xref: /linux-6.15/include/linux/kvm_host.h (revision c1ccbbaa)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 
101 /*
102  * error pfns indicate that the gfn is in slot but faild to
103  * translate it to pfn on host.
104  */
105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 	return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109 
110 /*
111  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112  * by a pending signal.  Note, the signal may or may not be fatal.
113  */
114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 	return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118 
119 /*
120  * error_noslot pfns indicate that the gfn can not be
121  * translated to pfn - it is not in slot or failed to
122  * translate it to pfn.
123  */
124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128 
129 /* noslot pfn indicates that the gfn is not in slot. */
130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 	return pfn == KVM_PFN_NOSLOT;
133 }
134 
135 /*
136  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137  * provide own defines and kvm_is_error_hva
138  */
139 #ifndef KVM_HVA_ERR_BAD
140 
141 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
143 
144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 	return addr >= PAGE_OFFSET;
147 }
148 
149 #endif
150 
151 static inline bool kvm_is_error_gpa(gpa_t gpa)
152 {
153 	return gpa == INVALID_GPA;
154 }
155 
156 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
157 
158 static inline bool is_error_page(struct page *page)
159 {
160 	return IS_ERR(page);
161 }
162 
163 #define KVM_REQUEST_MASK           GENMASK(7,0)
164 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
165 #define KVM_REQUEST_WAIT           BIT(9)
166 #define KVM_REQUEST_NO_ACTION      BIT(10)
167 /*
168  * Architecture-independent vcpu->requests bit members
169  * Bits 3-7 are reserved for more arch-independent bits.
170  */
171 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173 #define KVM_REQ_UNBLOCK			2
174 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
175 #define KVM_REQUEST_ARCH_BASE		8
176 
177 /*
178  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
182  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183  * guarantee the vCPU received an IPI and has actually exited guest mode.
184  */
185 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186 
187 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
188 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
189 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190 })
191 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
192 
193 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
194 				 unsigned long *vcpu_bitmap);
195 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
196 
197 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
198 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
199 
200 extern struct mutex kvm_lock;
201 extern struct list_head vm_list;
202 
203 struct kvm_io_range {
204 	gpa_t addr;
205 	int len;
206 	struct kvm_io_device *dev;
207 };
208 
209 #define NR_IOBUS_DEVS 1000
210 
211 struct kvm_io_bus {
212 	int dev_count;
213 	int ioeventfd_count;
214 	struct kvm_io_range range[];
215 };
216 
217 enum kvm_bus {
218 	KVM_MMIO_BUS,
219 	KVM_PIO_BUS,
220 	KVM_VIRTIO_CCW_NOTIFY_BUS,
221 	KVM_FAST_MMIO_BUS,
222 	KVM_NR_BUSES
223 };
224 
225 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
226 		     int len, const void *val);
227 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
228 			    gpa_t addr, int len, const void *val, long cookie);
229 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
230 		    int len, void *val);
231 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
232 			    int len, struct kvm_io_device *dev);
233 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234 			      struct kvm_io_device *dev);
235 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
236 					 gpa_t addr);
237 
238 #ifdef CONFIG_KVM_ASYNC_PF
239 struct kvm_async_pf {
240 	struct work_struct work;
241 	struct list_head link;
242 	struct list_head queue;
243 	struct kvm_vcpu *vcpu;
244 	gpa_t cr2_or_gpa;
245 	unsigned long addr;
246 	struct kvm_arch_async_pf arch;
247 	bool   wakeup_all;
248 	bool notpresent_injected;
249 };
250 
251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254 			unsigned long hva, struct kvm_arch_async_pf *arch);
255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256 #endif
257 
258 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
259 union kvm_mmu_notifier_arg {
260 	unsigned long attributes;
261 };
262 
263 struct kvm_gfn_range {
264 	struct kvm_memory_slot *slot;
265 	gfn_t start;
266 	gfn_t end;
267 	union kvm_mmu_notifier_arg arg;
268 	bool may_block;
269 };
270 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
271 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
272 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
273 #endif
274 
275 enum {
276 	OUTSIDE_GUEST_MODE,
277 	IN_GUEST_MODE,
278 	EXITING_GUEST_MODE,
279 	READING_SHADOW_PAGE_TABLES,
280 };
281 
282 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
283 
284 struct kvm_host_map {
285 	/*
286 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287 	 * a 'struct page' for it. When using mem= kernel parameter some memory
288 	 * can be used as guest memory but they are not managed by host
289 	 * kernel).
290 	 * If 'pfn' is not managed by the host kernel, this field is
291 	 * initialized to KVM_UNMAPPED_PAGE.
292 	 */
293 	struct page *page;
294 	void *hva;
295 	kvm_pfn_t pfn;
296 	kvm_pfn_t gfn;
297 };
298 
299 /*
300  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301  * directly to check for that.
302  */
303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304 {
305 	return !!map->hva;
306 }
307 
308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309 {
310 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
311 }
312 
313 /*
314  * Sometimes a large or cross-page mmio needs to be broken up into separate
315  * exits for userspace servicing.
316  */
317 struct kvm_mmio_fragment {
318 	gpa_t gpa;
319 	void *data;
320 	unsigned len;
321 };
322 
323 struct kvm_vcpu {
324 	struct kvm *kvm;
325 #ifdef CONFIG_PREEMPT_NOTIFIERS
326 	struct preempt_notifier preempt_notifier;
327 #endif
328 	int cpu;
329 	int vcpu_id; /* id given by userspace at creation */
330 	int vcpu_idx; /* index into kvm->vcpu_array */
331 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
332 #ifdef CONFIG_PROVE_RCU
333 	int srcu_depth;
334 #endif
335 	int mode;
336 	u64 requests;
337 	unsigned long guest_debug;
338 
339 	struct mutex mutex;
340 	struct kvm_run *run;
341 
342 #ifndef __KVM_HAVE_ARCH_WQP
343 	struct rcuwait wait;
344 #endif
345 	struct pid __rcu *pid;
346 	int sigset_active;
347 	sigset_t sigset;
348 	unsigned int halt_poll_ns;
349 	bool valid_wakeup;
350 
351 #ifdef CONFIG_HAS_IOMEM
352 	int mmio_needed;
353 	int mmio_read_completed;
354 	int mmio_is_write;
355 	int mmio_cur_fragment;
356 	int mmio_nr_fragments;
357 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
358 #endif
359 
360 #ifdef CONFIG_KVM_ASYNC_PF
361 	struct {
362 		u32 queued;
363 		struct list_head queue;
364 		struct list_head done;
365 		spinlock_t lock;
366 	} async_pf;
367 #endif
368 
369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370 	/*
371 	 * Cpu relax intercept or pause loop exit optimization
372 	 * in_spin_loop: set when a vcpu does a pause loop exit
373 	 *  or cpu relax intercepted.
374 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
375 	 */
376 	struct {
377 		bool in_spin_loop;
378 		bool dy_eligible;
379 	} spin_loop;
380 #endif
381 	bool wants_to_run;
382 	bool preempted;
383 	bool ready;
384 	bool scheduled_out;
385 	struct kvm_vcpu_arch arch;
386 	struct kvm_vcpu_stat stat;
387 	char stats_id[KVM_STATS_NAME_SIZE];
388 	struct kvm_dirty_ring dirty_ring;
389 
390 	/*
391 	 * The most recently used memslot by this vCPU and the slots generation
392 	 * for which it is valid.
393 	 * No wraparound protection is needed since generations won't overflow in
394 	 * thousands of years, even assuming 1M memslot operations per second.
395 	 */
396 	struct kvm_memory_slot *last_used_slot;
397 	u64 last_used_slot_gen;
398 };
399 
400 /*
401  * Start accounting time towards a guest.
402  * Must be called before entering guest context.
403  */
404 static __always_inline void guest_timing_enter_irqoff(void)
405 {
406 	/*
407 	 * This is running in ioctl context so its safe to assume that it's the
408 	 * stime pending cputime to flush.
409 	 */
410 	instrumentation_begin();
411 	vtime_account_guest_enter();
412 	instrumentation_end();
413 }
414 
415 /*
416  * Enter guest context and enter an RCU extended quiescent state.
417  *
418  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
419  * unsafe to use any code which may directly or indirectly use RCU, tracing
420  * (including IRQ flag tracing), or lockdep. All code in this period must be
421  * non-instrumentable.
422  */
423 static __always_inline void guest_context_enter_irqoff(void)
424 {
425 	/*
426 	 * KVM does not hold any references to rcu protected data when it
427 	 * switches CPU into a guest mode. In fact switching to a guest mode
428 	 * is very similar to exiting to userspace from rcu point of view. In
429 	 * addition CPU may stay in a guest mode for quite a long time (up to
430 	 * one time slice). Lets treat guest mode as quiescent state, just like
431 	 * we do with user-mode execution.
432 	 */
433 	if (!context_tracking_guest_enter()) {
434 		instrumentation_begin();
435 		rcu_virt_note_context_switch();
436 		instrumentation_end();
437 	}
438 }
439 
440 /*
441  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
442  * guest_state_enter_irqoff().
443  */
444 static __always_inline void guest_enter_irqoff(void)
445 {
446 	guest_timing_enter_irqoff();
447 	guest_context_enter_irqoff();
448 }
449 
450 /**
451  * guest_state_enter_irqoff - Fixup state when entering a guest
452  *
453  * Entry to a guest will enable interrupts, but the kernel state is interrupts
454  * disabled when this is invoked. Also tell RCU about it.
455  *
456  * 1) Trace interrupts on state
457  * 2) Invoke context tracking if enabled to adjust RCU state
458  * 3) Tell lockdep that interrupts are enabled
459  *
460  * Invoked from architecture specific code before entering a guest.
461  * Must be called with interrupts disabled and the caller must be
462  * non-instrumentable.
463  * The caller has to invoke guest_timing_enter_irqoff() before this.
464  *
465  * Note: this is analogous to exit_to_user_mode().
466  */
467 static __always_inline void guest_state_enter_irqoff(void)
468 {
469 	instrumentation_begin();
470 	trace_hardirqs_on_prepare();
471 	lockdep_hardirqs_on_prepare();
472 	instrumentation_end();
473 
474 	guest_context_enter_irqoff();
475 	lockdep_hardirqs_on(CALLER_ADDR0);
476 }
477 
478 /*
479  * Exit guest context and exit an RCU extended quiescent state.
480  *
481  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
482  * unsafe to use any code which may directly or indirectly use RCU, tracing
483  * (including IRQ flag tracing), or lockdep. All code in this period must be
484  * non-instrumentable.
485  */
486 static __always_inline void guest_context_exit_irqoff(void)
487 {
488 	context_tracking_guest_exit();
489 }
490 
491 /*
492  * Stop accounting time towards a guest.
493  * Must be called after exiting guest context.
494  */
495 static __always_inline void guest_timing_exit_irqoff(void)
496 {
497 	instrumentation_begin();
498 	/* Flush the guest cputime we spent on the guest */
499 	vtime_account_guest_exit();
500 	instrumentation_end();
501 }
502 
503 /*
504  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
505  * guest_timing_exit_irqoff().
506  */
507 static __always_inline void guest_exit_irqoff(void)
508 {
509 	guest_context_exit_irqoff();
510 	guest_timing_exit_irqoff();
511 }
512 
513 static inline void guest_exit(void)
514 {
515 	unsigned long flags;
516 
517 	local_irq_save(flags);
518 	guest_exit_irqoff();
519 	local_irq_restore(flags);
520 }
521 
522 /**
523  * guest_state_exit_irqoff - Establish state when returning from guest mode
524  *
525  * Entry from a guest disables interrupts, but guest mode is traced as
526  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
527  *
528  * 1) Tell lockdep that interrupts are disabled
529  * 2) Invoke context tracking if enabled to reactivate RCU
530  * 3) Trace interrupts off state
531  *
532  * Invoked from architecture specific code after exiting a guest.
533  * Must be invoked with interrupts disabled and the caller must be
534  * non-instrumentable.
535  * The caller has to invoke guest_timing_exit_irqoff() after this.
536  *
537  * Note: this is analogous to enter_from_user_mode().
538  */
539 static __always_inline void guest_state_exit_irqoff(void)
540 {
541 	lockdep_hardirqs_off(CALLER_ADDR0);
542 	guest_context_exit_irqoff();
543 
544 	instrumentation_begin();
545 	trace_hardirqs_off_finish();
546 	instrumentation_end();
547 }
548 
549 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
550 {
551 	/*
552 	 * The memory barrier ensures a previous write to vcpu->requests cannot
553 	 * be reordered with the read of vcpu->mode.  It pairs with the general
554 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
555 	 */
556 	smp_mb__before_atomic();
557 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
558 }
559 
560 /*
561  * Some of the bitops functions do not support too long bitmaps.
562  * This number must be determined not to exceed such limits.
563  */
564 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
565 
566 /*
567  * Since at idle each memslot belongs to two memslot sets it has to contain
568  * two embedded nodes for each data structure that it forms a part of.
569  *
570  * Two memslot sets (one active and one inactive) are necessary so the VM
571  * continues to run on one memslot set while the other is being modified.
572  *
573  * These two memslot sets normally point to the same set of memslots.
574  * They can, however, be desynchronized when performing a memslot management
575  * operation by replacing the memslot to be modified by its copy.
576  * After the operation is complete, both memslot sets once again point to
577  * the same, common set of memslot data.
578  *
579  * The memslots themselves are independent of each other so they can be
580  * individually added or deleted.
581  */
582 struct kvm_memory_slot {
583 	struct hlist_node id_node[2];
584 	struct interval_tree_node hva_node[2];
585 	struct rb_node gfn_node[2];
586 	gfn_t base_gfn;
587 	unsigned long npages;
588 	unsigned long *dirty_bitmap;
589 	struct kvm_arch_memory_slot arch;
590 	unsigned long userspace_addr;
591 	u32 flags;
592 	short id;
593 	u16 as_id;
594 
595 #ifdef CONFIG_KVM_PRIVATE_MEM
596 	struct {
597 		struct file __rcu *file;
598 		pgoff_t pgoff;
599 	} gmem;
600 #endif
601 };
602 
603 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
604 {
605 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
606 }
607 
608 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
609 {
610 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
611 }
612 
613 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
614 {
615 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
616 }
617 
618 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
619 {
620 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
621 
622 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
623 }
624 
625 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
626 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
627 #endif
628 
629 struct kvm_s390_adapter_int {
630 	u64 ind_addr;
631 	u64 summary_addr;
632 	u64 ind_offset;
633 	u32 summary_offset;
634 	u32 adapter_id;
635 };
636 
637 struct kvm_hv_sint {
638 	u32 vcpu;
639 	u32 sint;
640 };
641 
642 struct kvm_xen_evtchn {
643 	u32 port;
644 	u32 vcpu_id;
645 	int vcpu_idx;
646 	u32 priority;
647 };
648 
649 struct kvm_kernel_irq_routing_entry {
650 	u32 gsi;
651 	u32 type;
652 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
653 		   struct kvm *kvm, int irq_source_id, int level,
654 		   bool line_status);
655 	union {
656 		struct {
657 			unsigned irqchip;
658 			unsigned pin;
659 		} irqchip;
660 		struct {
661 			u32 address_lo;
662 			u32 address_hi;
663 			u32 data;
664 			u32 flags;
665 			u32 devid;
666 		} msi;
667 		struct kvm_s390_adapter_int adapter;
668 		struct kvm_hv_sint hv_sint;
669 		struct kvm_xen_evtchn xen_evtchn;
670 	};
671 	struct hlist_node link;
672 };
673 
674 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
675 struct kvm_irq_routing_table {
676 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
677 	u32 nr_rt_entries;
678 	/*
679 	 * Array indexed by gsi. Each entry contains list of irq chips
680 	 * the gsi is connected to.
681 	 */
682 	struct hlist_head map[] __counted_by(nr_rt_entries);
683 };
684 #endif
685 
686 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
687 
688 #ifndef KVM_INTERNAL_MEM_SLOTS
689 #define KVM_INTERNAL_MEM_SLOTS 0
690 #endif
691 
692 #define KVM_MEM_SLOTS_NUM SHRT_MAX
693 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
694 
695 #if KVM_MAX_NR_ADDRESS_SPACES == 1
696 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
697 {
698 	return KVM_MAX_NR_ADDRESS_SPACES;
699 }
700 
701 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
702 {
703 	return 0;
704 }
705 #endif
706 
707 /*
708  * Arch code must define kvm_arch_has_private_mem if support for private memory
709  * is enabled.
710  */
711 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
712 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
713 {
714 	return false;
715 }
716 #endif
717 
718 #ifndef kvm_arch_has_readonly_mem
719 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
720 {
721 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
722 }
723 #endif
724 
725 struct kvm_memslots {
726 	u64 generation;
727 	atomic_long_t last_used_slot;
728 	struct rb_root_cached hva_tree;
729 	struct rb_root gfn_tree;
730 	/*
731 	 * The mapping table from slot id to memslot.
732 	 *
733 	 * 7-bit bucket count matches the size of the old id to index array for
734 	 * 512 slots, while giving good performance with this slot count.
735 	 * Higher bucket counts bring only small performance improvements but
736 	 * always result in higher memory usage (even for lower memslot counts).
737 	 */
738 	DECLARE_HASHTABLE(id_hash, 7);
739 	int node_idx;
740 };
741 
742 struct kvm {
743 #ifdef KVM_HAVE_MMU_RWLOCK
744 	rwlock_t mmu_lock;
745 #else
746 	spinlock_t mmu_lock;
747 #endif /* KVM_HAVE_MMU_RWLOCK */
748 
749 	struct mutex slots_lock;
750 
751 	/*
752 	 * Protects the arch-specific fields of struct kvm_memory_slots in
753 	 * use by the VM. To be used under the slots_lock (above) or in a
754 	 * kvm->srcu critical section where acquiring the slots_lock would
755 	 * lead to deadlock with the synchronize_srcu in
756 	 * kvm_swap_active_memslots().
757 	 */
758 	struct mutex slots_arch_lock;
759 	struct mm_struct *mm; /* userspace tied to this vm */
760 	unsigned long nr_memslot_pages;
761 	/* The two memslot sets - active and inactive (per address space) */
762 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
763 	/* The current active memslot set for each address space */
764 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
765 	struct xarray vcpu_array;
766 	/*
767 	 * Protected by slots_lock, but can be read outside if an
768 	 * incorrect answer is acceptable.
769 	 */
770 	atomic_t nr_memslots_dirty_logging;
771 
772 	/* Used to wait for completion of MMU notifiers.  */
773 	spinlock_t mn_invalidate_lock;
774 	unsigned long mn_active_invalidate_count;
775 	struct rcuwait mn_memslots_update_rcuwait;
776 
777 	/* For management / invalidation of gfn_to_pfn_caches */
778 	spinlock_t gpc_lock;
779 	struct list_head gpc_list;
780 
781 	/*
782 	 * created_vcpus is protected by kvm->lock, and is incremented
783 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
784 	 * incremented after storing the kvm_vcpu pointer in vcpus,
785 	 * and is accessed atomically.
786 	 */
787 	atomic_t online_vcpus;
788 	int max_vcpus;
789 	int created_vcpus;
790 	int last_boosted_vcpu;
791 	struct list_head vm_list;
792 	struct mutex lock;
793 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
794 #ifdef CONFIG_HAVE_KVM_IRQCHIP
795 	struct {
796 		spinlock_t        lock;
797 		struct list_head  items;
798 		/* resampler_list update side is protected by resampler_lock. */
799 		struct list_head  resampler_list;
800 		struct mutex      resampler_lock;
801 	} irqfds;
802 #endif
803 	struct list_head ioeventfds;
804 	struct kvm_vm_stat stat;
805 	struct kvm_arch arch;
806 	refcount_t users_count;
807 #ifdef CONFIG_KVM_MMIO
808 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
809 	spinlock_t ring_lock;
810 	struct list_head coalesced_zones;
811 #endif
812 
813 	struct mutex irq_lock;
814 #ifdef CONFIG_HAVE_KVM_IRQCHIP
815 	/*
816 	 * Update side is protected by irq_lock.
817 	 */
818 	struct kvm_irq_routing_table __rcu *irq_routing;
819 
820 	struct hlist_head irq_ack_notifier_list;
821 #endif
822 
823 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
824 	struct mmu_notifier mmu_notifier;
825 	unsigned long mmu_invalidate_seq;
826 	long mmu_invalidate_in_progress;
827 	gfn_t mmu_invalidate_range_start;
828 	gfn_t mmu_invalidate_range_end;
829 #endif
830 	struct list_head devices;
831 	u64 manual_dirty_log_protect;
832 	struct dentry *debugfs_dentry;
833 	struct kvm_stat_data **debugfs_stat_data;
834 	struct srcu_struct srcu;
835 	struct srcu_struct irq_srcu;
836 	pid_t userspace_pid;
837 	bool override_halt_poll_ns;
838 	unsigned int max_halt_poll_ns;
839 	u32 dirty_ring_size;
840 	bool dirty_ring_with_bitmap;
841 	bool vm_bugged;
842 	bool vm_dead;
843 
844 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
845 	struct notifier_block pm_notifier;
846 #endif
847 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
848 	/* Protected by slots_locks (for writes) and RCU (for reads) */
849 	struct xarray mem_attr_array;
850 #endif
851 	char stats_id[KVM_STATS_NAME_SIZE];
852 };
853 
854 #define kvm_err(fmt, ...) \
855 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
856 #define kvm_info(fmt, ...) \
857 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
858 #define kvm_debug(fmt, ...) \
859 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
860 #define kvm_debug_ratelimited(fmt, ...) \
861 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
862 			     ## __VA_ARGS__)
863 #define kvm_pr_unimpl(fmt, ...) \
864 	pr_err_ratelimited("kvm [%i]: " fmt, \
865 			   task_tgid_nr(current), ## __VA_ARGS__)
866 
867 /* The guest did something we don't support. */
868 #define vcpu_unimpl(vcpu, fmt, ...)					\
869 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
870 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
871 
872 #define vcpu_debug(vcpu, fmt, ...)					\
873 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
874 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
875 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
876 			      ## __VA_ARGS__)
877 #define vcpu_err(vcpu, fmt, ...)					\
878 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
879 
880 static inline void kvm_vm_dead(struct kvm *kvm)
881 {
882 	kvm->vm_dead = true;
883 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
884 }
885 
886 static inline void kvm_vm_bugged(struct kvm *kvm)
887 {
888 	kvm->vm_bugged = true;
889 	kvm_vm_dead(kvm);
890 }
891 
892 
893 #define KVM_BUG(cond, kvm, fmt...)				\
894 ({								\
895 	bool __ret = !!(cond);					\
896 								\
897 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
898 		kvm_vm_bugged(kvm);				\
899 	unlikely(__ret);					\
900 })
901 
902 #define KVM_BUG_ON(cond, kvm)					\
903 ({								\
904 	bool __ret = !!(cond);					\
905 								\
906 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
907 		kvm_vm_bugged(kvm);				\
908 	unlikely(__ret);					\
909 })
910 
911 /*
912  * Note, "data corruption" refers to corruption of host kernel data structures,
913  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
914  * and contained to a single VM should *never* BUG() and potentially panic the
915  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
916  * is corrupted and that corruption can have a cascading effect to other parts
917  * of the hosts and/or to other VMs.
918  */
919 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
920 ({								\
921 	bool __ret = !!(cond);					\
922 								\
923 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
924 		BUG_ON(__ret);					\
925 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
926 		kvm_vm_bugged(kvm);				\
927 	unlikely(__ret);					\
928 })
929 
930 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
931 {
932 #ifdef CONFIG_PROVE_RCU
933 	WARN_ONCE(vcpu->srcu_depth++,
934 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
935 #endif
936 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
937 }
938 
939 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
940 {
941 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
942 
943 #ifdef CONFIG_PROVE_RCU
944 	WARN_ONCE(--vcpu->srcu_depth,
945 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
946 #endif
947 }
948 
949 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
950 {
951 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
952 }
953 
954 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
955 {
956 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
957 				      lockdep_is_held(&kvm->slots_lock) ||
958 				      !refcount_read(&kvm->users_count));
959 }
960 
961 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
962 {
963 	int num_vcpus = atomic_read(&kvm->online_vcpus);
964 	i = array_index_nospec(i, num_vcpus);
965 
966 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
967 	smp_rmb();
968 	return xa_load(&kvm->vcpu_array, i);
969 }
970 
971 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
972 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
973 			  (atomic_read(&kvm->online_vcpus) - 1))
974 
975 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
976 {
977 	struct kvm_vcpu *vcpu = NULL;
978 	unsigned long i;
979 
980 	if (id < 0)
981 		return NULL;
982 	if (id < KVM_MAX_VCPUS)
983 		vcpu = kvm_get_vcpu(kvm, id);
984 	if (vcpu && vcpu->vcpu_id == id)
985 		return vcpu;
986 	kvm_for_each_vcpu(i, vcpu, kvm)
987 		if (vcpu->vcpu_id == id)
988 			return vcpu;
989 	return NULL;
990 }
991 
992 void kvm_destroy_vcpus(struct kvm *kvm);
993 
994 void vcpu_load(struct kvm_vcpu *vcpu);
995 void vcpu_put(struct kvm_vcpu *vcpu);
996 
997 #ifdef __KVM_HAVE_IOAPIC
998 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
999 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1000 #else
1001 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1002 {
1003 }
1004 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1005 {
1006 }
1007 #endif
1008 
1009 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1010 int kvm_irqfd_init(void);
1011 void kvm_irqfd_exit(void);
1012 #else
1013 static inline int kvm_irqfd_init(void)
1014 {
1015 	return 0;
1016 }
1017 
1018 static inline void kvm_irqfd_exit(void)
1019 {
1020 }
1021 #endif
1022 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1023 void kvm_exit(void);
1024 
1025 void kvm_get_kvm(struct kvm *kvm);
1026 bool kvm_get_kvm_safe(struct kvm *kvm);
1027 void kvm_put_kvm(struct kvm *kvm);
1028 bool file_is_kvm(struct file *file);
1029 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1030 
1031 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1032 {
1033 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1034 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1035 			lockdep_is_held(&kvm->slots_lock) ||
1036 			!refcount_read(&kvm->users_count));
1037 }
1038 
1039 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1040 {
1041 	return __kvm_memslots(kvm, 0);
1042 }
1043 
1044 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1045 {
1046 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1047 
1048 	return __kvm_memslots(vcpu->kvm, as_id);
1049 }
1050 
1051 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1052 {
1053 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1054 }
1055 
1056 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1057 
1058 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1059 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1060 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1061 		} else
1062 
1063 static inline
1064 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1065 {
1066 	struct kvm_memory_slot *slot;
1067 	int idx = slots->node_idx;
1068 
1069 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1070 		if (slot->id == id)
1071 			return slot;
1072 	}
1073 
1074 	return NULL;
1075 }
1076 
1077 /* Iterator used for walking memslots that overlap a gfn range. */
1078 struct kvm_memslot_iter {
1079 	struct kvm_memslots *slots;
1080 	struct rb_node *node;
1081 	struct kvm_memory_slot *slot;
1082 };
1083 
1084 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1085 {
1086 	iter->node = rb_next(iter->node);
1087 	if (!iter->node)
1088 		return;
1089 
1090 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1091 }
1092 
1093 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1094 					  struct kvm_memslots *slots,
1095 					  gfn_t start)
1096 {
1097 	int idx = slots->node_idx;
1098 	struct rb_node *tmp;
1099 	struct kvm_memory_slot *slot;
1100 
1101 	iter->slots = slots;
1102 
1103 	/*
1104 	 * Find the so called "upper bound" of a key - the first node that has
1105 	 * its key strictly greater than the searched one (the start gfn in our case).
1106 	 */
1107 	iter->node = NULL;
1108 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1109 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1110 		if (start < slot->base_gfn) {
1111 			iter->node = tmp;
1112 			tmp = tmp->rb_left;
1113 		} else {
1114 			tmp = tmp->rb_right;
1115 		}
1116 	}
1117 
1118 	/*
1119 	 * Find the slot with the lowest gfn that can possibly intersect with
1120 	 * the range, so we'll ideally have slot start <= range start
1121 	 */
1122 	if (iter->node) {
1123 		/*
1124 		 * A NULL previous node means that the very first slot
1125 		 * already has a higher start gfn.
1126 		 * In this case slot start > range start.
1127 		 */
1128 		tmp = rb_prev(iter->node);
1129 		if (tmp)
1130 			iter->node = tmp;
1131 	} else {
1132 		/* a NULL node below means no slots */
1133 		iter->node = rb_last(&slots->gfn_tree);
1134 	}
1135 
1136 	if (iter->node) {
1137 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1138 
1139 		/*
1140 		 * It is possible in the slot start < range start case that the
1141 		 * found slot ends before or at range start (slot end <= range start)
1142 		 * and so it does not overlap the requested range.
1143 		 *
1144 		 * In such non-overlapping case the next slot (if it exists) will
1145 		 * already have slot start > range start, otherwise the logic above
1146 		 * would have found it instead of the current slot.
1147 		 */
1148 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1149 			kvm_memslot_iter_next(iter);
1150 	}
1151 }
1152 
1153 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1154 {
1155 	if (!iter->node)
1156 		return false;
1157 
1158 	/*
1159 	 * If this slot starts beyond or at the end of the range so does
1160 	 * every next one
1161 	 */
1162 	return iter->slot->base_gfn < end;
1163 }
1164 
1165 /* Iterate over each memslot at least partially intersecting [start, end) range */
1166 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1167 	for (kvm_memslot_iter_start(iter, slots, start);		\
1168 	     kvm_memslot_iter_is_valid(iter, end);			\
1169 	     kvm_memslot_iter_next(iter))
1170 
1171 /*
1172  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1173  * - create a new memory slot
1174  * - delete an existing memory slot
1175  * - modify an existing memory slot
1176  *   -- move it in the guest physical memory space
1177  *   -- just change its flags
1178  *
1179  * Since flags can be changed by some of these operations, the following
1180  * differentiation is the best we can do for __kvm_set_memory_region():
1181  */
1182 enum kvm_mr_change {
1183 	KVM_MR_CREATE,
1184 	KVM_MR_DELETE,
1185 	KVM_MR_MOVE,
1186 	KVM_MR_FLAGS_ONLY,
1187 };
1188 
1189 int kvm_set_memory_region(struct kvm *kvm,
1190 			  const struct kvm_userspace_memory_region2 *mem);
1191 int __kvm_set_memory_region(struct kvm *kvm,
1192 			    const struct kvm_userspace_memory_region2 *mem);
1193 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1194 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1195 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1196 				const struct kvm_memory_slot *old,
1197 				struct kvm_memory_slot *new,
1198 				enum kvm_mr_change change);
1199 void kvm_arch_commit_memory_region(struct kvm *kvm,
1200 				struct kvm_memory_slot *old,
1201 				const struct kvm_memory_slot *new,
1202 				enum kvm_mr_change change);
1203 /* flush all memory translations */
1204 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1205 /* flush memory translations pointing to 'slot' */
1206 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1207 				   struct kvm_memory_slot *slot);
1208 
1209 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1210 			    struct page **pages, int nr_pages);
1211 
1212 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1213 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1214 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1215 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1216 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1217 				      bool *writable);
1218 void kvm_release_page_clean(struct page *page);
1219 void kvm_release_page_dirty(struct page *page);
1220 
1221 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1222 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1223 		      bool *writable);
1224 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1225 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1226 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1227 			       bool atomic, bool interruptible, bool *async,
1228 			       bool write_fault, bool *writable, hva_t *hva);
1229 
1230 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1231 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1232 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1233 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1234 
1235 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1236 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1237 			int len);
1238 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1239 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1240 			   void *data, unsigned long len);
1241 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1242 				 void *data, unsigned int offset,
1243 				 unsigned long len);
1244 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1245 			 int offset, int len);
1246 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1247 		    unsigned long len);
1248 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1249 			   void *data, unsigned long len);
1250 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1251 				  void *data, unsigned int offset,
1252 				  unsigned long len);
1253 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1254 			      gpa_t gpa, unsigned long len);
1255 
1256 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1257 ({									\
1258 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1259 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1260 	int __ret = -EFAULT;						\
1261 									\
1262 	if (!kvm_is_error_hva(__addr))					\
1263 		__ret = get_user(v, __uaddr);				\
1264 	__ret;								\
1265 })
1266 
1267 #define kvm_get_guest(kvm, gpa, v)					\
1268 ({									\
1269 	gpa_t __gpa = gpa;						\
1270 	struct kvm *__kvm = kvm;					\
1271 									\
1272 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1273 			offset_in_page(__gpa), v);			\
1274 })
1275 
1276 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1277 ({									\
1278 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1279 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1280 	int __ret = -EFAULT;						\
1281 									\
1282 	if (!kvm_is_error_hva(__addr))					\
1283 		__ret = put_user(v, __uaddr);				\
1284 	if (!__ret)							\
1285 		mark_page_dirty(kvm, gfn);				\
1286 	__ret;								\
1287 })
1288 
1289 #define kvm_put_guest(kvm, gpa, v)					\
1290 ({									\
1291 	gpa_t __gpa = gpa;						\
1292 	struct kvm *__kvm = kvm;					\
1293 									\
1294 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1295 			offset_in_page(__gpa), v);			\
1296 })
1297 
1298 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1299 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1300 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1301 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1302 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1303 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1304 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1305 
1306 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1307 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1308 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1309 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1310 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1311 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1312 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1313 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1314 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1315 			     int len);
1316 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1317 			       unsigned long len);
1318 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1319 			unsigned long len);
1320 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1321 			      int offset, int len);
1322 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1323 			 unsigned long len);
1324 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1325 
1326 /**
1327  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1328  *
1329  * @gpc:	   struct gfn_to_pfn_cache object.
1330  * @kvm:	   pointer to kvm instance.
1331  *
1332  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1333  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1334  * the caller before init).
1335  */
1336 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1337 
1338 /**
1339  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1340  *                    physical address.
1341  *
1342  * @gpc:	   struct gfn_to_pfn_cache object.
1343  * @gpa:	   guest physical address to map.
1344  * @len:	   sanity check; the range being access must fit a single page.
1345  *
1346  * @return:	   0 for success.
1347  *		   -EINVAL for a mapping which would cross a page boundary.
1348  *		   -EFAULT for an untranslatable guest physical address.
1349  *
1350  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1351  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1352  * to ensure that the cache is valid before accessing the target page.
1353  */
1354 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1355 
1356 /**
1357  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1358  *
1359  * @gpc:          struct gfn_to_pfn_cache object.
1360  * @hva:          userspace virtual address to map.
1361  * @len:          sanity check; the range being access must fit a single page.
1362  *
1363  * @return:       0 for success.
1364  *                -EINVAL for a mapping which would cross a page boundary.
1365  *                -EFAULT for an untranslatable guest physical address.
1366  *
1367  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1368  * merely bypasses a layer of address translation.
1369  */
1370 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1371 
1372 /**
1373  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1374  *
1375  * @gpc:	   struct gfn_to_pfn_cache object.
1376  * @len:	   sanity check; the range being access must fit a single page.
1377  *
1378  * @return:	   %true if the cache is still valid and the address matches.
1379  *		   %false if the cache is not valid.
1380  *
1381  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1382  * while calling this function, and then continue to hold the lock until the
1383  * access is complete.
1384  *
1385  * Callers in IN_GUEST_MODE may do so without locking, although they should
1386  * still hold a read lock on kvm->scru for the memslot checks.
1387  */
1388 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1389 
1390 /**
1391  * kvm_gpc_refresh - update a previously initialized cache.
1392  *
1393  * @gpc:	   struct gfn_to_pfn_cache object.
1394  * @len:	   sanity check; the range being access must fit a single page.
1395  *
1396  * @return:	   0 for success.
1397  *		   -EINVAL for a mapping which would cross a page boundary.
1398  *		   -EFAULT for an untranslatable guest physical address.
1399  *
1400  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1401  * return from this function does not mean the page can be immediately
1402  * accessed because it may have raced with an invalidation. Callers must
1403  * still lock and check the cache status, as this function does not return
1404  * with the lock still held to permit access.
1405  */
1406 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1407 
1408 /**
1409  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1410  *
1411  * @gpc:	   struct gfn_to_pfn_cache object.
1412  *
1413  * This removes a cache from the VM's list to be processed on MMU notifier
1414  * invocation.
1415  */
1416 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1417 
1418 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1419 {
1420 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1421 }
1422 
1423 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1424 {
1425 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1426 }
1427 
1428 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1429 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1430 
1431 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1432 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1433 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1434 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1435 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1436 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1437 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1438 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1439 
1440 void kvm_flush_remote_tlbs(struct kvm *kvm);
1441 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1442 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1443 				   const struct kvm_memory_slot *memslot);
1444 
1445 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1446 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1447 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1448 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1449 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1450 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1451 #endif
1452 
1453 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1454 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1455 void kvm_mmu_invalidate_end(struct kvm *kvm);
1456 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1457 
1458 long kvm_arch_dev_ioctl(struct file *filp,
1459 			unsigned int ioctl, unsigned long arg);
1460 long kvm_arch_vcpu_ioctl(struct file *filp,
1461 			 unsigned int ioctl, unsigned long arg);
1462 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1463 
1464 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1465 
1466 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1467 					struct kvm_memory_slot *slot,
1468 					gfn_t gfn_offset,
1469 					unsigned long mask);
1470 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1471 
1472 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1473 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1474 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1475 		      int *is_dirty, struct kvm_memory_slot **memslot);
1476 #endif
1477 
1478 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1479 			bool line_status);
1480 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1481 			    struct kvm_enable_cap *cap);
1482 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1483 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1484 			      unsigned long arg);
1485 
1486 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1487 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1488 
1489 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1490 				    struct kvm_translation *tr);
1491 
1492 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1493 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1494 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1495 				  struct kvm_sregs *sregs);
1496 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1497 				  struct kvm_sregs *sregs);
1498 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1499 				    struct kvm_mp_state *mp_state);
1500 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1501 				    struct kvm_mp_state *mp_state);
1502 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1503 					struct kvm_guest_debug *dbg);
1504 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1505 
1506 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1507 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1508 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1509 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1510 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1511 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1512 
1513 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1514 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1515 #endif
1516 
1517 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1518 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1519 #else
1520 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1521 #endif
1522 
1523 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1524 int kvm_arch_hardware_enable(void);
1525 void kvm_arch_hardware_disable(void);
1526 #endif
1527 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1528 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1529 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1530 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1531 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1532 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1533 int kvm_arch_post_init_vm(struct kvm *kvm);
1534 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1535 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1536 
1537 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1538 /*
1539  * All architectures that want to use vzalloc currently also
1540  * need their own kvm_arch_alloc_vm implementation.
1541  */
1542 static inline struct kvm *kvm_arch_alloc_vm(void)
1543 {
1544 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1545 }
1546 #endif
1547 
1548 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1549 {
1550 	kvfree(kvm);
1551 }
1552 
1553 #ifndef __KVM_HAVE_ARCH_VM_FREE
1554 static inline void kvm_arch_free_vm(struct kvm *kvm)
1555 {
1556 	__kvm_arch_free_vm(kvm);
1557 }
1558 #endif
1559 
1560 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1561 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1562 {
1563 	return -ENOTSUPP;
1564 }
1565 #else
1566 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1567 #endif
1568 
1569 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1570 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1571 						    gfn_t gfn, u64 nr_pages)
1572 {
1573 	return -EOPNOTSUPP;
1574 }
1575 #else
1576 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1577 #endif
1578 
1579 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1580 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1581 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1582 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1583 #else
1584 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1585 {
1586 }
1587 
1588 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1589 {
1590 }
1591 
1592 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1593 {
1594 	return false;
1595 }
1596 #endif
1597 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1598 void kvm_arch_start_assignment(struct kvm *kvm);
1599 void kvm_arch_end_assignment(struct kvm *kvm);
1600 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1601 #else
1602 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1603 {
1604 }
1605 
1606 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1607 {
1608 }
1609 
1610 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1611 {
1612 	return false;
1613 }
1614 #endif
1615 
1616 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1617 {
1618 #ifdef __KVM_HAVE_ARCH_WQP
1619 	return vcpu->arch.waitp;
1620 #else
1621 	return &vcpu->wait;
1622 #endif
1623 }
1624 
1625 /*
1626  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1627  * true if the vCPU was blocking and was awakened, false otherwise.
1628  */
1629 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1630 {
1631 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1632 }
1633 
1634 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1635 {
1636 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1637 }
1638 
1639 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1640 /*
1641  * returns true if the virtual interrupt controller is initialized and
1642  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1643  * controller is dynamically instantiated and this is not always true.
1644  */
1645 bool kvm_arch_intc_initialized(struct kvm *kvm);
1646 #else
1647 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1648 {
1649 	return true;
1650 }
1651 #endif
1652 
1653 #ifdef CONFIG_GUEST_PERF_EVENTS
1654 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1655 
1656 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1657 void kvm_unregister_perf_callbacks(void);
1658 #else
1659 static inline void kvm_register_perf_callbacks(void *ign) {}
1660 static inline void kvm_unregister_perf_callbacks(void) {}
1661 #endif /* CONFIG_GUEST_PERF_EVENTS */
1662 
1663 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1664 void kvm_arch_destroy_vm(struct kvm *kvm);
1665 void kvm_arch_sync_events(struct kvm *kvm);
1666 
1667 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1668 
1669 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1670 bool kvm_is_zone_device_page(struct page *page);
1671 
1672 struct kvm_irq_ack_notifier {
1673 	struct hlist_node link;
1674 	unsigned gsi;
1675 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1676 };
1677 
1678 int kvm_irq_map_gsi(struct kvm *kvm,
1679 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1680 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1681 
1682 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1683 		bool line_status);
1684 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1685 		int irq_source_id, int level, bool line_status);
1686 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1687 			       struct kvm *kvm, int irq_source_id,
1688 			       int level, bool line_status);
1689 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1690 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1691 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1692 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1693 				   struct kvm_irq_ack_notifier *kian);
1694 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1695 				   struct kvm_irq_ack_notifier *kian);
1696 int kvm_request_irq_source_id(struct kvm *kvm);
1697 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1698 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1699 
1700 /*
1701  * Returns a pointer to the memslot if it contains gfn.
1702  * Otherwise returns NULL.
1703  */
1704 static inline struct kvm_memory_slot *
1705 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1706 {
1707 	if (!slot)
1708 		return NULL;
1709 
1710 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1711 		return slot;
1712 	else
1713 		return NULL;
1714 }
1715 
1716 /*
1717  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1718  *
1719  * With "approx" set returns the memslot also when the address falls
1720  * in a hole. In that case one of the memslots bordering the hole is
1721  * returned.
1722  */
1723 static inline struct kvm_memory_slot *
1724 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1725 {
1726 	struct kvm_memory_slot *slot;
1727 	struct rb_node *node;
1728 	int idx = slots->node_idx;
1729 
1730 	slot = NULL;
1731 	for (node = slots->gfn_tree.rb_node; node; ) {
1732 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1733 		if (gfn >= slot->base_gfn) {
1734 			if (gfn < slot->base_gfn + slot->npages)
1735 				return slot;
1736 			node = node->rb_right;
1737 		} else
1738 			node = node->rb_left;
1739 	}
1740 
1741 	return approx ? slot : NULL;
1742 }
1743 
1744 static inline struct kvm_memory_slot *
1745 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1746 {
1747 	struct kvm_memory_slot *slot;
1748 
1749 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1750 	slot = try_get_memslot(slot, gfn);
1751 	if (slot)
1752 		return slot;
1753 
1754 	slot = search_memslots(slots, gfn, approx);
1755 	if (slot) {
1756 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1757 		return slot;
1758 	}
1759 
1760 	return NULL;
1761 }
1762 
1763 /*
1764  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1765  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1766  * because that would bloat other code too much.
1767  */
1768 static inline struct kvm_memory_slot *
1769 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1770 {
1771 	return ____gfn_to_memslot(slots, gfn, false);
1772 }
1773 
1774 static inline unsigned long
1775 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1776 {
1777 	/*
1778 	 * The index was checked originally in search_memslots.  To avoid
1779 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1780 	 * table walks, do not let the processor speculate loads outside
1781 	 * the guest's registered memslots.
1782 	 */
1783 	unsigned long offset = gfn - slot->base_gfn;
1784 	offset = array_index_nospec(offset, slot->npages);
1785 	return slot->userspace_addr + offset * PAGE_SIZE;
1786 }
1787 
1788 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1789 {
1790 	return gfn_to_memslot(kvm, gfn)->id;
1791 }
1792 
1793 static inline gfn_t
1794 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1795 {
1796 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1797 
1798 	return slot->base_gfn + gfn_offset;
1799 }
1800 
1801 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1802 {
1803 	return (gpa_t)gfn << PAGE_SHIFT;
1804 }
1805 
1806 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1807 {
1808 	return (gfn_t)(gpa >> PAGE_SHIFT);
1809 }
1810 
1811 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1812 {
1813 	return (hpa_t)pfn << PAGE_SHIFT;
1814 }
1815 
1816 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1817 {
1818 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1819 
1820 	return !kvm_is_error_hva(hva);
1821 }
1822 
1823 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1824 {
1825 	lockdep_assert_held(&gpc->lock);
1826 
1827 	if (!gpc->memslot)
1828 		return;
1829 
1830 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1831 }
1832 
1833 enum kvm_stat_kind {
1834 	KVM_STAT_VM,
1835 	KVM_STAT_VCPU,
1836 };
1837 
1838 struct kvm_stat_data {
1839 	struct kvm *kvm;
1840 	const struct _kvm_stats_desc *desc;
1841 	enum kvm_stat_kind kind;
1842 };
1843 
1844 struct _kvm_stats_desc {
1845 	struct kvm_stats_desc desc;
1846 	char name[KVM_STATS_NAME_SIZE];
1847 };
1848 
1849 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1850 	.flags = type | unit | base |					       \
1851 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1852 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1853 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1854 	.exponent = exp,						       \
1855 	.size = sz,							       \
1856 	.bucket_size = bsz
1857 
1858 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1859 	{								       \
1860 		{							       \
1861 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1862 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1863 		},							       \
1864 		.name = #stat,						       \
1865 	}
1866 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1867 	{								       \
1868 		{							       \
1869 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1870 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1871 		},							       \
1872 		.name = #stat,						       \
1873 	}
1874 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1875 	{								       \
1876 		{							       \
1877 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1878 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1879 		},							       \
1880 		.name = #stat,						       \
1881 	}
1882 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1883 	{								       \
1884 		{							       \
1885 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1886 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1887 		},							       \
1888 		.name = #stat,						       \
1889 	}
1890 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1891 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1892 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1893 
1894 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1895 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1896 		unit, base, exponent, 1, 0)
1897 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1898 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1899 		unit, base, exponent, 1, 0)
1900 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1901 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1902 		unit, base, exponent, 1, 0)
1903 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1904 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1905 		unit, base, exponent, sz, bsz)
1906 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1907 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1908 		unit, base, exponent, sz, 0)
1909 
1910 /* Cumulative counter, read/write */
1911 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1912 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1913 		KVM_STATS_BASE_POW10, 0)
1914 /* Instantaneous counter, read only */
1915 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1916 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1917 		KVM_STATS_BASE_POW10, 0)
1918 /* Peak counter, read/write */
1919 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1920 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1921 		KVM_STATS_BASE_POW10, 0)
1922 
1923 /* Instantaneous boolean value, read only */
1924 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1925 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1926 		KVM_STATS_BASE_POW10, 0)
1927 /* Peak (sticky) boolean value, read/write */
1928 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1929 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1930 		KVM_STATS_BASE_POW10, 0)
1931 
1932 /* Cumulative time in nanosecond */
1933 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1934 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1935 		KVM_STATS_BASE_POW10, -9)
1936 /* Linear histogram for time in nanosecond */
1937 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1938 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1939 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1940 /* Logarithmic histogram for time in nanosecond */
1941 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1942 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1943 		KVM_STATS_BASE_POW10, -9, sz)
1944 
1945 #define KVM_GENERIC_VM_STATS()						       \
1946 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1947 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1948 
1949 #define KVM_GENERIC_VCPU_STATS()					       \
1950 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1951 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1952 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1953 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1954 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1955 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1956 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1957 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1958 			HALT_POLL_HIST_COUNT),				       \
1959 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1960 			HALT_POLL_HIST_COUNT),				       \
1961 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1962 			HALT_POLL_HIST_COUNT),				       \
1963 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1964 
1965 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1966 		       const struct _kvm_stats_desc *desc,
1967 		       void *stats, size_t size_stats,
1968 		       char __user *user_buffer, size_t size, loff_t *offset);
1969 
1970 /**
1971  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1972  * statistics data.
1973  *
1974  * @data: start address of the stats data
1975  * @size: the number of bucket of the stats data
1976  * @value: the new value used to update the linear histogram's bucket
1977  * @bucket_size: the size (width) of a bucket
1978  */
1979 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1980 						u64 value, size_t bucket_size)
1981 {
1982 	size_t index = div64_u64(value, bucket_size);
1983 
1984 	index = min(index, size - 1);
1985 	++data[index];
1986 }
1987 
1988 /**
1989  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1990  * statistics data.
1991  *
1992  * @data: start address of the stats data
1993  * @size: the number of bucket of the stats data
1994  * @value: the new value used to update the logarithmic histogram's bucket
1995  */
1996 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1997 {
1998 	size_t index = fls64(value);
1999 
2000 	index = min(index, size - 1);
2001 	++data[index];
2002 }
2003 
2004 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2005 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2006 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2007 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2008 
2009 
2010 extern const struct kvm_stats_header kvm_vm_stats_header;
2011 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2012 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2013 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2014 
2015 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2016 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2017 {
2018 	if (unlikely(kvm->mmu_invalidate_in_progress))
2019 		return 1;
2020 	/*
2021 	 * Ensure the read of mmu_invalidate_in_progress happens before
2022 	 * the read of mmu_invalidate_seq.  This interacts with the
2023 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2024 	 * that the caller either sees the old (non-zero) value of
2025 	 * mmu_invalidate_in_progress or the new (incremented) value of
2026 	 * mmu_invalidate_seq.
2027 	 *
2028 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2029 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2030 	 * kvm->mmu_lock to keep things ordered.
2031 	 */
2032 	smp_rmb();
2033 	if (kvm->mmu_invalidate_seq != mmu_seq)
2034 		return 1;
2035 	return 0;
2036 }
2037 
2038 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2039 					   unsigned long mmu_seq,
2040 					   gfn_t gfn)
2041 {
2042 	lockdep_assert_held(&kvm->mmu_lock);
2043 	/*
2044 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2045 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2046 	 * that might be being invalidated. Note that it may include some false
2047 	 * positives, due to shortcuts when handing concurrent invalidations.
2048 	 */
2049 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2050 		/*
2051 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2052 		 * but before updating the range is a KVM bug.
2053 		 */
2054 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2055 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2056 			return 1;
2057 
2058 		if (gfn >= kvm->mmu_invalidate_range_start &&
2059 		    gfn < kvm->mmu_invalidate_range_end)
2060 			return 1;
2061 	}
2062 
2063 	if (kvm->mmu_invalidate_seq != mmu_seq)
2064 		return 1;
2065 	return 0;
2066 }
2067 
2068 /*
2069  * This lockless version of the range-based retry check *must* be paired with a
2070  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2071  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2072  * get false negatives and false positives.
2073  */
2074 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2075 						   unsigned long mmu_seq,
2076 						   gfn_t gfn)
2077 {
2078 	/*
2079 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2080 	 * are always read from memory, e.g. so that checking for retry in a
2081 	 * loop won't result in an infinite retry loop.  Don't force loads for
2082 	 * start+end, as the key to avoiding infinite retry loops is observing
2083 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2084 	 * due to stale start+end values is acceptable.
2085 	 */
2086 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2087 	    gfn >= kvm->mmu_invalidate_range_start &&
2088 	    gfn < kvm->mmu_invalidate_range_end)
2089 		return true;
2090 
2091 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2092 }
2093 #endif
2094 
2095 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2096 
2097 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2098 
2099 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2100 int kvm_set_irq_routing(struct kvm *kvm,
2101 			const struct kvm_irq_routing_entry *entries,
2102 			unsigned nr,
2103 			unsigned flags);
2104 int kvm_init_irq_routing(struct kvm *kvm);
2105 int kvm_set_routing_entry(struct kvm *kvm,
2106 			  struct kvm_kernel_irq_routing_entry *e,
2107 			  const struct kvm_irq_routing_entry *ue);
2108 void kvm_free_irq_routing(struct kvm *kvm);
2109 
2110 #else
2111 
2112 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2113 
2114 static inline int kvm_init_irq_routing(struct kvm *kvm)
2115 {
2116 	return 0;
2117 }
2118 
2119 #endif
2120 
2121 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2122 
2123 void kvm_eventfd_init(struct kvm *kvm);
2124 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2125 
2126 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2127 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2128 void kvm_irqfd_release(struct kvm *kvm);
2129 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2130 				unsigned int irqchip,
2131 				unsigned int pin);
2132 void kvm_irq_routing_update(struct kvm *);
2133 #else
2134 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2135 {
2136 	return -EINVAL;
2137 }
2138 
2139 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2140 
2141 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2142 					      unsigned int irqchip,
2143 					      unsigned int pin)
2144 {
2145 	return false;
2146 }
2147 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2148 
2149 void kvm_arch_irq_routing_update(struct kvm *kvm);
2150 
2151 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2152 {
2153 	/*
2154 	 * Ensure the rest of the request is published to kvm_check_request's
2155 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2156 	 */
2157 	smp_wmb();
2158 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2159 }
2160 
2161 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2162 {
2163 	/*
2164 	 * Request that don't require vCPU action should never be logged in
2165 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2166 	 * logged indefinitely and prevent the vCPU from entering the guest.
2167 	 */
2168 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2169 		     (req & KVM_REQUEST_NO_ACTION));
2170 
2171 	__kvm_make_request(req, vcpu);
2172 }
2173 
2174 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2175 {
2176 	return READ_ONCE(vcpu->requests);
2177 }
2178 
2179 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2180 {
2181 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2182 }
2183 
2184 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2185 {
2186 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2187 }
2188 
2189 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2190 {
2191 	if (kvm_test_request(req, vcpu)) {
2192 		kvm_clear_request(req, vcpu);
2193 
2194 		/*
2195 		 * Ensure the rest of the request is visible to kvm_check_request's
2196 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2197 		 */
2198 		smp_mb__after_atomic();
2199 		return true;
2200 	} else {
2201 		return false;
2202 	}
2203 }
2204 
2205 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2206 extern bool kvm_rebooting;
2207 #endif
2208 
2209 extern unsigned int halt_poll_ns;
2210 extern unsigned int halt_poll_ns_grow;
2211 extern unsigned int halt_poll_ns_grow_start;
2212 extern unsigned int halt_poll_ns_shrink;
2213 
2214 struct kvm_device {
2215 	const struct kvm_device_ops *ops;
2216 	struct kvm *kvm;
2217 	void *private;
2218 	struct list_head vm_node;
2219 };
2220 
2221 /* create, destroy, and name are mandatory */
2222 struct kvm_device_ops {
2223 	const char *name;
2224 
2225 	/*
2226 	 * create is called holding kvm->lock and any operations not suitable
2227 	 * to do while holding the lock should be deferred to init (see
2228 	 * below).
2229 	 */
2230 	int (*create)(struct kvm_device *dev, u32 type);
2231 
2232 	/*
2233 	 * init is called after create if create is successful and is called
2234 	 * outside of holding kvm->lock.
2235 	 */
2236 	void (*init)(struct kvm_device *dev);
2237 
2238 	/*
2239 	 * Destroy is responsible for freeing dev.
2240 	 *
2241 	 * Destroy may be called before or after destructors are called
2242 	 * on emulated I/O regions, depending on whether a reference is
2243 	 * held by a vcpu or other kvm component that gets destroyed
2244 	 * after the emulated I/O.
2245 	 */
2246 	void (*destroy)(struct kvm_device *dev);
2247 
2248 	/*
2249 	 * Release is an alternative method to free the device. It is
2250 	 * called when the device file descriptor is closed. Once
2251 	 * release is called, the destroy method will not be called
2252 	 * anymore as the device is removed from the device list of
2253 	 * the VM. kvm->lock is held.
2254 	 */
2255 	void (*release)(struct kvm_device *dev);
2256 
2257 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2258 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2259 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2260 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2261 		      unsigned long arg);
2262 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2263 };
2264 
2265 struct kvm_device *kvm_device_from_filp(struct file *filp);
2266 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2267 void kvm_unregister_device_ops(u32 type);
2268 
2269 extern struct kvm_device_ops kvm_mpic_ops;
2270 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2271 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2272 
2273 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2274 
2275 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2276 {
2277 	vcpu->spin_loop.in_spin_loop = val;
2278 }
2279 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2280 {
2281 	vcpu->spin_loop.dy_eligible = val;
2282 }
2283 
2284 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2285 
2286 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2287 {
2288 }
2289 
2290 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2291 {
2292 }
2293 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2294 
2295 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2296 {
2297 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2298 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2299 }
2300 
2301 struct kvm_vcpu *kvm_get_running_vcpu(void);
2302 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2303 
2304 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2305 bool kvm_arch_has_irq_bypass(void);
2306 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2307 			   struct irq_bypass_producer *);
2308 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2309 			   struct irq_bypass_producer *);
2310 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2311 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2312 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2313 				  uint32_t guest_irq, bool set);
2314 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2315 				  struct kvm_kernel_irq_routing_entry *);
2316 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2317 
2318 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2319 /* If we wakeup during the poll time, was it a sucessful poll? */
2320 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2321 {
2322 	return vcpu->valid_wakeup;
2323 }
2324 
2325 #else
2326 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2327 {
2328 	return true;
2329 }
2330 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2331 
2332 #ifdef CONFIG_HAVE_KVM_NO_POLL
2333 /* Callback that tells if we must not poll */
2334 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2335 #else
2336 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2337 {
2338 	return false;
2339 }
2340 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2341 
2342 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2343 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2344 			       unsigned int ioctl, unsigned long arg);
2345 #else
2346 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2347 					     unsigned int ioctl,
2348 					     unsigned long arg)
2349 {
2350 	return -ENOIOCTLCMD;
2351 }
2352 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2353 
2354 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2355 
2356 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2357 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2358 #else
2359 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2360 {
2361 	return 0;
2362 }
2363 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2364 
2365 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2366 
2367 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2368 				uintptr_t data, const char *name,
2369 				struct task_struct **thread_ptr);
2370 
2371 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2372 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2373 {
2374 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2375 	vcpu->stat.signal_exits++;
2376 }
2377 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2378 
2379 /*
2380  * If more than one page is being (un)accounted, @virt must be the address of
2381  * the first page of a block of pages what were allocated together (i.e
2382  * accounted together).
2383  *
2384  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2385  * is thread-safe.
2386  */
2387 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2388 {
2389 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2390 }
2391 
2392 /*
2393  * This defines how many reserved entries we want to keep before we
2394  * kick the vcpu to the userspace to avoid dirty ring full.  This
2395  * value can be tuned to higher if e.g. PML is enabled on the host.
2396  */
2397 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2398 
2399 /* Max number of entries allowed for each kvm dirty ring */
2400 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2401 
2402 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2403 						 gpa_t gpa, gpa_t size,
2404 						 bool is_write, bool is_exec,
2405 						 bool is_private)
2406 {
2407 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2408 	vcpu->run->memory_fault.gpa = gpa;
2409 	vcpu->run->memory_fault.size = size;
2410 
2411 	/* RWX flags are not (yet) defined or communicated to userspace. */
2412 	vcpu->run->memory_fault.flags = 0;
2413 	if (is_private)
2414 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2415 }
2416 
2417 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2418 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2419 {
2420 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2421 }
2422 
2423 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2424 				     unsigned long mask, unsigned long attrs);
2425 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2426 					struct kvm_gfn_range *range);
2427 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2428 					 struct kvm_gfn_range *range);
2429 
2430 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2431 {
2432 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2433 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2434 }
2435 #else
2436 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2437 {
2438 	return false;
2439 }
2440 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2441 
2442 #ifdef CONFIG_KVM_PRIVATE_MEM
2443 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2444 		     gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2445 #else
2446 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2447 				   struct kvm_memory_slot *slot, gfn_t gfn,
2448 				   kvm_pfn_t *pfn, int *max_order)
2449 {
2450 	KVM_BUG_ON(1, kvm);
2451 	return -EIO;
2452 }
2453 #endif /* CONFIG_KVM_PRIVATE_MEM */
2454 
2455 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2456 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2457 #endif
2458 
2459 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2460 /**
2461  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2462  *
2463  * @kvm: KVM instance
2464  * @gfn: starting GFN to be populated
2465  * @src: userspace-provided buffer containing data to copy into GFN range
2466  *       (passed to @post_populate, and incremented on each iteration
2467  *       if not NULL)
2468  * @npages: number of pages to copy from userspace-buffer
2469  * @post_populate: callback to issue for each gmem page that backs the GPA
2470  *                 range
2471  * @opaque: opaque data to pass to @post_populate callback
2472  *
2473  * This is primarily intended for cases where a gmem-backed GPA range needs
2474  * to be initialized with userspace-provided data prior to being mapped into
2475  * the guest as a private page. This should be called with the slots->lock
2476  * held so that caller-enforced invariants regarding the expected memory
2477  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2478  *
2479  * Returns the number of pages that were populated.
2480  */
2481 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2482 				    void __user *src, int order, void *opaque);
2483 
2484 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2485 		       kvm_gmem_populate_cb post_populate, void *opaque);
2486 #endif
2487 
2488 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2489 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2490 #endif
2491 
2492 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2493 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2494 				    struct kvm_pre_fault_memory *range);
2495 #endif
2496 
2497 #endif
2498