1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_MAX_NR_ADDRESS_SPACES 84 #define KVM_MAX_NR_ADDRESS_SPACES 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 101 /* 102 * error pfns indicate that the gfn is in slot but faild to 103 * translate it to pfn on host. 104 */ 105 static inline bool is_error_pfn(kvm_pfn_t pfn) 106 { 107 return !!(pfn & KVM_PFN_ERR_MASK); 108 } 109 110 /* 111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 112 * by a pending signal. Note, the signal may or may not be fatal. 113 */ 114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 115 { 116 return pfn == KVM_PFN_ERR_SIGPENDING; 117 } 118 119 /* 120 * error_noslot pfns indicate that the gfn can not be 121 * translated to pfn - it is not in slot or failed to 122 * translate it to pfn. 123 */ 124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 125 { 126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 127 } 128 129 /* noslot pfn indicates that the gfn is not in slot. */ 130 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 131 { 132 return pfn == KVM_PFN_NOSLOT; 133 } 134 135 /* 136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 137 * provide own defines and kvm_is_error_hva 138 */ 139 #ifndef KVM_HVA_ERR_BAD 140 141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 143 144 static inline bool kvm_is_error_hva(unsigned long addr) 145 { 146 return addr >= PAGE_OFFSET; 147 } 148 149 #endif 150 151 static inline bool kvm_is_error_gpa(gpa_t gpa) 152 { 153 return gpa == INVALID_GPA; 154 } 155 156 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 157 158 static inline bool is_error_page(struct page *page) 159 { 160 return IS_ERR(page); 161 } 162 163 #define KVM_REQUEST_MASK GENMASK(7,0) 164 #define KVM_REQUEST_NO_WAKEUP BIT(8) 165 #define KVM_REQUEST_WAIT BIT(9) 166 #define KVM_REQUEST_NO_ACTION BIT(10) 167 /* 168 * Architecture-independent vcpu->requests bit members 169 * Bits 3-7 are reserved for more arch-independent bits. 170 */ 171 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 172 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 173 #define KVM_REQ_UNBLOCK 2 174 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 175 #define KVM_REQUEST_ARCH_BASE 8 176 177 /* 178 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 179 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 180 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 181 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 182 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 183 * guarantee the vCPU received an IPI and has actually exited guest mode. 184 */ 185 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 186 187 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 188 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 189 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 190 }) 191 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 192 193 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 194 unsigned long *vcpu_bitmap); 195 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 196 197 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 198 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 199 200 extern struct mutex kvm_lock; 201 extern struct list_head vm_list; 202 203 struct kvm_io_range { 204 gpa_t addr; 205 int len; 206 struct kvm_io_device *dev; 207 }; 208 209 #define NR_IOBUS_DEVS 1000 210 211 struct kvm_io_bus { 212 int dev_count; 213 int ioeventfd_count; 214 struct kvm_io_range range[]; 215 }; 216 217 enum kvm_bus { 218 KVM_MMIO_BUS, 219 KVM_PIO_BUS, 220 KVM_VIRTIO_CCW_NOTIFY_BUS, 221 KVM_FAST_MMIO_BUS, 222 KVM_NR_BUSES 223 }; 224 225 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 226 int len, const void *val); 227 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 228 gpa_t addr, int len, const void *val, long cookie); 229 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 230 int len, void *val); 231 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 232 int len, struct kvm_io_device *dev); 233 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 234 struct kvm_io_device *dev); 235 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 236 gpa_t addr); 237 238 #ifdef CONFIG_KVM_ASYNC_PF 239 struct kvm_async_pf { 240 struct work_struct work; 241 struct list_head link; 242 struct list_head queue; 243 struct kvm_vcpu *vcpu; 244 gpa_t cr2_or_gpa; 245 unsigned long addr; 246 struct kvm_arch_async_pf arch; 247 bool wakeup_all; 248 bool notpresent_injected; 249 }; 250 251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 254 unsigned long hva, struct kvm_arch_async_pf *arch); 255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 256 #endif 257 258 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 259 union kvm_mmu_notifier_arg { 260 unsigned long attributes; 261 }; 262 263 struct kvm_gfn_range { 264 struct kvm_memory_slot *slot; 265 gfn_t start; 266 gfn_t end; 267 union kvm_mmu_notifier_arg arg; 268 bool may_block; 269 }; 270 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 271 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 272 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 273 #endif 274 275 enum { 276 OUTSIDE_GUEST_MODE, 277 IN_GUEST_MODE, 278 EXITING_GUEST_MODE, 279 READING_SHADOW_PAGE_TABLES, 280 }; 281 282 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 283 284 struct kvm_host_map { 285 /* 286 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 287 * a 'struct page' for it. When using mem= kernel parameter some memory 288 * can be used as guest memory but they are not managed by host 289 * kernel). 290 * If 'pfn' is not managed by the host kernel, this field is 291 * initialized to KVM_UNMAPPED_PAGE. 292 */ 293 struct page *page; 294 void *hva; 295 kvm_pfn_t pfn; 296 kvm_pfn_t gfn; 297 }; 298 299 /* 300 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 301 * directly to check for that. 302 */ 303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 304 { 305 return !!map->hva; 306 } 307 308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 309 { 310 return single_task_running() && !need_resched() && ktime_before(cur, stop); 311 } 312 313 /* 314 * Sometimes a large or cross-page mmio needs to be broken up into separate 315 * exits for userspace servicing. 316 */ 317 struct kvm_mmio_fragment { 318 gpa_t gpa; 319 void *data; 320 unsigned len; 321 }; 322 323 struct kvm_vcpu { 324 struct kvm *kvm; 325 #ifdef CONFIG_PREEMPT_NOTIFIERS 326 struct preempt_notifier preempt_notifier; 327 #endif 328 int cpu; 329 int vcpu_id; /* id given by userspace at creation */ 330 int vcpu_idx; /* index into kvm->vcpu_array */ 331 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 332 #ifdef CONFIG_PROVE_RCU 333 int srcu_depth; 334 #endif 335 int mode; 336 u64 requests; 337 unsigned long guest_debug; 338 339 struct mutex mutex; 340 struct kvm_run *run; 341 342 #ifndef __KVM_HAVE_ARCH_WQP 343 struct rcuwait wait; 344 #endif 345 struct pid __rcu *pid; 346 int sigset_active; 347 sigset_t sigset; 348 unsigned int halt_poll_ns; 349 bool valid_wakeup; 350 351 #ifdef CONFIG_HAS_IOMEM 352 int mmio_needed; 353 int mmio_read_completed; 354 int mmio_is_write; 355 int mmio_cur_fragment; 356 int mmio_nr_fragments; 357 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 358 #endif 359 360 #ifdef CONFIG_KVM_ASYNC_PF 361 struct { 362 u32 queued; 363 struct list_head queue; 364 struct list_head done; 365 spinlock_t lock; 366 } async_pf; 367 #endif 368 369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 370 /* 371 * Cpu relax intercept or pause loop exit optimization 372 * in_spin_loop: set when a vcpu does a pause loop exit 373 * or cpu relax intercepted. 374 * dy_eligible: indicates whether vcpu is eligible for directed yield. 375 */ 376 struct { 377 bool in_spin_loop; 378 bool dy_eligible; 379 } spin_loop; 380 #endif 381 bool wants_to_run; 382 bool preempted; 383 bool ready; 384 bool scheduled_out; 385 struct kvm_vcpu_arch arch; 386 struct kvm_vcpu_stat stat; 387 char stats_id[KVM_STATS_NAME_SIZE]; 388 struct kvm_dirty_ring dirty_ring; 389 390 /* 391 * The most recently used memslot by this vCPU and the slots generation 392 * for which it is valid. 393 * No wraparound protection is needed since generations won't overflow in 394 * thousands of years, even assuming 1M memslot operations per second. 395 */ 396 struct kvm_memory_slot *last_used_slot; 397 u64 last_used_slot_gen; 398 }; 399 400 /* 401 * Start accounting time towards a guest. 402 * Must be called before entering guest context. 403 */ 404 static __always_inline void guest_timing_enter_irqoff(void) 405 { 406 /* 407 * This is running in ioctl context so its safe to assume that it's the 408 * stime pending cputime to flush. 409 */ 410 instrumentation_begin(); 411 vtime_account_guest_enter(); 412 instrumentation_end(); 413 } 414 415 /* 416 * Enter guest context and enter an RCU extended quiescent state. 417 * 418 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 419 * unsafe to use any code which may directly or indirectly use RCU, tracing 420 * (including IRQ flag tracing), or lockdep. All code in this period must be 421 * non-instrumentable. 422 */ 423 static __always_inline void guest_context_enter_irqoff(void) 424 { 425 /* 426 * KVM does not hold any references to rcu protected data when it 427 * switches CPU into a guest mode. In fact switching to a guest mode 428 * is very similar to exiting to userspace from rcu point of view. In 429 * addition CPU may stay in a guest mode for quite a long time (up to 430 * one time slice). Lets treat guest mode as quiescent state, just like 431 * we do with user-mode execution. 432 */ 433 if (!context_tracking_guest_enter()) { 434 instrumentation_begin(); 435 rcu_virt_note_context_switch(); 436 instrumentation_end(); 437 } 438 } 439 440 /* 441 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 442 * guest_state_enter_irqoff(). 443 */ 444 static __always_inline void guest_enter_irqoff(void) 445 { 446 guest_timing_enter_irqoff(); 447 guest_context_enter_irqoff(); 448 } 449 450 /** 451 * guest_state_enter_irqoff - Fixup state when entering a guest 452 * 453 * Entry to a guest will enable interrupts, but the kernel state is interrupts 454 * disabled when this is invoked. Also tell RCU about it. 455 * 456 * 1) Trace interrupts on state 457 * 2) Invoke context tracking if enabled to adjust RCU state 458 * 3) Tell lockdep that interrupts are enabled 459 * 460 * Invoked from architecture specific code before entering a guest. 461 * Must be called with interrupts disabled and the caller must be 462 * non-instrumentable. 463 * The caller has to invoke guest_timing_enter_irqoff() before this. 464 * 465 * Note: this is analogous to exit_to_user_mode(). 466 */ 467 static __always_inline void guest_state_enter_irqoff(void) 468 { 469 instrumentation_begin(); 470 trace_hardirqs_on_prepare(); 471 lockdep_hardirqs_on_prepare(); 472 instrumentation_end(); 473 474 guest_context_enter_irqoff(); 475 lockdep_hardirqs_on(CALLER_ADDR0); 476 } 477 478 /* 479 * Exit guest context and exit an RCU extended quiescent state. 480 * 481 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 482 * unsafe to use any code which may directly or indirectly use RCU, tracing 483 * (including IRQ flag tracing), or lockdep. All code in this period must be 484 * non-instrumentable. 485 */ 486 static __always_inline void guest_context_exit_irqoff(void) 487 { 488 context_tracking_guest_exit(); 489 } 490 491 /* 492 * Stop accounting time towards a guest. 493 * Must be called after exiting guest context. 494 */ 495 static __always_inline void guest_timing_exit_irqoff(void) 496 { 497 instrumentation_begin(); 498 /* Flush the guest cputime we spent on the guest */ 499 vtime_account_guest_exit(); 500 instrumentation_end(); 501 } 502 503 /* 504 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 505 * guest_timing_exit_irqoff(). 506 */ 507 static __always_inline void guest_exit_irqoff(void) 508 { 509 guest_context_exit_irqoff(); 510 guest_timing_exit_irqoff(); 511 } 512 513 static inline void guest_exit(void) 514 { 515 unsigned long flags; 516 517 local_irq_save(flags); 518 guest_exit_irqoff(); 519 local_irq_restore(flags); 520 } 521 522 /** 523 * guest_state_exit_irqoff - Establish state when returning from guest mode 524 * 525 * Entry from a guest disables interrupts, but guest mode is traced as 526 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 527 * 528 * 1) Tell lockdep that interrupts are disabled 529 * 2) Invoke context tracking if enabled to reactivate RCU 530 * 3) Trace interrupts off state 531 * 532 * Invoked from architecture specific code after exiting a guest. 533 * Must be invoked with interrupts disabled and the caller must be 534 * non-instrumentable. 535 * The caller has to invoke guest_timing_exit_irqoff() after this. 536 * 537 * Note: this is analogous to enter_from_user_mode(). 538 */ 539 static __always_inline void guest_state_exit_irqoff(void) 540 { 541 lockdep_hardirqs_off(CALLER_ADDR0); 542 guest_context_exit_irqoff(); 543 544 instrumentation_begin(); 545 trace_hardirqs_off_finish(); 546 instrumentation_end(); 547 } 548 549 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 550 { 551 /* 552 * The memory barrier ensures a previous write to vcpu->requests cannot 553 * be reordered with the read of vcpu->mode. It pairs with the general 554 * memory barrier following the write of vcpu->mode in VCPU RUN. 555 */ 556 smp_mb__before_atomic(); 557 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 558 } 559 560 /* 561 * Some of the bitops functions do not support too long bitmaps. 562 * This number must be determined not to exceed such limits. 563 */ 564 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 565 566 /* 567 * Since at idle each memslot belongs to two memslot sets it has to contain 568 * two embedded nodes for each data structure that it forms a part of. 569 * 570 * Two memslot sets (one active and one inactive) are necessary so the VM 571 * continues to run on one memslot set while the other is being modified. 572 * 573 * These two memslot sets normally point to the same set of memslots. 574 * They can, however, be desynchronized when performing a memslot management 575 * operation by replacing the memslot to be modified by its copy. 576 * After the operation is complete, both memslot sets once again point to 577 * the same, common set of memslot data. 578 * 579 * The memslots themselves are independent of each other so they can be 580 * individually added or deleted. 581 */ 582 struct kvm_memory_slot { 583 struct hlist_node id_node[2]; 584 struct interval_tree_node hva_node[2]; 585 struct rb_node gfn_node[2]; 586 gfn_t base_gfn; 587 unsigned long npages; 588 unsigned long *dirty_bitmap; 589 struct kvm_arch_memory_slot arch; 590 unsigned long userspace_addr; 591 u32 flags; 592 short id; 593 u16 as_id; 594 595 #ifdef CONFIG_KVM_PRIVATE_MEM 596 struct { 597 struct file __rcu *file; 598 pgoff_t pgoff; 599 } gmem; 600 #endif 601 }; 602 603 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 604 { 605 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 606 } 607 608 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 609 { 610 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 611 } 612 613 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 614 { 615 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 616 } 617 618 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 619 { 620 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 621 622 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 623 } 624 625 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 626 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 627 #endif 628 629 struct kvm_s390_adapter_int { 630 u64 ind_addr; 631 u64 summary_addr; 632 u64 ind_offset; 633 u32 summary_offset; 634 u32 adapter_id; 635 }; 636 637 struct kvm_hv_sint { 638 u32 vcpu; 639 u32 sint; 640 }; 641 642 struct kvm_xen_evtchn { 643 u32 port; 644 u32 vcpu_id; 645 int vcpu_idx; 646 u32 priority; 647 }; 648 649 struct kvm_kernel_irq_routing_entry { 650 u32 gsi; 651 u32 type; 652 int (*set)(struct kvm_kernel_irq_routing_entry *e, 653 struct kvm *kvm, int irq_source_id, int level, 654 bool line_status); 655 union { 656 struct { 657 unsigned irqchip; 658 unsigned pin; 659 } irqchip; 660 struct { 661 u32 address_lo; 662 u32 address_hi; 663 u32 data; 664 u32 flags; 665 u32 devid; 666 } msi; 667 struct kvm_s390_adapter_int adapter; 668 struct kvm_hv_sint hv_sint; 669 struct kvm_xen_evtchn xen_evtchn; 670 }; 671 struct hlist_node link; 672 }; 673 674 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 675 struct kvm_irq_routing_table { 676 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 677 u32 nr_rt_entries; 678 /* 679 * Array indexed by gsi. Each entry contains list of irq chips 680 * the gsi is connected to. 681 */ 682 struct hlist_head map[] __counted_by(nr_rt_entries); 683 }; 684 #endif 685 686 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 687 688 #ifndef KVM_INTERNAL_MEM_SLOTS 689 #define KVM_INTERNAL_MEM_SLOTS 0 690 #endif 691 692 #define KVM_MEM_SLOTS_NUM SHRT_MAX 693 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 694 695 #if KVM_MAX_NR_ADDRESS_SPACES == 1 696 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 697 { 698 return KVM_MAX_NR_ADDRESS_SPACES; 699 } 700 701 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 702 { 703 return 0; 704 } 705 #endif 706 707 /* 708 * Arch code must define kvm_arch_has_private_mem if support for private memory 709 * is enabled. 710 */ 711 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 712 static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 713 { 714 return false; 715 } 716 #endif 717 718 struct kvm_memslots { 719 u64 generation; 720 atomic_long_t last_used_slot; 721 struct rb_root_cached hva_tree; 722 struct rb_root gfn_tree; 723 /* 724 * The mapping table from slot id to memslot. 725 * 726 * 7-bit bucket count matches the size of the old id to index array for 727 * 512 slots, while giving good performance with this slot count. 728 * Higher bucket counts bring only small performance improvements but 729 * always result in higher memory usage (even for lower memslot counts). 730 */ 731 DECLARE_HASHTABLE(id_hash, 7); 732 int node_idx; 733 }; 734 735 struct kvm { 736 #ifdef KVM_HAVE_MMU_RWLOCK 737 rwlock_t mmu_lock; 738 #else 739 spinlock_t mmu_lock; 740 #endif /* KVM_HAVE_MMU_RWLOCK */ 741 742 struct mutex slots_lock; 743 744 /* 745 * Protects the arch-specific fields of struct kvm_memory_slots in 746 * use by the VM. To be used under the slots_lock (above) or in a 747 * kvm->srcu critical section where acquiring the slots_lock would 748 * lead to deadlock with the synchronize_srcu in 749 * kvm_swap_active_memslots(). 750 */ 751 struct mutex slots_arch_lock; 752 struct mm_struct *mm; /* userspace tied to this vm */ 753 unsigned long nr_memslot_pages; 754 /* The two memslot sets - active and inactive (per address space) */ 755 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 756 /* The current active memslot set for each address space */ 757 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 758 struct xarray vcpu_array; 759 /* 760 * Protected by slots_lock, but can be read outside if an 761 * incorrect answer is acceptable. 762 */ 763 atomic_t nr_memslots_dirty_logging; 764 765 /* Used to wait for completion of MMU notifiers. */ 766 spinlock_t mn_invalidate_lock; 767 unsigned long mn_active_invalidate_count; 768 struct rcuwait mn_memslots_update_rcuwait; 769 770 /* For management / invalidation of gfn_to_pfn_caches */ 771 spinlock_t gpc_lock; 772 struct list_head gpc_list; 773 774 /* 775 * created_vcpus is protected by kvm->lock, and is incremented 776 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 777 * incremented after storing the kvm_vcpu pointer in vcpus, 778 * and is accessed atomically. 779 */ 780 atomic_t online_vcpus; 781 int max_vcpus; 782 int created_vcpus; 783 int last_boosted_vcpu; 784 struct list_head vm_list; 785 struct mutex lock; 786 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 787 #ifdef CONFIG_HAVE_KVM_IRQCHIP 788 struct { 789 spinlock_t lock; 790 struct list_head items; 791 /* resampler_list update side is protected by resampler_lock. */ 792 struct list_head resampler_list; 793 struct mutex resampler_lock; 794 } irqfds; 795 #endif 796 struct list_head ioeventfds; 797 struct kvm_vm_stat stat; 798 struct kvm_arch arch; 799 refcount_t users_count; 800 #ifdef CONFIG_KVM_MMIO 801 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 802 spinlock_t ring_lock; 803 struct list_head coalesced_zones; 804 #endif 805 806 struct mutex irq_lock; 807 #ifdef CONFIG_HAVE_KVM_IRQCHIP 808 /* 809 * Update side is protected by irq_lock. 810 */ 811 struct kvm_irq_routing_table __rcu *irq_routing; 812 813 struct hlist_head irq_ack_notifier_list; 814 #endif 815 816 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 817 struct mmu_notifier mmu_notifier; 818 unsigned long mmu_invalidate_seq; 819 long mmu_invalidate_in_progress; 820 gfn_t mmu_invalidate_range_start; 821 gfn_t mmu_invalidate_range_end; 822 #endif 823 struct list_head devices; 824 u64 manual_dirty_log_protect; 825 struct dentry *debugfs_dentry; 826 struct kvm_stat_data **debugfs_stat_data; 827 struct srcu_struct srcu; 828 struct srcu_struct irq_srcu; 829 pid_t userspace_pid; 830 bool override_halt_poll_ns; 831 unsigned int max_halt_poll_ns; 832 u32 dirty_ring_size; 833 bool dirty_ring_with_bitmap; 834 bool vm_bugged; 835 bool vm_dead; 836 837 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 838 struct notifier_block pm_notifier; 839 #endif 840 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 841 /* Protected by slots_locks (for writes) and RCU (for reads) */ 842 struct xarray mem_attr_array; 843 #endif 844 char stats_id[KVM_STATS_NAME_SIZE]; 845 }; 846 847 #define kvm_err(fmt, ...) \ 848 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 849 #define kvm_info(fmt, ...) \ 850 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 851 #define kvm_debug(fmt, ...) \ 852 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 853 #define kvm_debug_ratelimited(fmt, ...) \ 854 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 855 ## __VA_ARGS__) 856 #define kvm_pr_unimpl(fmt, ...) \ 857 pr_err_ratelimited("kvm [%i]: " fmt, \ 858 task_tgid_nr(current), ## __VA_ARGS__) 859 860 /* The guest did something we don't support. */ 861 #define vcpu_unimpl(vcpu, fmt, ...) \ 862 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 863 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 864 865 #define vcpu_debug(vcpu, fmt, ...) \ 866 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 867 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 868 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 869 ## __VA_ARGS__) 870 #define vcpu_err(vcpu, fmt, ...) \ 871 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 872 873 static inline void kvm_vm_dead(struct kvm *kvm) 874 { 875 kvm->vm_dead = true; 876 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 877 } 878 879 static inline void kvm_vm_bugged(struct kvm *kvm) 880 { 881 kvm->vm_bugged = true; 882 kvm_vm_dead(kvm); 883 } 884 885 886 #define KVM_BUG(cond, kvm, fmt...) \ 887 ({ \ 888 bool __ret = !!(cond); \ 889 \ 890 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 891 kvm_vm_bugged(kvm); \ 892 unlikely(__ret); \ 893 }) 894 895 #define KVM_BUG_ON(cond, kvm) \ 896 ({ \ 897 bool __ret = !!(cond); \ 898 \ 899 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 900 kvm_vm_bugged(kvm); \ 901 unlikely(__ret); \ 902 }) 903 904 /* 905 * Note, "data corruption" refers to corruption of host kernel data structures, 906 * not guest data. Guest data corruption, suspected or confirmed, that is tied 907 * and contained to a single VM should *never* BUG() and potentially panic the 908 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 909 * is corrupted and that corruption can have a cascading effect to other parts 910 * of the hosts and/or to other VMs. 911 */ 912 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 913 ({ \ 914 bool __ret = !!(cond); \ 915 \ 916 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 917 BUG_ON(__ret); \ 918 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 919 kvm_vm_bugged(kvm); \ 920 unlikely(__ret); \ 921 }) 922 923 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 924 { 925 #ifdef CONFIG_PROVE_RCU 926 WARN_ONCE(vcpu->srcu_depth++, 927 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 928 #endif 929 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 930 } 931 932 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 933 { 934 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 935 936 #ifdef CONFIG_PROVE_RCU 937 WARN_ONCE(--vcpu->srcu_depth, 938 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 939 #endif 940 } 941 942 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 943 { 944 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 945 } 946 947 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 948 { 949 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 950 lockdep_is_held(&kvm->slots_lock) || 951 !refcount_read(&kvm->users_count)); 952 } 953 954 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 955 { 956 int num_vcpus = atomic_read(&kvm->online_vcpus); 957 i = array_index_nospec(i, num_vcpus); 958 959 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 960 smp_rmb(); 961 return xa_load(&kvm->vcpu_array, i); 962 } 963 964 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 965 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 966 (atomic_read(&kvm->online_vcpus) - 1)) 967 968 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 969 { 970 struct kvm_vcpu *vcpu = NULL; 971 unsigned long i; 972 973 if (id < 0) 974 return NULL; 975 if (id < KVM_MAX_VCPUS) 976 vcpu = kvm_get_vcpu(kvm, id); 977 if (vcpu && vcpu->vcpu_id == id) 978 return vcpu; 979 kvm_for_each_vcpu(i, vcpu, kvm) 980 if (vcpu->vcpu_id == id) 981 return vcpu; 982 return NULL; 983 } 984 985 void kvm_destroy_vcpus(struct kvm *kvm); 986 987 void vcpu_load(struct kvm_vcpu *vcpu); 988 void vcpu_put(struct kvm_vcpu *vcpu); 989 990 #ifdef __KVM_HAVE_IOAPIC 991 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 992 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 993 #else 994 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 995 { 996 } 997 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 998 { 999 } 1000 #endif 1001 1002 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1003 int kvm_irqfd_init(void); 1004 void kvm_irqfd_exit(void); 1005 #else 1006 static inline int kvm_irqfd_init(void) 1007 { 1008 return 0; 1009 } 1010 1011 static inline void kvm_irqfd_exit(void) 1012 { 1013 } 1014 #endif 1015 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1016 void kvm_exit(void); 1017 1018 void kvm_get_kvm(struct kvm *kvm); 1019 bool kvm_get_kvm_safe(struct kvm *kvm); 1020 void kvm_put_kvm(struct kvm *kvm); 1021 bool file_is_kvm(struct file *file); 1022 void kvm_put_kvm_no_destroy(struct kvm *kvm); 1023 1024 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1025 { 1026 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1027 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1028 lockdep_is_held(&kvm->slots_lock) || 1029 !refcount_read(&kvm->users_count)); 1030 } 1031 1032 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1033 { 1034 return __kvm_memslots(kvm, 0); 1035 } 1036 1037 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1038 { 1039 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1040 1041 return __kvm_memslots(vcpu->kvm, as_id); 1042 } 1043 1044 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1045 { 1046 return RB_EMPTY_ROOT(&slots->gfn_tree); 1047 } 1048 1049 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1050 1051 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1052 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1053 if (WARN_ON_ONCE(!memslot->npages)) { \ 1054 } else 1055 1056 static inline 1057 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1058 { 1059 struct kvm_memory_slot *slot; 1060 int idx = slots->node_idx; 1061 1062 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1063 if (slot->id == id) 1064 return slot; 1065 } 1066 1067 return NULL; 1068 } 1069 1070 /* Iterator used for walking memslots that overlap a gfn range. */ 1071 struct kvm_memslot_iter { 1072 struct kvm_memslots *slots; 1073 struct rb_node *node; 1074 struct kvm_memory_slot *slot; 1075 }; 1076 1077 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1078 { 1079 iter->node = rb_next(iter->node); 1080 if (!iter->node) 1081 return; 1082 1083 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1084 } 1085 1086 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1087 struct kvm_memslots *slots, 1088 gfn_t start) 1089 { 1090 int idx = slots->node_idx; 1091 struct rb_node *tmp; 1092 struct kvm_memory_slot *slot; 1093 1094 iter->slots = slots; 1095 1096 /* 1097 * Find the so called "upper bound" of a key - the first node that has 1098 * its key strictly greater than the searched one (the start gfn in our case). 1099 */ 1100 iter->node = NULL; 1101 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1102 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1103 if (start < slot->base_gfn) { 1104 iter->node = tmp; 1105 tmp = tmp->rb_left; 1106 } else { 1107 tmp = tmp->rb_right; 1108 } 1109 } 1110 1111 /* 1112 * Find the slot with the lowest gfn that can possibly intersect with 1113 * the range, so we'll ideally have slot start <= range start 1114 */ 1115 if (iter->node) { 1116 /* 1117 * A NULL previous node means that the very first slot 1118 * already has a higher start gfn. 1119 * In this case slot start > range start. 1120 */ 1121 tmp = rb_prev(iter->node); 1122 if (tmp) 1123 iter->node = tmp; 1124 } else { 1125 /* a NULL node below means no slots */ 1126 iter->node = rb_last(&slots->gfn_tree); 1127 } 1128 1129 if (iter->node) { 1130 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1131 1132 /* 1133 * It is possible in the slot start < range start case that the 1134 * found slot ends before or at range start (slot end <= range start) 1135 * and so it does not overlap the requested range. 1136 * 1137 * In such non-overlapping case the next slot (if it exists) will 1138 * already have slot start > range start, otherwise the logic above 1139 * would have found it instead of the current slot. 1140 */ 1141 if (iter->slot->base_gfn + iter->slot->npages <= start) 1142 kvm_memslot_iter_next(iter); 1143 } 1144 } 1145 1146 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1147 { 1148 if (!iter->node) 1149 return false; 1150 1151 /* 1152 * If this slot starts beyond or at the end of the range so does 1153 * every next one 1154 */ 1155 return iter->slot->base_gfn < end; 1156 } 1157 1158 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1159 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1160 for (kvm_memslot_iter_start(iter, slots, start); \ 1161 kvm_memslot_iter_is_valid(iter, end); \ 1162 kvm_memslot_iter_next(iter)) 1163 1164 /* 1165 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1166 * - create a new memory slot 1167 * - delete an existing memory slot 1168 * - modify an existing memory slot 1169 * -- move it in the guest physical memory space 1170 * -- just change its flags 1171 * 1172 * Since flags can be changed by some of these operations, the following 1173 * differentiation is the best we can do for __kvm_set_memory_region(): 1174 */ 1175 enum kvm_mr_change { 1176 KVM_MR_CREATE, 1177 KVM_MR_DELETE, 1178 KVM_MR_MOVE, 1179 KVM_MR_FLAGS_ONLY, 1180 }; 1181 1182 int kvm_set_memory_region(struct kvm *kvm, 1183 const struct kvm_userspace_memory_region2 *mem); 1184 int __kvm_set_memory_region(struct kvm *kvm, 1185 const struct kvm_userspace_memory_region2 *mem); 1186 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1187 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1188 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1189 const struct kvm_memory_slot *old, 1190 struct kvm_memory_slot *new, 1191 enum kvm_mr_change change); 1192 void kvm_arch_commit_memory_region(struct kvm *kvm, 1193 struct kvm_memory_slot *old, 1194 const struct kvm_memory_slot *new, 1195 enum kvm_mr_change change); 1196 /* flush all memory translations */ 1197 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1198 /* flush memory translations pointing to 'slot' */ 1199 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1200 struct kvm_memory_slot *slot); 1201 1202 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1203 struct page **pages, int nr_pages); 1204 1205 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1206 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1207 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1208 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1209 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1210 bool *writable); 1211 void kvm_release_page_clean(struct page *page); 1212 void kvm_release_page_dirty(struct page *page); 1213 1214 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1215 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1216 bool *writable); 1217 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1218 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1219 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1220 bool atomic, bool interruptible, bool *async, 1221 bool write_fault, bool *writable, hva_t *hva); 1222 1223 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1224 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1225 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1226 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1227 1228 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1229 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1230 int len); 1231 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1232 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1233 void *data, unsigned long len); 1234 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1235 void *data, unsigned int offset, 1236 unsigned long len); 1237 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1238 int offset, int len); 1239 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1240 unsigned long len); 1241 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1242 void *data, unsigned long len); 1243 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1244 void *data, unsigned int offset, 1245 unsigned long len); 1246 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1247 gpa_t gpa, unsigned long len); 1248 1249 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1250 ({ \ 1251 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1252 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1253 int __ret = -EFAULT; \ 1254 \ 1255 if (!kvm_is_error_hva(__addr)) \ 1256 __ret = get_user(v, __uaddr); \ 1257 __ret; \ 1258 }) 1259 1260 #define kvm_get_guest(kvm, gpa, v) \ 1261 ({ \ 1262 gpa_t __gpa = gpa; \ 1263 struct kvm *__kvm = kvm; \ 1264 \ 1265 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1266 offset_in_page(__gpa), v); \ 1267 }) 1268 1269 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1270 ({ \ 1271 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1272 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1273 int __ret = -EFAULT; \ 1274 \ 1275 if (!kvm_is_error_hva(__addr)) \ 1276 __ret = put_user(v, __uaddr); \ 1277 if (!__ret) \ 1278 mark_page_dirty(kvm, gfn); \ 1279 __ret; \ 1280 }) 1281 1282 #define kvm_put_guest(kvm, gpa, v) \ 1283 ({ \ 1284 gpa_t __gpa = gpa; \ 1285 struct kvm *__kvm = kvm; \ 1286 \ 1287 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1288 offset_in_page(__gpa), v); \ 1289 }) 1290 1291 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1292 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1293 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1294 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1295 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1296 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1297 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1298 1299 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1300 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1301 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1302 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1303 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1304 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1305 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1306 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1307 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1308 int len); 1309 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1310 unsigned long len); 1311 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1312 unsigned long len); 1313 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1314 int offset, int len); 1315 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1316 unsigned long len); 1317 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1318 1319 /** 1320 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1321 * 1322 * @gpc: struct gfn_to_pfn_cache object. 1323 * @kvm: pointer to kvm instance. 1324 * 1325 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1326 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1327 * the caller before init). 1328 */ 1329 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1330 1331 /** 1332 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1333 * physical address. 1334 * 1335 * @gpc: struct gfn_to_pfn_cache object. 1336 * @gpa: guest physical address to map. 1337 * @len: sanity check; the range being access must fit a single page. 1338 * 1339 * @return: 0 for success. 1340 * -EINVAL for a mapping which would cross a page boundary. 1341 * -EFAULT for an untranslatable guest physical address. 1342 * 1343 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1344 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1345 * to ensure that the cache is valid before accessing the target page. 1346 */ 1347 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1348 1349 /** 1350 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1351 * 1352 * @gpc: struct gfn_to_pfn_cache object. 1353 * @hva: userspace virtual address to map. 1354 * @len: sanity check; the range being access must fit a single page. 1355 * 1356 * @return: 0 for success. 1357 * -EINVAL for a mapping which would cross a page boundary. 1358 * -EFAULT for an untranslatable guest physical address. 1359 * 1360 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1361 * merely bypasses a layer of address translation. 1362 */ 1363 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1364 1365 /** 1366 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1367 * 1368 * @gpc: struct gfn_to_pfn_cache object. 1369 * @len: sanity check; the range being access must fit a single page. 1370 * 1371 * @return: %true if the cache is still valid and the address matches. 1372 * %false if the cache is not valid. 1373 * 1374 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1375 * while calling this function, and then continue to hold the lock until the 1376 * access is complete. 1377 * 1378 * Callers in IN_GUEST_MODE may do so without locking, although they should 1379 * still hold a read lock on kvm->scru for the memslot checks. 1380 */ 1381 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1382 1383 /** 1384 * kvm_gpc_refresh - update a previously initialized cache. 1385 * 1386 * @gpc: struct gfn_to_pfn_cache object. 1387 * @len: sanity check; the range being access must fit a single page. 1388 * 1389 * @return: 0 for success. 1390 * -EINVAL for a mapping which would cross a page boundary. 1391 * -EFAULT for an untranslatable guest physical address. 1392 * 1393 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1394 * return from this function does not mean the page can be immediately 1395 * accessed because it may have raced with an invalidation. Callers must 1396 * still lock and check the cache status, as this function does not return 1397 * with the lock still held to permit access. 1398 */ 1399 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1400 1401 /** 1402 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1403 * 1404 * @gpc: struct gfn_to_pfn_cache object. 1405 * 1406 * This removes a cache from the VM's list to be processed on MMU notifier 1407 * invocation. 1408 */ 1409 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1410 1411 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1412 { 1413 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1414 } 1415 1416 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1417 { 1418 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1419 } 1420 1421 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1422 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1423 1424 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1425 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1426 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1427 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1428 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1429 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1430 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1431 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1432 1433 void kvm_flush_remote_tlbs(struct kvm *kvm); 1434 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1435 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1436 const struct kvm_memory_slot *memslot); 1437 1438 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1439 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1440 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1441 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1442 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1443 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1444 #endif 1445 1446 void kvm_mmu_invalidate_begin(struct kvm *kvm); 1447 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1448 void kvm_mmu_invalidate_end(struct kvm *kvm); 1449 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1450 1451 long kvm_arch_dev_ioctl(struct file *filp, 1452 unsigned int ioctl, unsigned long arg); 1453 long kvm_arch_vcpu_ioctl(struct file *filp, 1454 unsigned int ioctl, unsigned long arg); 1455 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1456 1457 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1458 1459 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1460 struct kvm_memory_slot *slot, 1461 gfn_t gfn_offset, 1462 unsigned long mask); 1463 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1464 1465 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1466 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1467 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1468 int *is_dirty, struct kvm_memory_slot **memslot); 1469 #endif 1470 1471 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1472 bool line_status); 1473 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1474 struct kvm_enable_cap *cap); 1475 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1476 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1477 unsigned long arg); 1478 1479 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1480 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1481 1482 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1483 struct kvm_translation *tr); 1484 1485 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1486 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1487 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1488 struct kvm_sregs *sregs); 1489 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1490 struct kvm_sregs *sregs); 1491 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1492 struct kvm_mp_state *mp_state); 1493 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1494 struct kvm_mp_state *mp_state); 1495 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1496 struct kvm_guest_debug *dbg); 1497 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1498 1499 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1500 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1501 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1502 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1503 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1504 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1505 1506 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1507 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1508 #endif 1509 1510 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1511 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1512 #else 1513 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1514 #endif 1515 1516 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1517 int kvm_arch_hardware_enable(void); 1518 void kvm_arch_hardware_disable(void); 1519 #endif 1520 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1521 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1522 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1523 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1524 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1525 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1526 int kvm_arch_post_init_vm(struct kvm *kvm); 1527 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1528 void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1529 1530 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1531 /* 1532 * All architectures that want to use vzalloc currently also 1533 * need their own kvm_arch_alloc_vm implementation. 1534 */ 1535 static inline struct kvm *kvm_arch_alloc_vm(void) 1536 { 1537 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1538 } 1539 #endif 1540 1541 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1542 { 1543 kvfree(kvm); 1544 } 1545 1546 #ifndef __KVM_HAVE_ARCH_VM_FREE 1547 static inline void kvm_arch_free_vm(struct kvm *kvm) 1548 { 1549 __kvm_arch_free_vm(kvm); 1550 } 1551 #endif 1552 1553 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1554 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1555 { 1556 return -ENOTSUPP; 1557 } 1558 #else 1559 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1560 #endif 1561 1562 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1563 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1564 gfn_t gfn, u64 nr_pages) 1565 { 1566 return -EOPNOTSUPP; 1567 } 1568 #else 1569 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1570 #endif 1571 1572 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1573 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1574 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1575 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1576 #else 1577 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1578 { 1579 } 1580 1581 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1582 { 1583 } 1584 1585 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1586 { 1587 return false; 1588 } 1589 #endif 1590 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1591 void kvm_arch_start_assignment(struct kvm *kvm); 1592 void kvm_arch_end_assignment(struct kvm *kvm); 1593 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1594 #else 1595 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1596 { 1597 } 1598 1599 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1600 { 1601 } 1602 1603 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1604 { 1605 return false; 1606 } 1607 #endif 1608 1609 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1610 { 1611 #ifdef __KVM_HAVE_ARCH_WQP 1612 return vcpu->arch.waitp; 1613 #else 1614 return &vcpu->wait; 1615 #endif 1616 } 1617 1618 /* 1619 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1620 * true if the vCPU was blocking and was awakened, false otherwise. 1621 */ 1622 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1623 { 1624 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1625 } 1626 1627 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1628 { 1629 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1630 } 1631 1632 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1633 /* 1634 * returns true if the virtual interrupt controller is initialized and 1635 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1636 * controller is dynamically instantiated and this is not always true. 1637 */ 1638 bool kvm_arch_intc_initialized(struct kvm *kvm); 1639 #else 1640 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1641 { 1642 return true; 1643 } 1644 #endif 1645 1646 #ifdef CONFIG_GUEST_PERF_EVENTS 1647 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1648 1649 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1650 void kvm_unregister_perf_callbacks(void); 1651 #else 1652 static inline void kvm_register_perf_callbacks(void *ign) {} 1653 static inline void kvm_unregister_perf_callbacks(void) {} 1654 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1655 1656 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1657 void kvm_arch_destroy_vm(struct kvm *kvm); 1658 void kvm_arch_sync_events(struct kvm *kvm); 1659 1660 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1661 1662 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1663 bool kvm_is_zone_device_page(struct page *page); 1664 1665 struct kvm_irq_ack_notifier { 1666 struct hlist_node link; 1667 unsigned gsi; 1668 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1669 }; 1670 1671 int kvm_irq_map_gsi(struct kvm *kvm, 1672 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1673 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1674 1675 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1676 bool line_status); 1677 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1678 int irq_source_id, int level, bool line_status); 1679 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1680 struct kvm *kvm, int irq_source_id, 1681 int level, bool line_status); 1682 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1683 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1684 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1685 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1686 struct kvm_irq_ack_notifier *kian); 1687 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1688 struct kvm_irq_ack_notifier *kian); 1689 int kvm_request_irq_source_id(struct kvm *kvm); 1690 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1691 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1692 1693 /* 1694 * Returns a pointer to the memslot if it contains gfn. 1695 * Otherwise returns NULL. 1696 */ 1697 static inline struct kvm_memory_slot * 1698 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1699 { 1700 if (!slot) 1701 return NULL; 1702 1703 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1704 return slot; 1705 else 1706 return NULL; 1707 } 1708 1709 /* 1710 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1711 * 1712 * With "approx" set returns the memslot also when the address falls 1713 * in a hole. In that case one of the memslots bordering the hole is 1714 * returned. 1715 */ 1716 static inline struct kvm_memory_slot * 1717 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1718 { 1719 struct kvm_memory_slot *slot; 1720 struct rb_node *node; 1721 int idx = slots->node_idx; 1722 1723 slot = NULL; 1724 for (node = slots->gfn_tree.rb_node; node; ) { 1725 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1726 if (gfn >= slot->base_gfn) { 1727 if (gfn < slot->base_gfn + slot->npages) 1728 return slot; 1729 node = node->rb_right; 1730 } else 1731 node = node->rb_left; 1732 } 1733 1734 return approx ? slot : NULL; 1735 } 1736 1737 static inline struct kvm_memory_slot * 1738 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1739 { 1740 struct kvm_memory_slot *slot; 1741 1742 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1743 slot = try_get_memslot(slot, gfn); 1744 if (slot) 1745 return slot; 1746 1747 slot = search_memslots(slots, gfn, approx); 1748 if (slot) { 1749 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1750 return slot; 1751 } 1752 1753 return NULL; 1754 } 1755 1756 /* 1757 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1758 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1759 * because that would bloat other code too much. 1760 */ 1761 static inline struct kvm_memory_slot * 1762 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1763 { 1764 return ____gfn_to_memslot(slots, gfn, false); 1765 } 1766 1767 static inline unsigned long 1768 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1769 { 1770 /* 1771 * The index was checked originally in search_memslots. To avoid 1772 * that a malicious guest builds a Spectre gadget out of e.g. page 1773 * table walks, do not let the processor speculate loads outside 1774 * the guest's registered memslots. 1775 */ 1776 unsigned long offset = gfn - slot->base_gfn; 1777 offset = array_index_nospec(offset, slot->npages); 1778 return slot->userspace_addr + offset * PAGE_SIZE; 1779 } 1780 1781 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1782 { 1783 return gfn_to_memslot(kvm, gfn)->id; 1784 } 1785 1786 static inline gfn_t 1787 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1788 { 1789 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1790 1791 return slot->base_gfn + gfn_offset; 1792 } 1793 1794 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1795 { 1796 return (gpa_t)gfn << PAGE_SHIFT; 1797 } 1798 1799 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1800 { 1801 return (gfn_t)(gpa >> PAGE_SHIFT); 1802 } 1803 1804 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1805 { 1806 return (hpa_t)pfn << PAGE_SHIFT; 1807 } 1808 1809 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1810 { 1811 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1812 1813 return !kvm_is_error_hva(hva); 1814 } 1815 1816 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1817 { 1818 lockdep_assert_held(&gpc->lock); 1819 1820 if (!gpc->memslot) 1821 return; 1822 1823 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1824 } 1825 1826 enum kvm_stat_kind { 1827 KVM_STAT_VM, 1828 KVM_STAT_VCPU, 1829 }; 1830 1831 struct kvm_stat_data { 1832 struct kvm *kvm; 1833 const struct _kvm_stats_desc *desc; 1834 enum kvm_stat_kind kind; 1835 }; 1836 1837 struct _kvm_stats_desc { 1838 struct kvm_stats_desc desc; 1839 char name[KVM_STATS_NAME_SIZE]; 1840 }; 1841 1842 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1843 .flags = type | unit | base | \ 1844 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1845 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1846 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1847 .exponent = exp, \ 1848 .size = sz, \ 1849 .bucket_size = bsz 1850 1851 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1852 { \ 1853 { \ 1854 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1855 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1856 }, \ 1857 .name = #stat, \ 1858 } 1859 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1860 { \ 1861 { \ 1862 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1863 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1864 }, \ 1865 .name = #stat, \ 1866 } 1867 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1868 { \ 1869 { \ 1870 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1871 .offset = offsetof(struct kvm_vm_stat, stat) \ 1872 }, \ 1873 .name = #stat, \ 1874 } 1875 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1876 { \ 1877 { \ 1878 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1879 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1880 }, \ 1881 .name = #stat, \ 1882 } 1883 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1884 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1885 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1886 1887 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1888 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1889 unit, base, exponent, 1, 0) 1890 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1891 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1892 unit, base, exponent, 1, 0) 1893 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1894 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1895 unit, base, exponent, 1, 0) 1896 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1897 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1898 unit, base, exponent, sz, bsz) 1899 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1900 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1901 unit, base, exponent, sz, 0) 1902 1903 /* Cumulative counter, read/write */ 1904 #define STATS_DESC_COUNTER(SCOPE, name) \ 1905 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1906 KVM_STATS_BASE_POW10, 0) 1907 /* Instantaneous counter, read only */ 1908 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1909 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1910 KVM_STATS_BASE_POW10, 0) 1911 /* Peak counter, read/write */ 1912 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1913 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1914 KVM_STATS_BASE_POW10, 0) 1915 1916 /* Instantaneous boolean value, read only */ 1917 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1918 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1919 KVM_STATS_BASE_POW10, 0) 1920 /* Peak (sticky) boolean value, read/write */ 1921 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1922 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1923 KVM_STATS_BASE_POW10, 0) 1924 1925 /* Cumulative time in nanosecond */ 1926 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1927 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1928 KVM_STATS_BASE_POW10, -9) 1929 /* Linear histogram for time in nanosecond */ 1930 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1931 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1932 KVM_STATS_BASE_POW10, -9, sz, bsz) 1933 /* Logarithmic histogram for time in nanosecond */ 1934 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1935 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1936 KVM_STATS_BASE_POW10, -9, sz) 1937 1938 #define KVM_GENERIC_VM_STATS() \ 1939 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1940 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1941 1942 #define KVM_GENERIC_VCPU_STATS() \ 1943 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1944 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1945 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1946 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1947 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1948 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1949 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1950 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1951 HALT_POLL_HIST_COUNT), \ 1952 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1953 HALT_POLL_HIST_COUNT), \ 1954 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1955 HALT_POLL_HIST_COUNT), \ 1956 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 1957 1958 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1959 const struct _kvm_stats_desc *desc, 1960 void *stats, size_t size_stats, 1961 char __user *user_buffer, size_t size, loff_t *offset); 1962 1963 /** 1964 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1965 * statistics data. 1966 * 1967 * @data: start address of the stats data 1968 * @size: the number of bucket of the stats data 1969 * @value: the new value used to update the linear histogram's bucket 1970 * @bucket_size: the size (width) of a bucket 1971 */ 1972 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1973 u64 value, size_t bucket_size) 1974 { 1975 size_t index = div64_u64(value, bucket_size); 1976 1977 index = min(index, size - 1); 1978 ++data[index]; 1979 } 1980 1981 /** 1982 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1983 * statistics data. 1984 * 1985 * @data: start address of the stats data 1986 * @size: the number of bucket of the stats data 1987 * @value: the new value used to update the logarithmic histogram's bucket 1988 */ 1989 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1990 { 1991 size_t index = fls64(value); 1992 1993 index = min(index, size - 1); 1994 ++data[index]; 1995 } 1996 1997 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1998 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1999 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2000 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2001 2002 2003 extern const struct kvm_stats_header kvm_vm_stats_header; 2004 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2005 extern const struct kvm_stats_header kvm_vcpu_stats_header; 2006 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2007 2008 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2009 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2010 { 2011 if (unlikely(kvm->mmu_invalidate_in_progress)) 2012 return 1; 2013 /* 2014 * Ensure the read of mmu_invalidate_in_progress happens before 2015 * the read of mmu_invalidate_seq. This interacts with the 2016 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2017 * that the caller either sees the old (non-zero) value of 2018 * mmu_invalidate_in_progress or the new (incremented) value of 2019 * mmu_invalidate_seq. 2020 * 2021 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2022 * than under kvm->mmu_lock, for scalability, so can't rely on 2023 * kvm->mmu_lock to keep things ordered. 2024 */ 2025 smp_rmb(); 2026 if (kvm->mmu_invalidate_seq != mmu_seq) 2027 return 1; 2028 return 0; 2029 } 2030 2031 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2032 unsigned long mmu_seq, 2033 gfn_t gfn) 2034 { 2035 lockdep_assert_held(&kvm->mmu_lock); 2036 /* 2037 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2038 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2039 * that might be being invalidated. Note that it may include some false 2040 * positives, due to shortcuts when handing concurrent invalidations. 2041 */ 2042 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2043 /* 2044 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2045 * but before updating the range is a KVM bug. 2046 */ 2047 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2048 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2049 return 1; 2050 2051 if (gfn >= kvm->mmu_invalidate_range_start && 2052 gfn < kvm->mmu_invalidate_range_end) 2053 return 1; 2054 } 2055 2056 if (kvm->mmu_invalidate_seq != mmu_seq) 2057 return 1; 2058 return 0; 2059 } 2060 2061 /* 2062 * This lockless version of the range-based retry check *must* be paired with a 2063 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2064 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2065 * get false negatives and false positives. 2066 */ 2067 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2068 unsigned long mmu_seq, 2069 gfn_t gfn) 2070 { 2071 /* 2072 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2073 * are always read from memory, e.g. so that checking for retry in a 2074 * loop won't result in an infinite retry loop. Don't force loads for 2075 * start+end, as the key to avoiding infinite retry loops is observing 2076 * the 1=>0 transition of in-progress, i.e. getting false negatives 2077 * due to stale start+end values is acceptable. 2078 */ 2079 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2080 gfn >= kvm->mmu_invalidate_range_start && 2081 gfn < kvm->mmu_invalidate_range_end) 2082 return true; 2083 2084 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2085 } 2086 #endif 2087 2088 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2089 2090 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2091 2092 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2093 int kvm_set_irq_routing(struct kvm *kvm, 2094 const struct kvm_irq_routing_entry *entries, 2095 unsigned nr, 2096 unsigned flags); 2097 int kvm_init_irq_routing(struct kvm *kvm); 2098 int kvm_set_routing_entry(struct kvm *kvm, 2099 struct kvm_kernel_irq_routing_entry *e, 2100 const struct kvm_irq_routing_entry *ue); 2101 void kvm_free_irq_routing(struct kvm *kvm); 2102 2103 #else 2104 2105 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2106 2107 static inline int kvm_init_irq_routing(struct kvm *kvm) 2108 { 2109 return 0; 2110 } 2111 2112 #endif 2113 2114 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2115 2116 void kvm_eventfd_init(struct kvm *kvm); 2117 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2118 2119 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2120 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2121 void kvm_irqfd_release(struct kvm *kvm); 2122 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2123 unsigned int irqchip, 2124 unsigned int pin); 2125 void kvm_irq_routing_update(struct kvm *); 2126 #else 2127 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2128 { 2129 return -EINVAL; 2130 } 2131 2132 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2133 2134 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2135 unsigned int irqchip, 2136 unsigned int pin) 2137 { 2138 return false; 2139 } 2140 #endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2141 2142 void kvm_arch_irq_routing_update(struct kvm *kvm); 2143 2144 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2145 { 2146 /* 2147 * Ensure the rest of the request is published to kvm_check_request's 2148 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2149 */ 2150 smp_wmb(); 2151 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2152 } 2153 2154 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2155 { 2156 /* 2157 * Request that don't require vCPU action should never be logged in 2158 * vcpu->requests. The vCPU won't clear the request, so it will stay 2159 * logged indefinitely and prevent the vCPU from entering the guest. 2160 */ 2161 BUILD_BUG_ON(!__builtin_constant_p(req) || 2162 (req & KVM_REQUEST_NO_ACTION)); 2163 2164 __kvm_make_request(req, vcpu); 2165 } 2166 2167 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2168 { 2169 return READ_ONCE(vcpu->requests); 2170 } 2171 2172 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2173 { 2174 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2175 } 2176 2177 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2178 { 2179 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2180 } 2181 2182 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2183 { 2184 if (kvm_test_request(req, vcpu)) { 2185 kvm_clear_request(req, vcpu); 2186 2187 /* 2188 * Ensure the rest of the request is visible to kvm_check_request's 2189 * caller. Paired with the smp_wmb in kvm_make_request. 2190 */ 2191 smp_mb__after_atomic(); 2192 return true; 2193 } else { 2194 return false; 2195 } 2196 } 2197 2198 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2199 extern bool kvm_rebooting; 2200 #endif 2201 2202 extern unsigned int halt_poll_ns; 2203 extern unsigned int halt_poll_ns_grow; 2204 extern unsigned int halt_poll_ns_grow_start; 2205 extern unsigned int halt_poll_ns_shrink; 2206 2207 struct kvm_device { 2208 const struct kvm_device_ops *ops; 2209 struct kvm *kvm; 2210 void *private; 2211 struct list_head vm_node; 2212 }; 2213 2214 /* create, destroy, and name are mandatory */ 2215 struct kvm_device_ops { 2216 const char *name; 2217 2218 /* 2219 * create is called holding kvm->lock and any operations not suitable 2220 * to do while holding the lock should be deferred to init (see 2221 * below). 2222 */ 2223 int (*create)(struct kvm_device *dev, u32 type); 2224 2225 /* 2226 * init is called after create if create is successful and is called 2227 * outside of holding kvm->lock. 2228 */ 2229 void (*init)(struct kvm_device *dev); 2230 2231 /* 2232 * Destroy is responsible for freeing dev. 2233 * 2234 * Destroy may be called before or after destructors are called 2235 * on emulated I/O regions, depending on whether a reference is 2236 * held by a vcpu or other kvm component that gets destroyed 2237 * after the emulated I/O. 2238 */ 2239 void (*destroy)(struct kvm_device *dev); 2240 2241 /* 2242 * Release is an alternative method to free the device. It is 2243 * called when the device file descriptor is closed. Once 2244 * release is called, the destroy method will not be called 2245 * anymore as the device is removed from the device list of 2246 * the VM. kvm->lock is held. 2247 */ 2248 void (*release)(struct kvm_device *dev); 2249 2250 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2251 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2252 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2253 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2254 unsigned long arg); 2255 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2256 }; 2257 2258 struct kvm_device *kvm_device_from_filp(struct file *filp); 2259 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2260 void kvm_unregister_device_ops(u32 type); 2261 2262 extern struct kvm_device_ops kvm_mpic_ops; 2263 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2264 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2265 2266 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2267 2268 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2269 { 2270 vcpu->spin_loop.in_spin_loop = val; 2271 } 2272 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2273 { 2274 vcpu->spin_loop.dy_eligible = val; 2275 } 2276 2277 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2278 2279 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2280 { 2281 } 2282 2283 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2284 { 2285 } 2286 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2287 2288 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2289 { 2290 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2291 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2292 } 2293 2294 struct kvm_vcpu *kvm_get_running_vcpu(void); 2295 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2296 2297 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2298 bool kvm_arch_has_irq_bypass(void); 2299 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2300 struct irq_bypass_producer *); 2301 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2302 struct irq_bypass_producer *); 2303 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2304 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2305 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2306 uint32_t guest_irq, bool set); 2307 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2308 struct kvm_kernel_irq_routing_entry *); 2309 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2310 2311 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2312 /* If we wakeup during the poll time, was it a sucessful poll? */ 2313 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2314 { 2315 return vcpu->valid_wakeup; 2316 } 2317 2318 #else 2319 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2320 { 2321 return true; 2322 } 2323 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2324 2325 #ifdef CONFIG_HAVE_KVM_NO_POLL 2326 /* Callback that tells if we must not poll */ 2327 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2328 #else 2329 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2330 { 2331 return false; 2332 } 2333 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2334 2335 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2336 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2337 unsigned int ioctl, unsigned long arg); 2338 #else 2339 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2340 unsigned int ioctl, 2341 unsigned long arg) 2342 { 2343 return -ENOIOCTLCMD; 2344 } 2345 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2346 2347 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2348 2349 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2350 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2351 #else 2352 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2353 { 2354 return 0; 2355 } 2356 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2357 2358 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2359 2360 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2361 uintptr_t data, const char *name, 2362 struct task_struct **thread_ptr); 2363 2364 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2365 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2366 { 2367 vcpu->run->exit_reason = KVM_EXIT_INTR; 2368 vcpu->stat.signal_exits++; 2369 } 2370 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2371 2372 /* 2373 * If more than one page is being (un)accounted, @virt must be the address of 2374 * the first page of a block of pages what were allocated together (i.e 2375 * accounted together). 2376 * 2377 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2378 * is thread-safe. 2379 */ 2380 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2381 { 2382 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2383 } 2384 2385 /* 2386 * This defines how many reserved entries we want to keep before we 2387 * kick the vcpu to the userspace to avoid dirty ring full. This 2388 * value can be tuned to higher if e.g. PML is enabled on the host. 2389 */ 2390 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2391 2392 /* Max number of entries allowed for each kvm dirty ring */ 2393 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2394 2395 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2396 gpa_t gpa, gpa_t size, 2397 bool is_write, bool is_exec, 2398 bool is_private) 2399 { 2400 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2401 vcpu->run->memory_fault.gpa = gpa; 2402 vcpu->run->memory_fault.size = size; 2403 2404 /* RWX flags are not (yet) defined or communicated to userspace. */ 2405 vcpu->run->memory_fault.flags = 0; 2406 if (is_private) 2407 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2408 } 2409 2410 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2411 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2412 { 2413 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2414 } 2415 2416 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2417 unsigned long attrs); 2418 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2419 struct kvm_gfn_range *range); 2420 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2421 struct kvm_gfn_range *range); 2422 2423 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2424 { 2425 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2426 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2427 } 2428 #else 2429 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2430 { 2431 return false; 2432 } 2433 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2434 2435 #ifdef CONFIG_KVM_PRIVATE_MEM 2436 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2437 gfn_t gfn, kvm_pfn_t *pfn, int *max_order); 2438 #else 2439 static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2440 struct kvm_memory_slot *slot, gfn_t gfn, 2441 kvm_pfn_t *pfn, int *max_order) 2442 { 2443 KVM_BUG_ON(1, kvm); 2444 return -EIO; 2445 } 2446 #endif /* CONFIG_KVM_PRIVATE_MEM */ 2447 2448 #ifdef CONFIG_HAVE_KVM_GMEM_PREPARE 2449 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2450 bool kvm_arch_gmem_prepare_needed(struct kvm *kvm); 2451 #endif 2452 2453 /** 2454 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2455 * 2456 * @kvm: KVM instance 2457 * @gfn: starting GFN to be populated 2458 * @src: userspace-provided buffer containing data to copy into GFN range 2459 * (passed to @post_populate, and incremented on each iteration 2460 * if not NULL) 2461 * @npages: number of pages to copy from userspace-buffer 2462 * @post_populate: callback to issue for each gmem page that backs the GPA 2463 * range 2464 * @opaque: opaque data to pass to @post_populate callback 2465 * 2466 * This is primarily intended for cases where a gmem-backed GPA range needs 2467 * to be initialized with userspace-provided data prior to being mapped into 2468 * the guest as a private page. This should be called with the slots->lock 2469 * held so that caller-enforced invariants regarding the expected memory 2470 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2471 * 2472 * Returns the number of pages that were populated. 2473 */ 2474 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2475 void __user *src, int order, void *opaque); 2476 2477 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2478 kvm_gmem_populate_cb post_populate, void *opaque); 2479 2480 #ifdef CONFIG_HAVE_KVM_GMEM_INVALIDATE 2481 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2482 #endif 2483 2484 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2485 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2486 struct kvm_pre_fault_memory *range); 2487 #endif 2488 2489 #endif 2490