543 
544 	instrumentation_begin();
545 	trace_hardirqs_off_finish();
546 	instrumentation_end();
547 }
548 
549 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
550 {
551 	/*
552 	 * The memory barrier ensures a previous write to vcpu->requests cannot
553 	 * be reordered with the read of vcpu->mode.  It pairs with the general
554 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
555 	 */
556 	smp_mb__before_atomic();
557 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
558 }
559 
560 /*
561  * Some of the bitops functions do not support too long bitmaps.
562  * This number must be determined not to exceed such limits.
563  */
564 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
565 
566 /*
567  * Since at idle each memslot belongs to two memslot sets it has to contain
568  * two embedded nodes for each data structure that it forms a part of.
569  *
570  * Two memslot sets (one active and one inactive) are necessary so the VM
571  * continues to run on one memslot set while the other is being modified.
572  *
573  * These two memslot sets normally point to the same set of memslots.
574  * They can, however, be desynchronized when performing a memslot management
575  * operation by replacing the memslot to be modified by its copy.
576  * After the operation is complete, both memslot sets once again point to
577  * the same, common set of memslot data.
578  *
579  * The memslots themselves are independent of each other so they can be
580  * individually added or deleted.
581  */
582 struct kvm_memory_slot {
583 	struct hlist_node id_node[2];
584 	struct interval_tree_node hva_node[2];
585 	struct rb_node gfn_node[2];
586 	gfn_t base_gfn;
587 	unsigned long npages;
588 	unsigned long *dirty_bitmap;
589 	struct kvm_arch_memory_slot arch;
590 	unsigned long userspace_addr;
591 	u32 flags;
592 	short id;
593 	u16 as_id;
594 
595 #ifdef CONFIG_KVM_PRIVATE_MEM
596 	struct {
597 		struct file __rcu *file;
598 		pgoff_t pgoff;
599 	} gmem;
600 #endif
601 };
602 
603 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
604 {
605 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
606 }
607 
608 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
609 {
610 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
611 }
612 
613 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
614 {
615 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
616 }
617 
618 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
619 {
620 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
621 
622 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
623 }
624 
625 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
626 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
627 #endif
628 
629 struct kvm_s390_adapter_int {
630 	u64 ind_addr;
631 	u64 summary_addr;
632 	u64 ind_offset;
633 	u32 summary_offset;
634 	u32 adapter_id;
635 };
636 
637 struct kvm_hv_sint {
638 	u32 vcpu;
639 	u32 sint;
640 };
641 
642 struct kvm_xen_evtchn {
643 	u32 port;
644 	u32 vcpu_id;
645 	int vcpu_idx;
646 	u32 priority;
647 };
648 
649 struct kvm_kernel_irq_routing_entry {
650 	u32 gsi;
651 	u32 type;
652 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
653 		   struct kvm *kvm, int irq_source_id, int level,
654 		   bool line_status);
655 	union {
656 		struct {
657 			unsigned irqchip;
658 			unsigned pin;
659 		} irqchip;
660 		struct {
661 			u32 address_lo;
662 			u32 address_hi;
663 			u32 data;
664 			u32 flags;
665 			u32 devid;
666 		} msi;
667 		struct kvm_s390_adapter_int adapter;
668 		struct kvm_hv_sint hv_sint;
669 		struct kvm_xen_evtchn xen_evtchn;
670 	};
671 	struct hlist_node link;
672 };
673 
674 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
675 struct kvm_irq_routing_table {
676 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
677 	u32 nr_rt_entries;
678 	/*
679 	 * Array indexed by gsi. Each entry contains list of irq chips
680 	 * the gsi is connected to.
681 	 */
682 	struct hlist_head map[] __counted_by(nr_rt_entries);
683 };
684 #endif
685 
686 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
687 
688 #ifndef KVM_INTERNAL_MEM_SLOTS
689 #define KVM_INTERNAL_MEM_SLOTS 0
690 #endif
691 
692 #define KVM_MEM_SLOTS_NUM SHRT_MAX
693 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
694 
695 #if KVM_MAX_NR_ADDRESS_SPACES == 1
696 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
697 {
698 	return KVM_MAX_NR_ADDRESS_SPACES;
699 }
700 
701 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
702 {
703 	return 0;
704 }
705 #endif
706 
707 /*
708  * Arch code must define kvm_arch_has_private_mem if support for private memory
709  * is enabled.
710  */
711 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
712 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
713 {
714 	return false;
715 }
716 #endif
717 
718 struct kvm_memslots {
719 	u64 generation;
720 	atomic_long_t last_used_slot;
721 	struct rb_root_cached hva_tree;
722 	struct rb_root gfn_tree;
723 	/*
724 	 * The mapping table from slot id to memslot.
725 	 *
726 	 * 7-bit bucket count matches the size of the old id to index array for
727 	 * 512 slots, while giving good performance with this slot count.
728 	 * Higher bucket counts bring only small performance improvements but
729 	 * always result in higher memory usage (even for lower memslot counts).
730 	 */
731 	DECLARE_HASHTABLE(id_hash, 7);
732 	int node_idx;
733 };
734 
735 struct kvm {
736 #ifdef KVM_HAVE_MMU_RWLOCK
737 	rwlock_t mmu_lock;
738 #else
739 	spinlock_t mmu_lock;
740 #endif /* KVM_HAVE_MMU_RWLOCK */
741 
742 	struct mutex slots_lock;
743 
744 	/*
745 	 * Protects the arch-specific fields of struct kvm_memory_slots in
746 	 * use by the VM. To be used under the slots_lock (above) or in a
747 	 * kvm->srcu critical section where acquiring the slots_lock would
748 	 * lead to deadlock with the synchronize_srcu in
749 	 * kvm_swap_active_memslots().
750 	 */
751 	struct mutex slots_arch_lock;
752 	struct mm_struct *mm; /* userspace tied to this vm */
753 	unsigned long nr_memslot_pages;
754 	/* The two memslot sets - active and inactive (per address space) */
755 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
756 	/* The current active memslot set for each address space */
757 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
758 	struct xarray vcpu_array;
759 	/*
760 	 * Protected by slots_lock, but can be read outside if an
761 	 * incorrect answer is acceptable.
762 	 */
763 	atomic_t nr_memslots_dirty_logging;
764 
765 	/* Used to wait for completion of MMU notifiers.  */
766 	spinlock_t mn_invalidate_lock;
767 	unsigned long mn_active_invalidate_count;
768 	struct rcuwait mn_memslots_update_rcuwait;
769 
770 	/* For management / invalidation of gfn_to_pfn_caches */
771 	spinlock_t gpc_lock;
772 	struct list_head gpc_list;
773 
774 	/*
775 	 * created_vcpus is protected by kvm->lock, and is incremented
776 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
777 	 * incremented after storing the kvm_vcpu pointer in vcpus,
778 	 * and is accessed atomically.
779 	 */
780 	atomic_t online_vcpus;
781 	int max_vcpus;
782 	int created_vcpus;
783 	int last_boosted_vcpu;
784 	struct list_head vm_list;
785 	struct mutex lock;
786 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
787 #ifdef CONFIG_HAVE_KVM_IRQCHIP
788 	struct {
789 		spinlock_t        lock;
790 		struct list_head  items;
791 		/* resampler_list update side is protected by resampler_lock. */
792 		struct list_head  resampler_list;
793 		struct mutex      resampler_lock;
794 	} irqfds;
795 #endif
796 	struct list_head ioeventfds;
797 	struct kvm_vm_stat stat;
798 	struct kvm_arch arch;
799 	refcount_t users_count;
800 #ifdef CONFIG_KVM_MMIO
801 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
802 	spinlock_t ring_lock;
803 	struct list_head coalesced_zones;
804 #endif
805 
806 	struct mutex irq_lock;
807 #ifdef CONFIG_HAVE_KVM_IRQCHIP
808 	/*
809 	 * Update side is protected by irq_lock.
810 	 */
811 	struct kvm_irq_routing_table __rcu *irq_routing;
812 
813 	struct hlist_head irq_ack_notifier_list;
814 #endif
815 
816 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
817 	struct mmu_notifier mmu_notifier;
818 	unsigned long mmu_invalidate_seq;
819 	long mmu_invalidate_in_progress;
820 	gfn_t mmu_invalidate_range_start;
821 	gfn_t mmu_invalidate_range_end;
822 #endif
823 	struct list_head devices;
824 	u64 manual_dirty_log_protect;
825 	struct dentry *debugfs_dentry;
826 	struct kvm_stat_data **debugfs_stat_data;
827 	struct srcu_struct srcu;
828 	struct srcu_struct irq_srcu;
829 	pid_t userspace_pid;
830 	bool override_halt_poll_ns;
831 	unsigned int max_halt_poll_ns;
832 	u32 dirty_ring_size;
833 	bool dirty_ring_with_bitmap;
834 	bool vm_bugged;
835 	bool vm_dead;
836 
837 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
838 	struct notifier_block pm_notifier;
839 #endif
840 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
841 	/* Protected by slots_locks (for writes) and RCU (for reads) */
842 	struct xarray mem_attr_array;
843 #endif
844 	char stats_id[KVM_STATS_NAME_SIZE];
845 };
846 
847 #define kvm_err(fmt, ...) \
848 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
849 #define kvm_info(fmt, ...) \
850 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
851 #define kvm_debug(fmt, ...) \
852 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
853 #define kvm_debug_ratelimited(fmt, ...) \
854 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
855 			     ## __VA_ARGS__)
856 #define kvm_pr_unimpl(fmt, ...) \
857 	pr_err_ratelimited("kvm [%i]: " fmt, \
858 			   task_tgid_nr(current), ## __VA_ARGS__)
859 
860 /* The guest did something we don't support. */
861 #define vcpu_unimpl(vcpu, fmt, ...)					\
862 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
863 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
864 
865 #define vcpu_debug(vcpu, fmt, ...)					\
866 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
867 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
868 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
869 			      ## __VA_ARGS__)
870 #define vcpu_err(vcpu, fmt, ...)					\
871 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
872 
873 static inline void kvm_vm_dead(struct kvm *kvm)
874 {
875 	kvm->vm_dead = true;
876 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
877 }
878 
879 static inline void kvm_vm_bugged(struct kvm *kvm)
880 {
881 	kvm->vm_bugged = true;
882 	kvm_vm_dead(kvm);
883 }
884 
885 
886 #define KVM_BUG(cond, kvm, fmt...)				\
887 ({								\
888 	bool __ret = !!(cond);					\
889 								\
890 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
891 		kvm_vm_bugged(kvm);				\
892 	unlikely(__ret);					\
893 })
894 
895 #define KVM_BUG_ON(cond, kvm)					\
896 ({								\
897 	bool __ret = !!(cond);					\
898 								\
899 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
900 		kvm_vm_bugged(kvm);				\
901 	unlikely(__ret);					\
902 })
903 
904 /*
905  * Note, "data corruption" refers to corruption of host kernel data structures,
906  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
907  * and contained to a single VM should *never* BUG() and potentially panic the
908  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
909  * is corrupted and that corruption can have a cascading effect to other parts
910  * of the hosts and/or to other VMs.
911  */
912 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
913 ({								\
914 	bool __ret = !!(cond);					\
915 								\
916 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
917 		BUG_ON(__ret);					\
918 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
919 		kvm_vm_bugged(kvm);				\
920 	unlikely(__ret);					\
921 })
922 
923 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
924 {
925 #ifdef CONFIG_PROVE_RCU
926 	WARN_ONCE(vcpu->srcu_depth++,
927 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
928 #endif
929 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
930 }
931 
932 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
933 {
934 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
935 
936 #ifdef CONFIG_PROVE_RCU
937 	WARN_ONCE(--vcpu->srcu_depth,
938 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
939 #endif
940 }
941 
942 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
943 {
944 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
945 }
946 
947 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
948 {
949 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
950 				      lockdep_is_held(&kvm->slots_lock) ||
951 				      !refcount_read(&kvm->users_count));
952 }
953 
954 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
955 {
956 	int num_vcpus = atomic_read(&kvm->online_vcpus);
957 	i = array_index_nospec(i, num_vcpus);
958 
959 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
960 	smp_rmb();
961 	return xa_load(&kvm->vcpu_array, i);
962 }
963 
964 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
965 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
966 			  (atomic_read(&kvm->online_vcpus) - 1))
967 
968 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
969 {
970 	struct kvm_vcpu *vcpu = NULL;
971 	unsigned long i;
972 
973 	if (id < 0)
974 		return NULL;
975 	if (id < KVM_MAX_VCPUS)
976 		vcpu = kvm_get_vcpu(kvm, id);
977 	if (vcpu && vcpu->vcpu_id == id)
978 		return vcpu;
979 	kvm_for_each_vcpu(i, vcpu, kvm)
980 		if (vcpu->vcpu_id == id)
981 			return vcpu;
982 	return NULL;
983 }
984 
985 void kvm_destroy_vcpus(struct kvm *kvm);
986 
987 void vcpu_load(struct kvm_vcpu *vcpu);
988 void vcpu_put(struct kvm_vcpu *vcpu);
989 
990 #ifdef __KVM_HAVE_IOAPIC
991 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
992 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
993 #else
994 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
995 {
996 }
997 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
998 {
999 }
1000 #endif
1001 
1002 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1003 int kvm_irqfd_init(void);
1004 void kvm_irqfd_exit(void);
1005 #else
1006 static inline int kvm_irqfd_init(void)
1007 {
1008 	return 0;
1009 }
1010 
1011 static inline void kvm_irqfd_exit(void)
1012 {
1013 }
1014 #endif
1015 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1016 void kvm_exit(void);
1017 
1018 void kvm_get_kvm(struct kvm *kvm);
1019 bool kvm_get_kvm_safe(struct kvm *kvm);
1020 void kvm_put_kvm(struct kvm *kvm);
1021 bool file_is_kvm(struct file *file);
1022 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1023 
1024 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1025 {
1026 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1027 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1028 			lockdep_is_held(&kvm->slots_lock) ||
1029 			!refcount_read(&kvm->users_count));
1030 }
1031 
1032 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1033 {
1034 	return __kvm_memslots(kvm, 0);
1035 }
1036 
1037 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1038 {
1039 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1040 
1041 	return __kvm_memslots(vcpu->kvm, as_id);
1042 }
1043 
1044 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1045 {
1046 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1047 }
1048 
1049 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1050 
1051 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1052 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1053 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1054 		} else
1055 
1056 static inline
1057 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1058 {
1059 	struct kvm_memory_slot *slot;
1060 	int idx = slots->node_idx;
1061 
1062 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1063 		if (slot->id == id)
1064 			return slot;
1065 	}
1066 
1067 	return NULL;
1068 }
1069 
1070 /* Iterator used for walking memslots that overlap a gfn range. */
1071 struct kvm_memslot_iter {
1072 	struct kvm_memslots *slots;
1073 	struct rb_node *node;
1074 	struct kvm_memory_slot *slot;
1075 };
1076 
1077 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1078 {
1079 	iter->node = rb_next(iter->node);
1080 	if (!iter->node)
1081 		return;
1082 
1083 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1084 }
1085 
1086 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1087 					  struct kvm_memslots *slots,
1088 					  gfn_t start)
1089 {
1090 	int idx = slots->node_idx;
1091 	struct rb_node *tmp;
1092 	struct kvm_memory_slot *slot;
1093 
1094 	iter->slots = slots;
1095 
1096 	/*
1097 	 * Find the so called "upper bound" of a key - the first node that has
1098 	 * its key strictly greater than the searched one (the start gfn in our case).
1099 	 */
1100 	iter->node = NULL;
1101 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1102 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1103 		if (start < slot->base_gfn) {
1104 			iter->node = tmp;
1105 			tmp = tmp->rb_left;
1106 		} else {
1107 			tmp = tmp->rb_right;
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * Find the slot with the lowest gfn that can possibly intersect with
1113 	 * the range, so we'll ideally have slot start <= range start
1114 	 */
1115 	if (iter->node) {
1116 		/*
1117 		 * A NULL previous node means that the very first slot
1118 		 * already has a higher start gfn.
1119 		 * In this case slot start > range start.
1120 		 */
1121 		tmp = rb_prev(iter->node);
1122 		if (tmp)
1123 			iter->node = tmp;
1124 	} else {
1125 		/* a NULL node below means no slots */
1126 		iter->node = rb_last(&slots->gfn_tree);
1127 	}
1128 
1129 	if (iter->node) {
1130 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1131 
1132 		/*
1133 		 * It is possible in the slot start < range start case that the
1134 		 * found slot ends before or at range start (slot end <= range start)
1135 		 * and so it does not overlap the requested range.
1136 		 *
1137 		 * In such non-overlapping case the next slot (if it exists) will
1138 		 * already have slot start > range start, otherwise the logic above
1139 		 * would have found it instead of the current slot.
1140 		 */
1141 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1142 			kvm_memslot_iter_next(iter);
1143 	}
1144 }
1145 
1146 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1147 {
1148 	if (!iter->node)
1149 		return false;
1150 
1151 	/*
1152 	 * If this slot starts beyond or at the end of the range so does
1153 	 * every next one
1154 	 */
1155 	return iter->slot->base_gfn < end;
1156 }
1157 
1158 /* Iterate over each memslot at least partially intersecting [start, end) range */
1159 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1160 	for (kvm_memslot_iter_start(iter, slots, start);		\
1161 	     kvm_memslot_iter_is_valid(iter, end);			\
1162 	     kvm_memslot_iter_next(iter))
1163 
1164 /*
1165  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1166  * - create a new memory slot
1167  * - delete an existing memory slot
1168  * - modify an existing memory slot
1169  *   -- move it in the guest physical memory space
1170  *   -- just change its flags
1171  *
1172  * Since flags can be changed by some of these operations, the following
1173  * differentiation is the best we can do for __kvm_set_memory_region():
1174  */
1175 enum kvm_mr_change {
1176 	KVM_MR_CREATE,
1177 	KVM_MR_DELETE,
1178 	KVM_MR_MOVE,
1179 	KVM_MR_FLAGS_ONLY,
1180 };
1181 
1182 int kvm_set_memory_region(struct kvm *kvm,
1183 			  const struct kvm_userspace_memory_region2 *mem);
1184 int __kvm_set_memory_region(struct kvm *kvm,
1185 			    const struct kvm_userspace_memory_region2 *mem);
1186 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1187 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1188 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1189 				const struct kvm_memory_slot *old,
1190 				struct kvm_memory_slot *new,
1191 				enum kvm_mr_change change);
1192 void kvm_arch_commit_memory_region(struct kvm *kvm,
1193 				struct kvm_memory_slot *old,
1194 				const struct kvm_memory_slot *new,
1195 				enum kvm_mr_change change);
1196 /* flush all memory translations */
1197 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1198 /* flush memory translations pointing to 'slot' */
1199 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1200 				   struct kvm_memory_slot *slot);
1201 
1202 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1203 			    struct page **pages, int nr_pages);
1204 
1205 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1206 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1207 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1208 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1209 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1210 				      bool *writable);
1211 void kvm_release_page_clean(struct page *page);
1212 void kvm_release_page_dirty(struct page *page);
1213 
1214 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1215 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1216 		      bool *writable);
1217 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1218 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1219 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1220 			       bool atomic, bool interruptible, bool *async,
1221 			       bool write_fault, bool *writable, hva_t *hva);
1222 
1223 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1224 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1225 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1226 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1227 
1228 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1229 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1230 			int len);
1231 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1232 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1233 			   void *data, unsigned long len);
1234 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1235 				 void *data, unsigned int offset,
1236 				 unsigned long len);
1237 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1238 			 int offset, int len);
1239 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1240 		    unsigned long len);
1241 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1242 			   void *data, unsigned long len);
1243 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1244 				  void *data, unsigned int offset,
1245 				  unsigned long len);
1246 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1247 			      gpa_t gpa, unsigned long len);
1248 
1249 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1250 ({									\
1251 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1252 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1253 	int __ret = -EFAULT;						\
1254 									\
1255 	if (!kvm_is_error_hva(__addr))					\
1256 		__ret = get_user(v, __uaddr);				\
1257 	__ret;								\
1258 })
1259 
1260 #define kvm_get_guest(kvm, gpa, v)					\
1261 ({									\
1262 	gpa_t __gpa = gpa;						\
1263 	struct kvm *__kvm = kvm;					\
1264 									\
1265 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1266 			offset_in_page(__gpa), v);			\
1267 })
1268 
1269 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1270 ({									\
1271 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1272 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1273 	int __ret = -EFAULT;						\
1274 									\
1275 	if (!kvm_is_error_hva(__addr))					\
1276 		__ret = put_user(v, __uaddr);				\
1277 	if (!__ret)							\
1278 		mark_page_dirty(kvm, gfn);				\
1279 	__ret;								\
1280 })
1281 
1282 #define kvm_put_guest(kvm, gpa, v)					\
1283 ({									\
1284 	gpa_t __gpa = gpa;						\
1285 	struct kvm *__kvm = kvm;					\
1286 									\
1287 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1288 			offset_in_page(__gpa), v);			\
1289 })
1290 
1291 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1292 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1293 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1294 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1295 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1296 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1297 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1298 
1299 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1300 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1301 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1302 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1303 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1304 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1305 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1306 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1307 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1308 			     int len);
1309 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1310 			       unsigned long len);
1311 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1312 			unsigned long len);
1313 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1314 			      int offset, int len);
1315 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1316 			 unsigned long len);
1317 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1318 
1319 /**
1320  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1321  *
1322  * @gpc:	   struct gfn_to_pfn_cache object.
1323  * @kvm:	   pointer to kvm instance.
1324  *
1325  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1326  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1327  * the caller before init).
1328  */
1329 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1330 
1331 /**
1332  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1333  *                    physical address.
1334  *
1335  * @gpc:	   struct gfn_to_pfn_cache object.
1336  * @gpa:	   guest physical address to map.
1337  * @len:	   sanity check; the range being access must fit a single page.
1338  *
1339  * @return:	   0 for success.
1340  *		   -EINVAL for a mapping which would cross a page boundary.
1341  *		   -EFAULT for an untranslatable guest physical address.
1342  *
1343  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1344  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1345  * to ensure that the cache is valid before accessing the target page.
1346  */
1347 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1348 
1349 /**
1350  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1351  *
1352  * @gpc:          struct gfn_to_pfn_cache object.
1353  * @hva:          userspace virtual address to map.
1354  * @len:          sanity check; the range being access must fit a single page.
1355  *
1356  * @return:       0 for success.
1357  *                -EINVAL for a mapping which would cross a page boundary.
1358  *                -EFAULT for an untranslatable guest physical address.
1359  *
1360  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1361  * merely bypasses a layer of address translation.
1362  */
1363 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1364 
1365 /**
1366  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1367  *
1368  * @gpc:	   struct gfn_to_pfn_cache object.
1369  * @len:	   sanity check; the range being access must fit a single page.
1370  *
1371  * @return:	   %true if the cache is still valid and the address matches.
1372  *		   %false if the cache is not valid.
1373  *
1374  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1375  * while calling this function, and then continue to hold the lock until the
1376  * access is complete.
1377  *
1378  * Callers in IN_GUEST_MODE may do so without locking, although they should
1379  * still hold a read lock on kvm->scru for the memslot checks.
1380  */
1381 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1382 
1383 /**
1384  * kvm_gpc_refresh - update a previously initialized cache.
1385  *
1386  * @gpc:	   struct gfn_to_pfn_cache object.
1387  * @len:	   sanity check; the range being access must fit a single page.
1388  *
1389  * @return:	   0 for success.
1390  *		   -EINVAL for a mapping which would cross a page boundary.
1391  *		   -EFAULT for an untranslatable guest physical address.
1392  *
1393  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1394  * return from this function does not mean the page can be immediately
1395  * accessed because it may have raced with an invalidation. Callers must
1396  * still lock and check the cache status, as this function does not return
1397  * with the lock still held to permit access.
1398  */
1399 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1400 
1401 /**
1402  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1403  *
1404  * @gpc:	   struct gfn_to_pfn_cache object.
1405  *
1406  * This removes a cache from the VM's list to be processed on MMU notifier
1407  * invocation.
1408  */
1409 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1410 
1411 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1412 {
1413 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1414 }
1415 
1416 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1417 {
1418 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1419 }
1420 
1421 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1422 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1423 
1424 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1425 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1426 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1427 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1428 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1429 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1430 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1431 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1432 
1433 void kvm_flush_remote_tlbs(struct kvm *kvm);
1434 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1435 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1436 				   const struct kvm_memory_slot *memslot);
1437 
1438 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1439 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1440 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1441 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1442 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1443 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1444 #endif
1445 
1446 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1447 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1448 void kvm_mmu_invalidate_end(struct kvm *kvm);
1449 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1450 
1451 long kvm_arch_dev_ioctl(struct file *filp,
1452 			unsigned int ioctl, unsigned long arg);
1453 long kvm_arch_vcpu_ioctl(struct file *filp,
1454 			 unsigned int ioctl, unsigned long arg);
1455 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1456 
1457 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1458 
1459 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1460 					struct kvm_memory_slot *slot,
1461 					gfn_t gfn_offset,
1462 					unsigned long mask);
1463 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1464 
1465 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1466 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1467 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1468 		      int *is_dirty, struct kvm_memory_slot **memslot);
1469 #endif
1470 
1471 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1472 			bool line_status);
1473 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1474 			    struct kvm_enable_cap *cap);
1475 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1476 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1477 			      unsigned long arg);
1478 
1479 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1480 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1481 
1482 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1483 				    struct kvm_translation *tr);
1484 
1485 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1486 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1487 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1488 				  struct kvm_sregs *sregs);
1489 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1490 				  struct kvm_sregs *sregs);
1491 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1492 				    struct kvm_mp_state *mp_state);
1493 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1494 				    struct kvm_mp_state *mp_state);
1495 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1496 					struct kvm_guest_debug *dbg);
1497 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1498 
1499 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1500 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1501 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1502 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1503 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1504 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1505 
1506 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1507 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1508 #endif
1509 
1510 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1511 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1512 #else
1513 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1514 #endif
1515 
1516 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1517 int kvm_arch_hardware_enable(void);
1518 void kvm_arch_hardware_disable(void);
1519 #endif
1520 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1521 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1522 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1523 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1524 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1525 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1526 int kvm_arch_post_init_vm(struct kvm *kvm);
1527 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1528 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1529 
1530 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1531 /*
1532  * All architectures that want to use vzalloc currently also
1533  * need their own kvm_arch_alloc_vm implementation.
1534  */
1535 static inline struct kvm *kvm_arch_alloc_vm(void)
1536 {
1537 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1538 }
1539 #endif
1540 
1541 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1542 {
1543 	kvfree(kvm);
1544 }
1545 
1546 #ifndef __KVM_HAVE_ARCH_VM_FREE
1547 static inline void kvm_arch_free_vm(struct kvm *kvm)
1548 {
1549 	__kvm_arch_free_vm(kvm);
1550 }
1551 #endif
1552 
1553 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1554 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1555 {
1556 	return -ENOTSUPP;
1557 }
1558 #else
1559 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1560 #endif
1561 
1562 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1563 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1564 						    gfn_t gfn, u64 nr_pages)
1565 {
1566 	return -EOPNOTSUPP;
1567 }
1568 #else
1569 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1570 #endif
1571 
1572 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1573 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1574 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1575 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1576 #else
1577 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1578 {
1579 }
1580 
1581 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1582 {
1583 }
1584 
1585 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1586 {
1587 	return false;
1588 }
1589 #endif
1590 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1591 void kvm_arch_start_assignment(struct kvm *kvm);
1592 void kvm_arch_end_assignment(struct kvm *kvm);
1593 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1594 #else
1595 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1596 {
1597 }
1598 
1599 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1600 {
1601 }
1602 
1603 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1604 {
1605 	return false;
1606 }
1607 #endif
1608 
1609 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1610 {
1611 #ifdef __KVM_HAVE_ARCH_WQP
1612 	return vcpu->arch.waitp;
1613 #else
1614 	return &vcpu->wait;
1615 #endif
1616 }
1617 
1618 /*
1619  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1620  * true if the vCPU was blocking and was awakened, false otherwise.
1621  */
1622 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1623 {
1624 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1625 }
1626 
1627 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1628 {
1629 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1630 }
1631 
1632 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1633 /*
1634  * returns true if the virtual interrupt controller is initialized and
1635  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1636  * controller is dynamically instantiated and this is not always true.
1637  */
1638 bool kvm_arch_intc_initialized(struct kvm *kvm);
1639 #else
1640 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1641 {
1642 	return true;
1643 }
1644 #endif
1645 
1646 #ifdef CONFIG_GUEST_PERF_EVENTS
1647 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1648 
1649 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1650 void kvm_unregister_perf_callbacks(void);
1651 #else
1652 static inline void kvm_register_perf_callbacks(void *ign) {}
1653 static inline void kvm_unregister_perf_callbacks(void) {}
1654 #endif /* CONFIG_GUEST_PERF_EVENTS */
1655 
1656 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1657 void kvm_arch_destroy_vm(struct kvm *kvm);
1658 void kvm_arch_sync_events(struct kvm *kvm);
1659 
1660 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1661 
1662 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1663 bool kvm_is_zone_device_page(struct page *page);
1664 
1665 struct kvm_irq_ack_notifier {
1666 	struct hlist_node link;
1667 	unsigned gsi;
1668 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1669 };
1670 
1671 int kvm_irq_map_gsi(struct kvm *kvm,
1672 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1673 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1674 
1675 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1676 		bool line_status);
1677 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1678 		int irq_source_id, int level, bool line_status);
1679 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1680 			       struct kvm *kvm, int irq_source_id,
1681 			       int level, bool line_status);
1682 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1683 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1684 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1685 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1686 				   struct kvm_irq_ack_notifier *kian);
1687 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1688 				   struct kvm_irq_ack_notifier *kian);
1689 int kvm_request_irq_source_id(struct kvm *kvm);
1690 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1691 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1692 
1693 /*
1694  * Returns a pointer to the memslot if it contains gfn.
1695  * Otherwise returns NULL.
1696  */
1697 static inline struct kvm_memory_slot *
1698 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1699 {
1700 	if (!slot)
1701 		return NULL;
1702 
1703 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1704 		return slot;
1705 	else
1706 		return NULL;
1707 }
1708 
1709 /*
1710  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1711  *
1712  * With "approx" set returns the memslot also when the address falls
1713  * in a hole. In that case one of the memslots bordering the hole is
1714  * returned.
1715  */
1716 static inline struct kvm_memory_slot *
1717 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1718 {
1719 	struct kvm_memory_slot *slot;
1720 	struct rb_node *node;
1721 	int idx = slots->node_idx;
1722 
1723 	slot = NULL;
1724 	for (node = slots->gfn_tree.rb_node; node; ) {
1725 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1726 		if (gfn >= slot->base_gfn) {
1727 			if (gfn < slot->base_gfn + slot->npages)
1728 				return slot;
1729 			node = node->rb_right;
1730 		} else
1731 			node = node->rb_left;
1732 	}
1733 
1734 	return approx ? slot : NULL;
1735 }
1736 
1737 static inline struct kvm_memory_slot *
1738 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1739 {
1740 	struct kvm_memory_slot *slot;
1741 
1742 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1743 	slot = try_get_memslot(slot, gfn);
1744 	if (slot)
1745 		return slot;
1746 
1747 	slot = search_memslots(slots, gfn, approx);
1748 	if (slot) {
1749 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1750 		return slot;
1751 	}
1752 
1753 	return NULL;
1754 }
1755 
1756 /*
1757  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1758  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1759  * because that would bloat other code too much.
1760  */
1761 static inline struct kvm_memory_slot *
1762 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1763 {
1764 	return ____gfn_to_memslot(slots, gfn, false);
1765 }
1766 
1767 static inline unsigned long
1768 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1769 {
1770 	/*
1771 	 * The index was checked originally in search_memslots.  To avoid
1772 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1773 	 * table walks, do not let the processor speculate loads outside
1774 	 * the guest's registered memslots.
1775 	 */
1776 	unsigned long offset = gfn - slot->base_gfn;
1777 	offset = array_index_nospec(offset, slot->npages);
1778 	return slot->userspace_addr + offset * PAGE_SIZE;
1779 }
1780 
1781 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1782 {
1783 	return gfn_to_memslot(kvm, gfn)->id;
1784 }
1785 
1786 static inline gfn_t
1787 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1788 {
1789 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1790 
1791 	return slot->base_gfn + gfn_offset;
1792 }
1793 
1794 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1795 {
1796 	return (gpa_t)gfn << PAGE_SHIFT;
1797 }
1798 
1799 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1800 {
1801 	return (gfn_t)(gpa >> PAGE_SHIFT);
1802 }
1803 
1804 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1805 {
1806 	return (hpa_t)pfn << PAGE_SHIFT;
1807 }
1808 
1809 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1810 {
1811 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1812 
1813 	return !kvm_is_error_hva(hva);
1814 }
1815 
1816 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1817 {
1818 	lockdep_assert_held(&gpc->lock);
1819 
1820 	if (!gpc->memslot)
1821 		return;
1822 
1823 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1824 }
1825 
1826 enum kvm_stat_kind {
1827 	KVM_STAT_VM,
1828 	KVM_STAT_VCPU,
1829 };
1830 
1831 struct kvm_stat_data {
1832 	struct kvm *kvm;
1833 	const struct _kvm_stats_desc *desc;
1834 	enum kvm_stat_kind kind;
1835 };
1836 
1837 struct _kvm_stats_desc {
1838 	struct kvm_stats_desc desc;
1839 	char name[KVM_STATS_NAME_SIZE];
1840 };
1841 
1842 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1843 	.flags = type | unit | base |					       \
1844 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1845 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1846 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1847 	.exponent = exp,						       \
1848 	.size = sz,							       \
1849 	.bucket_size = bsz
1850 
1851 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1852 	{								       \
1853 		{							       \
1854 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1855 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1856 		},							       \
1857 		.name = #stat,						       \
1858 	}
1859 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1860 	{								       \
1861 		{							       \
1862 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1863 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1864 		},							       \
1865 		.name = #stat,						       \
1866 	}
1867 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1868 	{								       \
1869 		{							       \
1870 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1871 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1872 		},							       \
1873 		.name = #stat,						       \
1874 	}
1875 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1876 	{								       \
1877 		{							       \
1878 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1879 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1880 		},							       \
1881 		.name = #stat,						       \
1882 	}
1883 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1884 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1885 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1886 
1887 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1888 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1889 		unit, base, exponent, 1, 0)
1890 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1891 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1892 		unit, base, exponent, 1, 0)
1893 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1894 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1895 		unit, base, exponent, 1, 0)
1896 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1897 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1898 		unit, base, exponent, sz, bsz)
1899 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1900 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1901 		unit, base, exponent, sz, 0)
1902 
1903 /* Cumulative counter, read/write */
1904 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1905 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1906 		KVM_STATS_BASE_POW10, 0)
1907 /* Instantaneous counter, read only */
1908 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1909 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1910 		KVM_STATS_BASE_POW10, 0)
1911 /* Peak counter, read/write */
1912 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1913 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1914 		KVM_STATS_BASE_POW10, 0)
1915 
1916 /* Instantaneous boolean value, read only */
1917 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1918 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1919 		KVM_STATS_BASE_POW10, 0)
1920 /* Peak (sticky) boolean value, read/write */
1921 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1922 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1923 		KVM_STATS_BASE_POW10, 0)
1924 
1925 /* Cumulative time in nanosecond */
1926 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1927 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1928 		KVM_STATS_BASE_POW10, -9)
1929 /* Linear histogram for time in nanosecond */
1930 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1931 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1932 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1933 /* Logarithmic histogram for time in nanosecond */
1934 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1935 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1936 		KVM_STATS_BASE_POW10, -9, sz)
1937 
1938 #define KVM_GENERIC_VM_STATS()						       \
1939 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1940 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1941 
1942 #define KVM_GENERIC_VCPU_STATS()					       \
1943 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1944 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1945 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1946 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1947 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1948 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1949 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1950 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1951 			HALT_POLL_HIST_COUNT),				       \
1952 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1953 			HALT_POLL_HIST_COUNT),				       \
1954 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1955 			HALT_POLL_HIST_COUNT),				       \
1956 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1957 
1958 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1959 		       const struct _kvm_stats_desc *desc,
1960 		       void *stats, size_t size_stats,
1961 		       char __user *user_buffer, size_t size, loff_t *offset);
1962 
1963 /**
1964  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1965  * statistics data.
1966  *
1967  * @data: start address of the stats data
1968  * @size: the number of bucket of the stats data
1969  * @value: the new value used to update the linear histogram's bucket
1970  * @bucket_size: the size (width) of a bucket
1971  */
1972 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1973 						u64 value, size_t bucket_size)
1974 {
1975 	size_t index = div64_u64(value, bucket_size);
1976 
1977 	index = min(index, size - 1);
1978 	++data[index];
1979 }
1980 
1981 /**
1982  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1983  * statistics data.
1984  *
1985  * @data: start address of the stats data
1986  * @size: the number of bucket of the stats data
1987  * @value: the new value used to update the logarithmic histogram's bucket
1988  */
1989 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1990 {
1991 	size_t index = fls64(value);
1992 
1993 	index = min(index, size - 1);
1994 	++data[index];
1995 }
1996 
1997 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1998 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1999 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2000 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2001 
2002 
2003 extern const struct kvm_stats_header kvm_vm_stats_header;
2004 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2005 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2006 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2007 
2008 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2009 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2010 {
2011 	if (unlikely(kvm->mmu_invalidate_in_progress))
2012 		return 1;
2013 	/*
2014 	 * Ensure the read of mmu_invalidate_in_progress happens before
2015 	 * the read of mmu_invalidate_seq.  This interacts with the
2016 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2017 	 * that the caller either sees the old (non-zero) value of
2018 	 * mmu_invalidate_in_progress or the new (incremented) value of
2019 	 * mmu_invalidate_seq.
2020 	 *
2021 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2022 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2023 	 * kvm->mmu_lock to keep things ordered.
2024 	 */
2025 	smp_rmb();
2026 	if (kvm->mmu_invalidate_seq != mmu_seq)
2027 		return 1;
2028 	return 0;
2029 }
2030 
2031 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2032 					   unsigned long mmu_seq,
2033 					   gfn_t gfn)
2034 {
2035 	lockdep_assert_held(&kvm->mmu_lock);
2036 	/*
2037 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2038 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2039 	 * that might be being invalidated. Note that it may include some false
2040 	 * positives, due to shortcuts when handing concurrent invalidations.
2041 	 */
2042 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2043 		/*
2044 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2045 		 * but before updating the range is a KVM bug.
2046 		 */
2047 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2048 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2049 			return 1;
2050 
2051 		if (gfn >= kvm->mmu_invalidate_range_start &&
2052 		    gfn < kvm->mmu_invalidate_range_end)
2053 			return 1;
2054 	}
2055 
2056 	if (kvm->mmu_invalidate_seq != mmu_seq)
2057 		return 1;
2058 	return 0;
2059 }
2060 
2061 /*
2062  * This lockless version of the range-based retry check *must* be paired with a
2063  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2064  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2065  * get false negatives and false positives.
2066  */
2067 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2068 						   unsigned long mmu_seq,
2069 						   gfn_t gfn)
2070 {
2071 	/*
2072 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2073 	 * are always read from memory, e.g. so that checking for retry in a
2074 	 * loop won't result in an infinite retry loop.  Don't force loads for
2075 	 * start+end, as the key to avoiding infinite retry loops is observing
2076 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2077 	 * due to stale start+end values is acceptable.
2078 	 */
2079 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2080 	    gfn >= kvm->mmu_invalidate_range_start &&
2081 	    gfn < kvm->mmu_invalidate_range_end)
2082 		return true;
2083 
2084 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2085 }
2086 #endif
2087 
2088 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2089 
2090 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2091 
2092 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2093 int kvm_set_irq_routing(struct kvm *kvm,
2094 			const struct kvm_irq_routing_entry *entries,
2095 			unsigned nr,
2096 			unsigned flags);
2097 int kvm_init_irq_routing(struct kvm *kvm);
2098 int kvm_set_routing_entry(struct kvm *kvm,
2099 			  struct kvm_kernel_irq_routing_entry *e,
2100 			  const struct kvm_irq_routing_entry *ue);
2101 void kvm_free_irq_routing(struct kvm *kvm);
2102 
2103 #else
2104 
2105 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2106 
2107 static inline int kvm_init_irq_routing(struct kvm *kvm)
2108 {
2109 	return 0;
2110 }
2111 
2112 #endif
2113 
2114 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2115 
2116 void kvm_eventfd_init(struct kvm *kvm);
2117 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2118 
2119 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2120 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2121 void kvm_irqfd_release(struct kvm *kvm);
2122 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2123 				unsigned int irqchip,
2124 				unsigned int pin);
2125 void kvm_irq_routing_update(struct kvm *);
2126 #else
2127 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2128 {
2129 	return -EINVAL;
2130 }
2131 
2132 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2133 
2134 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2135 					      unsigned int irqchip,
2136 					      unsigned int pin)
2137 {
2138 	return false;
2139 }
2140 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2141 
2142 void kvm_arch_irq_routing_update(struct kvm *kvm);
2143 
2144 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2145 {
2146 	/*
2147 	 * Ensure the rest of the request is published to kvm_check_request's
2148 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2149 	 */
2150 	smp_wmb();
2151 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2152 }
2153 
2154 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2155 {
2156 	/*
2157 	 * Request that don't require vCPU action should never be logged in
2158 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2159 	 * logged indefinitely and prevent the vCPU from entering the guest.
2160 	 */
2161 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2162 		     (req & KVM_REQUEST_NO_ACTION));
2163 
2164 	__kvm_make_request(req, vcpu);
2165 }
2166 
2167 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2168 {
2169 	return READ_ONCE(vcpu->requests);
2170 }
2171 
2172 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2173 {
2174 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2175 }
2176 
2177 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2178 {
2179 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2180 }
2181 
2182 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2183 {
2184 	if (kvm_test_request(req, vcpu)) {
2185 		kvm_clear_request(req, vcpu);
2186 
2187 		/*
2188 		 * Ensure the rest of the request is visible to kvm_check_request's
2189 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2190 		 */
2191 		smp_mb__after_atomic();
2192 		return true;
2193 	} else {
2194 		return false;
2195 	}
2196 }
2197 
2198 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2199 extern bool kvm_rebooting;
2200 #endif
2201 
2202 extern unsigned int halt_poll_ns;
2203 extern unsigned int halt_poll_ns_grow;
2204 extern unsigned int halt_poll_ns_grow_start;
2205 extern unsigned int halt_poll_ns_shrink;
2206 
2207 struct kvm_device {
2208 	const struct kvm_device_ops *ops;
2209 	struct kvm *kvm;
2210 	void *private;
2211 	struct list_head vm_node;
2212 };
2213 
2214 /* create, destroy, and name are mandatory */
2215 struct kvm_device_ops {
2216 	const char *name;
2217 
2218 	/*
2219 	 * create is called holding kvm->lock and any operations not suitable
2220 	 * to do while holding the lock should be deferred to init (see
2221 	 * below).
2222 	 */
2223 	int (*create)(struct kvm_device *dev, u32 type);
2224 
2225 	/*
2226 	 * init is called after create if create is successful and is called
2227 	 * outside of holding kvm->lock.
2228 	 */
2229 	void (*init)(struct kvm_device *dev);
2230 
2231 	/*
2232 	 * Destroy is responsible for freeing dev.
2233 	 *
2234 	 * Destroy may be called before or after destructors are called
2235 	 * on emulated I/O regions, depending on whether a reference is
2236 	 * held by a vcpu or other kvm component that gets destroyed
2237 	 * after the emulated I/O.
2238 	 */
2239 	void (*destroy)(struct kvm_device *dev);
2240 
2241 	/*
2242 	 * Release is an alternative method to free the device. It is
2243 	 * called when the device file descriptor is closed. Once
2244 	 * release is called, the destroy method will not be called
2245 	 * anymore as the device is removed from the device list of
2246 	 * the VM. kvm->lock is held.
2247 	 */
2248 	void (*release)(struct kvm_device *dev);
2249 
2250 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2251 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2252 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2253 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2254 		      unsigned long arg);
2255 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2256 };
2257 
2258 struct kvm_device *kvm_device_from_filp(struct file *filp);
2259 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2260 void kvm_unregister_device_ops(u32 type);
2261 
2262 extern struct kvm_device_ops kvm_mpic_ops;
2263 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2264 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2265 
2266 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2267 
2268 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2269 {
2270 	vcpu->spin_loop.in_spin_loop = val;
2271 }
2272 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2273 {
2274 	vcpu->spin_loop.dy_eligible = val;
2275 }
2276 
2277 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2278 
2279 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2280 {
2281 }
2282 
2283 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2284 {
2285 }
2286 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2287 
2288 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2289 {
2290 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2291 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2292 }
2293 
2294 struct kvm_vcpu *kvm_get_running_vcpu(void);
2295 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2296 
2297 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2298 bool kvm_arch_has_irq_bypass(void);
2299 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2300 			   struct irq_bypass_producer *);
2301 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2302 			   struct irq_bypass_producer *);
2303 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2304 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2305 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2306 				  uint32_t guest_irq, bool set);
2307 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2308 				  struct kvm_kernel_irq_routing_entry *);
2309 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2310 
2311 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2312 /* If we wakeup during the poll time, was it a sucessful poll? */
2313 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2314 {
2315 	return vcpu->valid_wakeup;
2316 }
2317 
2318 #else
2319 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2320 {
2321 	return true;
2322 }
2323 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2324 
2325 #ifdef CONFIG_HAVE_KVM_NO_POLL
2326 /* Callback that tells if we must not poll */
2327 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2328 #else
2329 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2330 {
2331 	return false;
2332 }
2333 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2334 
2335 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2336 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2337 			       unsigned int ioctl, unsigned long arg);
2338 #else
2339 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2340 					     unsigned int ioctl,
2341 					     unsigned long arg)
2342 {
2343 	return -ENOIOCTLCMD;
2344 }
2345 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2346 
2347 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2348 
2349 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2350 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2351 #else
2352 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2353 {
2354 	return 0;
2355 }
2356 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2357 
2358 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2359 
2360 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2361 				uintptr_t data, const char *name,
2362 				struct task_struct **thread_ptr);
2363 
2364 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2365 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2366 {
2367 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2368 	vcpu->stat.signal_exits++;
2369 }
2370 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2371 
2372 /*
2373  * If more than one page is being (un)accounted, @virt must be the address of
2374  * the first page of a block of pages what were allocated together (i.e
2375  * accounted together).
2376  *
2377  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2378  * is thread-safe.
2379  */
2380 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2381 {
2382 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2383 }
2384 
2385 /*
2386  * This defines how many reserved entries we want to keep before we
2387  * kick the vcpu to the userspace to avoid dirty ring full.  This
2388  * value can be tuned to higher if e.g. PML is enabled on the host.
2389  */
2390 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2391 
2392 /* Max number of entries allowed for each kvm dirty ring */
2393 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2394 
2395 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2396 						 gpa_t gpa, gpa_t size,
2397 						 bool is_write, bool is_exec,
2398 						 bool is_private)
2399 {
2400 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2401 	vcpu->run->memory_fault.gpa = gpa;
2402 	vcpu->run->memory_fault.size = size;
2403 
2404 	/* RWX flags are not (yet) defined or communicated to userspace. */
2405 	vcpu->run->memory_fault.flags = 0;
2406 	if (is_private)
2407 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2408 }
2409 
2410 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2411 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2412 {
2413 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2414 }
2415 
2416 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2417 				     unsigned long attrs);
2418 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2419 					struct kvm_gfn_range *range);
2420 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2421 					 struct kvm_gfn_range *range);
2422 
2423 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2424 {
2425 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2426 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2427 }
2428 #else
2429 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2430 {
2431 	return false;
2432 }
2433 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2434 
2435 #ifdef CONFIG_KVM_PRIVATE_MEM
2436 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2437 		     gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2438 #else
2439 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2440 				   struct kvm_memory_slot *slot, gfn_t gfn,
2441 				   kvm_pfn_t *pfn, int *max_order)
2442 {
2443 	KVM_BUG_ON(1, kvm);
2444 	return -EIO;
2445 }
2446 #endif /* CONFIG_KVM_PRIVATE_MEM */
2447 
2448 #ifdef CONFIG_HAVE_KVM_GMEM_PREPARE
2449 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2450 bool kvm_arch_gmem_prepare_needed(struct kvm *kvm);
2451 #endif
2452 
2453 /**
2454  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2455  *
2456  * @kvm: KVM instance
2457  * @gfn: starting GFN to be populated
2458  * @src: userspace-provided buffer containing data to copy into GFN range
2459  *       (passed to @post_populate, and incremented on each iteration
2460  *       if not NULL)
2461  * @npages: number of pages to copy from userspace-buffer
2462  * @post_populate: callback to issue for each gmem page that backs the GPA
2463  *                 range
2464  * @opaque: opaque data to pass to @post_populate callback
2465  *
2466  * This is primarily intended for cases where a gmem-backed GPA range needs
2467  * to be initialized with userspace-provided data prior to being mapped into
2468  * the guest as a private page. This should be called with the slots->lock
2469  * held so that caller-enforced invariants regarding the expected memory
2470  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2471  *
2472  * Returns the number of pages that were populated.
2473  */
2474 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2475 				    void __user *src, int order, void *opaque);
2476 
2477 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2478 		       kvm_gmem_populate_cb post_populate, void *opaque);
2479 
2480 #ifdef CONFIG_HAVE_KVM_GMEM_INVALIDATE
2481 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2482 #endif
2483 
2484 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2485 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2486 				    struct kvm_pre_fault_memory *range);
2487 #endif
2488 
2489 #endif
2490