1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_MAX_NR_ADDRESS_SPACES 84 #define KVM_MAX_NR_ADDRESS_SPACES 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 101 /* 102 * error pfns indicate that the gfn is in slot but faild to 103 * translate it to pfn on host. 104 */ 105 static inline bool is_error_pfn(kvm_pfn_t pfn) 106 { 107 return !!(pfn & KVM_PFN_ERR_MASK); 108 } 109 110 /* 111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 112 * by a pending signal. Note, the signal may or may not be fatal. 113 */ 114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 115 { 116 return pfn == KVM_PFN_ERR_SIGPENDING; 117 } 118 119 /* 120 * error_noslot pfns indicate that the gfn can not be 121 * translated to pfn - it is not in slot or failed to 122 * translate it to pfn. 123 */ 124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 125 { 126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 127 } 128 129 /* noslot pfn indicates that the gfn is not in slot. */ 130 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 131 { 132 return pfn == KVM_PFN_NOSLOT; 133 } 134 135 /* 136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 137 * provide own defines and kvm_is_error_hva 138 */ 139 #ifndef KVM_HVA_ERR_BAD 140 141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 143 144 static inline bool kvm_is_error_hva(unsigned long addr) 145 { 146 return addr >= PAGE_OFFSET; 147 } 148 149 #endif 150 151 static inline bool kvm_is_error_gpa(gpa_t gpa) 152 { 153 return gpa == INVALID_GPA; 154 } 155 156 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 157 158 static inline bool is_error_page(struct page *page) 159 { 160 return IS_ERR(page); 161 } 162 163 #define KVM_REQUEST_MASK GENMASK(7,0) 164 #define KVM_REQUEST_NO_WAKEUP BIT(8) 165 #define KVM_REQUEST_WAIT BIT(9) 166 #define KVM_REQUEST_NO_ACTION BIT(10) 167 /* 168 * Architecture-independent vcpu->requests bit members 169 * Bits 3-7 are reserved for more arch-independent bits. 170 */ 171 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 172 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 173 #define KVM_REQ_UNBLOCK 2 174 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 175 #define KVM_REQUEST_ARCH_BASE 8 176 177 /* 178 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 179 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 180 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 181 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 182 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 183 * guarantee the vCPU received an IPI and has actually exited guest mode. 184 */ 185 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 186 187 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 188 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 189 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 190 }) 191 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 192 193 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 194 unsigned long *vcpu_bitmap); 195 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 196 197 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 198 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 199 200 extern struct mutex kvm_lock; 201 extern struct list_head vm_list; 202 203 struct kvm_io_range { 204 gpa_t addr; 205 int len; 206 struct kvm_io_device *dev; 207 }; 208 209 #define NR_IOBUS_DEVS 1000 210 211 struct kvm_io_bus { 212 int dev_count; 213 int ioeventfd_count; 214 struct kvm_io_range range[]; 215 }; 216 217 enum kvm_bus { 218 KVM_MMIO_BUS, 219 KVM_PIO_BUS, 220 KVM_VIRTIO_CCW_NOTIFY_BUS, 221 KVM_FAST_MMIO_BUS, 222 KVM_NR_BUSES 223 }; 224 225 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 226 int len, const void *val); 227 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 228 gpa_t addr, int len, const void *val, long cookie); 229 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 230 int len, void *val); 231 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 232 int len, struct kvm_io_device *dev); 233 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 234 struct kvm_io_device *dev); 235 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 236 gpa_t addr); 237 238 #ifdef CONFIG_KVM_ASYNC_PF 239 struct kvm_async_pf { 240 struct work_struct work; 241 struct list_head link; 242 struct list_head queue; 243 struct kvm_vcpu *vcpu; 244 gpa_t cr2_or_gpa; 245 unsigned long addr; 246 struct kvm_arch_async_pf arch; 247 bool wakeup_all; 248 bool notpresent_injected; 249 }; 250 251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 254 unsigned long hva, struct kvm_arch_async_pf *arch); 255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 256 #endif 257 258 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 259 union kvm_mmu_notifier_arg { 260 unsigned long attributes; 261 }; 262 263 struct kvm_gfn_range { 264 struct kvm_memory_slot *slot; 265 gfn_t start; 266 gfn_t end; 267 union kvm_mmu_notifier_arg arg; 268 bool may_block; 269 }; 270 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 271 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 272 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 273 #endif 274 275 enum { 276 OUTSIDE_GUEST_MODE, 277 IN_GUEST_MODE, 278 EXITING_GUEST_MODE, 279 READING_SHADOW_PAGE_TABLES, 280 }; 281 282 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 283 284 struct kvm_host_map { 285 /* 286 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 287 * a 'struct page' for it. When using mem= kernel parameter some memory 288 * can be used as guest memory but they are not managed by host 289 * kernel). 290 * If 'pfn' is not managed by the host kernel, this field is 291 * initialized to KVM_UNMAPPED_PAGE. 292 */ 293 struct page *page; 294 void *hva; 295 kvm_pfn_t pfn; 296 kvm_pfn_t gfn; 297 }; 298 299 /* 300 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 301 * directly to check for that. 302 */ 303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 304 { 305 return !!map->hva; 306 } 307 308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 309 { 310 return single_task_running() && !need_resched() && ktime_before(cur, stop); 311 } 312 313 /* 314 * Sometimes a large or cross-page mmio needs to be broken up into separate 315 * exits for userspace servicing. 316 */ 317 struct kvm_mmio_fragment { 318 gpa_t gpa; 319 void *data; 320 unsigned len; 321 }; 322 323 struct kvm_vcpu { 324 struct kvm *kvm; 325 #ifdef CONFIG_PREEMPT_NOTIFIERS 326 struct preempt_notifier preempt_notifier; 327 #endif 328 int cpu; 329 int vcpu_id; /* id given by userspace at creation */ 330 int vcpu_idx; /* index into kvm->vcpu_array */ 331 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 332 #ifdef CONFIG_PROVE_RCU 333 int srcu_depth; 334 #endif 335 int mode; 336 u64 requests; 337 unsigned long guest_debug; 338 339 struct mutex mutex; 340 struct kvm_run *run; 341 342 #ifndef __KVM_HAVE_ARCH_WQP 343 struct rcuwait wait; 344 #endif 345 struct pid __rcu *pid; 346 int sigset_active; 347 sigset_t sigset; 348 unsigned int halt_poll_ns; 349 bool valid_wakeup; 350 351 #ifdef CONFIG_HAS_IOMEM 352 int mmio_needed; 353 int mmio_read_completed; 354 int mmio_is_write; 355 int mmio_cur_fragment; 356 int mmio_nr_fragments; 357 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 358 #endif 359 360 #ifdef CONFIG_KVM_ASYNC_PF 361 struct { 362 u32 queued; 363 struct list_head queue; 364 struct list_head done; 365 spinlock_t lock; 366 } async_pf; 367 #endif 368 369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 370 /* 371 * Cpu relax intercept or pause loop exit optimization 372 * in_spin_loop: set when a vcpu does a pause loop exit 373 * or cpu relax intercepted. 374 * dy_eligible: indicates whether vcpu is eligible for directed yield. 375 */ 376 struct { 377 bool in_spin_loop; 378 bool dy_eligible; 379 } spin_loop; 380 #endif 381 bool wants_to_run; 382 bool preempted; 383 bool ready; 384 bool scheduled_out; 385 struct kvm_vcpu_arch arch; 386 struct kvm_vcpu_stat stat; 387 char stats_id[KVM_STATS_NAME_SIZE]; 388 struct kvm_dirty_ring dirty_ring; 389 390 /* 391 * The most recently used memslot by this vCPU and the slots generation 392 * for which it is valid. 393 * No wraparound protection is needed since generations won't overflow in 394 * thousands of years, even assuming 1M memslot operations per second. 395 */ 396 struct kvm_memory_slot *last_used_slot; 397 u64 last_used_slot_gen; 398 }; 399 400 /* 401 * Start accounting time towards a guest. 402 * Must be called before entering guest context. 403 */ 404 static __always_inline void guest_timing_enter_irqoff(void) 405 { 406 /* 407 * This is running in ioctl context so its safe to assume that it's the 408 * stime pending cputime to flush. 409 */ 410 instrumentation_begin(); 411 vtime_account_guest_enter(); 412 instrumentation_end(); 413 } 414 415 /* 416 * Enter guest context and enter an RCU extended quiescent state. 417 * 418 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 419 * unsafe to use any code which may directly or indirectly use RCU, tracing 420 * (including IRQ flag tracing), or lockdep. All code in this period must be 421 * non-instrumentable. 422 */ 423 static __always_inline void guest_context_enter_irqoff(void) 424 { 425 /* 426 * KVM does not hold any references to rcu protected data when it 427 * switches CPU into a guest mode. In fact switching to a guest mode 428 * is very similar to exiting to userspace from rcu point of view. In 429 * addition CPU may stay in a guest mode for quite a long time (up to 430 * one time slice). Lets treat guest mode as quiescent state, just like 431 * we do with user-mode execution. 432 */ 433 if (!context_tracking_guest_enter()) { 434 instrumentation_begin(); 435 rcu_virt_note_context_switch(); 436 instrumentation_end(); 437 } 438 } 439 440 /* 441 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 442 * guest_state_enter_irqoff(). 443 */ 444 static __always_inline void guest_enter_irqoff(void) 445 { 446 guest_timing_enter_irqoff(); 447 guest_context_enter_irqoff(); 448 } 449 450 /** 451 * guest_state_enter_irqoff - Fixup state when entering a guest 452 * 453 * Entry to a guest will enable interrupts, but the kernel state is interrupts 454 * disabled when this is invoked. Also tell RCU about it. 455 * 456 * 1) Trace interrupts on state 457 * 2) Invoke context tracking if enabled to adjust RCU state 458 * 3) Tell lockdep that interrupts are enabled 459 * 460 * Invoked from architecture specific code before entering a guest. 461 * Must be called with interrupts disabled and the caller must be 462 * non-instrumentable. 463 * The caller has to invoke guest_timing_enter_irqoff() before this. 464 * 465 * Note: this is analogous to exit_to_user_mode(). 466 */ 467 static __always_inline void guest_state_enter_irqoff(void) 468 { 469 instrumentation_begin(); 470 trace_hardirqs_on_prepare(); 471 lockdep_hardirqs_on_prepare(); 472 instrumentation_end(); 473 474 guest_context_enter_irqoff(); 475 lockdep_hardirqs_on(CALLER_ADDR0); 476 } 477 478 /* 479 * Exit guest context and exit an RCU extended quiescent state. 480 * 481 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 482 * unsafe to use any code which may directly or indirectly use RCU, tracing 483 * (including IRQ flag tracing), or lockdep. All code in this period must be 484 * non-instrumentable. 485 */ 486 static __always_inline void guest_context_exit_irqoff(void) 487 { 488 context_tracking_guest_exit(); 489 } 490 491 /* 492 * Stop accounting time towards a guest. 493 * Must be called after exiting guest context. 494 */ 495 static __always_inline void guest_timing_exit_irqoff(void) 496 { 497 instrumentation_begin(); 498 /* Flush the guest cputime we spent on the guest */ 499 vtime_account_guest_exit(); 500 instrumentation_end(); 501 } 502 503 /* 504 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 505 * guest_timing_exit_irqoff(). 506 */ 507 static __always_inline void guest_exit_irqoff(void) 508 { 509 guest_context_exit_irqoff(); 510 guest_timing_exit_irqoff(); 511 } 512 513 static inline void guest_exit(void) 514 { 515 unsigned long flags; 516 517 local_irq_save(flags); 518 guest_exit_irqoff(); 519 local_irq_restore(flags); 520 } 521 522 /** 523 * guest_state_exit_irqoff - Establish state when returning from guest mode 524 * 525 * Entry from a guest disables interrupts, but guest mode is traced as 526 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 527 * 528 * 1) Tell lockdep that interrupts are disabled 529 * 2) Invoke context tracking if enabled to reactivate RCU 530 * 3) Trace interrupts off state 531 * 532 * Invoked from architecture specific code after exiting a guest. 533 * Must be invoked with interrupts disabled and the caller must be 534 * non-instrumentable. 535 * The caller has to invoke guest_timing_exit_irqoff() after this. 536 * 537 * Note: this is analogous to enter_from_user_mode(). 538 */ 539 static __always_inline void guest_state_exit_irqoff(void) 540 { 541 lockdep_hardirqs_off(CALLER_ADDR0); 542 guest_context_exit_irqoff(); 543 544 instrumentation_begin(); 545 trace_hardirqs_off_finish(); 546 instrumentation_end(); 547 } 548 549 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 550 { 551 /* 552 * The memory barrier ensures a previous write to vcpu->requests cannot 553 * be reordered with the read of vcpu->mode. It pairs with the general 554 * memory barrier following the write of vcpu->mode in VCPU RUN. 555 */ 556 smp_mb__before_atomic(); 557 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 558 } 559 560 /* 561 * Some of the bitops functions do not support too long bitmaps. 562 * This number must be determined not to exceed such limits. 563 */ 564 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 565 566 /* 567 * Since at idle each memslot belongs to two memslot sets it has to contain 568 * two embedded nodes for each data structure that it forms a part of. 569 * 570 * Two memslot sets (one active and one inactive) are necessary so the VM 571 * continues to run on one memslot set while the other is being modified. 572 * 573 * These two memslot sets normally point to the same set of memslots. 574 * They can, however, be desynchronized when performing a memslot management 575 * operation by replacing the memslot to be modified by its copy. 576 * After the operation is complete, both memslot sets once again point to 577 * the same, common set of memslot data. 578 * 579 * The memslots themselves are independent of each other so they can be 580 * individually added or deleted. 581 */ 582 struct kvm_memory_slot { 583 struct hlist_node id_node[2]; 584 struct interval_tree_node hva_node[2]; 585 struct rb_node gfn_node[2]; 586 gfn_t base_gfn; 587 unsigned long npages; 588 unsigned long *dirty_bitmap; 589 struct kvm_arch_memory_slot arch; 590 unsigned long userspace_addr; 591 u32 flags; 592 short id; 593 u16 as_id; 594 595 #ifdef CONFIG_KVM_PRIVATE_MEM 596 struct { 597 struct file __rcu *file; 598 pgoff_t pgoff; 599 } gmem; 600 #endif 601 }; 602 603 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 604 { 605 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 606 } 607 608 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 609 { 610 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 611 } 612 613 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 614 { 615 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 616 } 617 618 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 619 { 620 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 621 622 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 623 } 624 625 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 626 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 627 #endif 628 629 struct kvm_s390_adapter_int { 630 u64 ind_addr; 631 u64 summary_addr; 632 u64 ind_offset; 633 u32 summary_offset; 634 u32 adapter_id; 635 }; 636 637 struct kvm_hv_sint { 638 u32 vcpu; 639 u32 sint; 640 }; 641 642 struct kvm_xen_evtchn { 643 u32 port; 644 u32 vcpu_id; 645 int vcpu_idx; 646 u32 priority; 647 }; 648 649 struct kvm_kernel_irq_routing_entry { 650 u32 gsi; 651 u32 type; 652 int (*set)(struct kvm_kernel_irq_routing_entry *e, 653 struct kvm *kvm, int irq_source_id, int level, 654 bool line_status); 655 union { 656 struct { 657 unsigned irqchip; 658 unsigned pin; 659 } irqchip; 660 struct { 661 u32 address_lo; 662 u32 address_hi; 663 u32 data; 664 u32 flags; 665 u32 devid; 666 } msi; 667 struct kvm_s390_adapter_int adapter; 668 struct kvm_hv_sint hv_sint; 669 struct kvm_xen_evtchn xen_evtchn; 670 }; 671 struct hlist_node link; 672 }; 673 674 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 675 struct kvm_irq_routing_table { 676 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 677 u32 nr_rt_entries; 678 /* 679 * Array indexed by gsi. Each entry contains list of irq chips 680 * the gsi is connected to. 681 */ 682 struct hlist_head map[] __counted_by(nr_rt_entries); 683 }; 684 #endif 685 686 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 687 688 #ifndef KVM_INTERNAL_MEM_SLOTS 689 #define KVM_INTERNAL_MEM_SLOTS 0 690 #endif 691 692 #define KVM_MEM_SLOTS_NUM SHRT_MAX 693 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 694 695 #if KVM_MAX_NR_ADDRESS_SPACES == 1 696 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 697 { 698 return KVM_MAX_NR_ADDRESS_SPACES; 699 } 700 701 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 702 { 703 return 0; 704 } 705 #endif 706 707 /* 708 * Arch code must define kvm_arch_has_private_mem if support for private memory 709 * is enabled. 710 */ 711 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 712 static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 713 { 714 return false; 715 } 716 #endif 717 718 #ifndef kvm_arch_has_readonly_mem 719 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 720 { 721 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 722 } 723 #endif 724 725 struct kvm_memslots { 726 u64 generation; 727 atomic_long_t last_used_slot; 728 struct rb_root_cached hva_tree; 729 struct rb_root gfn_tree; 730 /* 731 * The mapping table from slot id to memslot. 732 * 733 * 7-bit bucket count matches the size of the old id to index array for 734 * 512 slots, while giving good performance with this slot count. 735 * Higher bucket counts bring only small performance improvements but 736 * always result in higher memory usage (even for lower memslot counts). 737 */ 738 DECLARE_HASHTABLE(id_hash, 7); 739 int node_idx; 740 }; 741 742 struct kvm { 743 #ifdef KVM_HAVE_MMU_RWLOCK 744 rwlock_t mmu_lock; 745 #else 746 spinlock_t mmu_lock; 747 #endif /* KVM_HAVE_MMU_RWLOCK */ 748 749 struct mutex slots_lock; 750 751 /* 752 * Protects the arch-specific fields of struct kvm_memory_slots in 753 * use by the VM. To be used under the slots_lock (above) or in a 754 * kvm->srcu critical section where acquiring the slots_lock would 755 * lead to deadlock with the synchronize_srcu in 756 * kvm_swap_active_memslots(). 757 */ 758 struct mutex slots_arch_lock; 759 struct mm_struct *mm; /* userspace tied to this vm */ 760 unsigned long nr_memslot_pages; 761 /* The two memslot sets - active and inactive (per address space) */ 762 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 763 /* The current active memslot set for each address space */ 764 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 765 struct xarray vcpu_array; 766 /* 767 * Protected by slots_lock, but can be read outside if an 768 * incorrect answer is acceptable. 769 */ 770 atomic_t nr_memslots_dirty_logging; 771 772 /* Used to wait for completion of MMU notifiers. */ 773 spinlock_t mn_invalidate_lock; 774 unsigned long mn_active_invalidate_count; 775 struct rcuwait mn_memslots_update_rcuwait; 776 777 /* For management / invalidation of gfn_to_pfn_caches */ 778 spinlock_t gpc_lock; 779 struct list_head gpc_list; 780 781 /* 782 * created_vcpus is protected by kvm->lock, and is incremented 783 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 784 * incremented after storing the kvm_vcpu pointer in vcpus, 785 * and is accessed atomically. 786 */ 787 atomic_t online_vcpus; 788 int max_vcpus; 789 int created_vcpus; 790 int last_boosted_vcpu; 791 struct list_head vm_list; 792 struct mutex lock; 793 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 794 #ifdef CONFIG_HAVE_KVM_IRQCHIP 795 struct { 796 spinlock_t lock; 797 struct list_head items; 798 /* resampler_list update side is protected by resampler_lock. */ 799 struct list_head resampler_list; 800 struct mutex resampler_lock; 801 } irqfds; 802 #endif 803 struct list_head ioeventfds; 804 struct kvm_vm_stat stat; 805 struct kvm_arch arch; 806 refcount_t users_count; 807 #ifdef CONFIG_KVM_MMIO 808 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 809 spinlock_t ring_lock; 810 struct list_head coalesced_zones; 811 #endif 812 813 struct mutex irq_lock; 814 #ifdef CONFIG_HAVE_KVM_IRQCHIP 815 /* 816 * Update side is protected by irq_lock. 817 */ 818 struct kvm_irq_routing_table __rcu *irq_routing; 819 820 struct hlist_head irq_ack_notifier_list; 821 #endif 822 823 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 824 struct mmu_notifier mmu_notifier; 825 unsigned long mmu_invalidate_seq; 826 long mmu_invalidate_in_progress; 827 gfn_t mmu_invalidate_range_start; 828 gfn_t mmu_invalidate_range_end; 829 #endif 830 struct list_head devices; 831 u64 manual_dirty_log_protect; 832 struct dentry *debugfs_dentry; 833 struct kvm_stat_data **debugfs_stat_data; 834 struct srcu_struct srcu; 835 struct srcu_struct irq_srcu; 836 pid_t userspace_pid; 837 bool override_halt_poll_ns; 838 unsigned int max_halt_poll_ns; 839 u32 dirty_ring_size; 840 bool dirty_ring_with_bitmap; 841 bool vm_bugged; 842 bool vm_dead; 843 844 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 845 struct notifier_block pm_notifier; 846 #endif 847 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 848 /* Protected by slots_locks (for writes) and RCU (for reads) */ 849 struct xarray mem_attr_array; 850 #endif 851 char stats_id[KVM_STATS_NAME_SIZE]; 852 }; 853 854 #define kvm_err(fmt, ...) \ 855 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 856 #define kvm_info(fmt, ...) \ 857 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 858 #define kvm_debug(fmt, ...) \ 859 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 860 #define kvm_debug_ratelimited(fmt, ...) \ 861 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 862 ## __VA_ARGS__) 863 #define kvm_pr_unimpl(fmt, ...) \ 864 pr_err_ratelimited("kvm [%i]: " fmt, \ 865 task_tgid_nr(current), ## __VA_ARGS__) 866 867 /* The guest did something we don't support. */ 868 #define vcpu_unimpl(vcpu, fmt, ...) \ 869 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 870 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 871 872 #define vcpu_debug(vcpu, fmt, ...) \ 873 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 874 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 875 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 876 ## __VA_ARGS__) 877 #define vcpu_err(vcpu, fmt, ...) \ 878 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 879 880 static inline void kvm_vm_dead(struct kvm *kvm) 881 { 882 kvm->vm_dead = true; 883 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 884 } 885 886 static inline void kvm_vm_bugged(struct kvm *kvm) 887 { 888 kvm->vm_bugged = true; 889 kvm_vm_dead(kvm); 890 } 891 892 893 #define KVM_BUG(cond, kvm, fmt...) \ 894 ({ \ 895 bool __ret = !!(cond); \ 896 \ 897 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 898 kvm_vm_bugged(kvm); \ 899 unlikely(__ret); \ 900 }) 901 902 #define KVM_BUG_ON(cond, kvm) \ 903 ({ \ 904 bool __ret = !!(cond); \ 905 \ 906 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 907 kvm_vm_bugged(kvm); \ 908 unlikely(__ret); \ 909 }) 910 911 /* 912 * Note, "data corruption" refers to corruption of host kernel data structures, 913 * not guest data. Guest data corruption, suspected or confirmed, that is tied 914 * and contained to a single VM should *never* BUG() and potentially panic the 915 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 916 * is corrupted and that corruption can have a cascading effect to other parts 917 * of the hosts and/or to other VMs. 918 */ 919 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 920 ({ \ 921 bool __ret = !!(cond); \ 922 \ 923 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 924 BUG_ON(__ret); \ 925 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 926 kvm_vm_bugged(kvm); \ 927 unlikely(__ret); \ 928 }) 929 930 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 931 { 932 #ifdef CONFIG_PROVE_RCU 933 WARN_ONCE(vcpu->srcu_depth++, 934 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 935 #endif 936 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 937 } 938 939 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 940 { 941 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 942 943 #ifdef CONFIG_PROVE_RCU 944 WARN_ONCE(--vcpu->srcu_depth, 945 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 946 #endif 947 } 948 949 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 950 { 951 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 952 } 953 954 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 955 { 956 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 957 lockdep_is_held(&kvm->slots_lock) || 958 !refcount_read(&kvm->users_count)); 959 } 960 961 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 962 { 963 int num_vcpus = atomic_read(&kvm->online_vcpus); 964 i = array_index_nospec(i, num_vcpus); 965 966 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 967 smp_rmb(); 968 return xa_load(&kvm->vcpu_array, i); 969 } 970 971 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 972 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 973 (atomic_read(&kvm->online_vcpus) - 1)) 974 975 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 976 { 977 struct kvm_vcpu *vcpu = NULL; 978 unsigned long i; 979 980 if (id < 0) 981 return NULL; 982 if (id < KVM_MAX_VCPUS) 983 vcpu = kvm_get_vcpu(kvm, id); 984 if (vcpu && vcpu->vcpu_id == id) 985 return vcpu; 986 kvm_for_each_vcpu(i, vcpu, kvm) 987 if (vcpu->vcpu_id == id) 988 return vcpu; 989 return NULL; 990 } 991 992 void kvm_destroy_vcpus(struct kvm *kvm); 993 994 void vcpu_load(struct kvm_vcpu *vcpu); 995 void vcpu_put(struct kvm_vcpu *vcpu); 996 997 #ifdef __KVM_HAVE_IOAPIC 998 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 999 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 1000 #else 1001 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1002 { 1003 } 1004 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 1005 { 1006 } 1007 #endif 1008 1009 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1010 int kvm_irqfd_init(void); 1011 void kvm_irqfd_exit(void); 1012 #else 1013 static inline int kvm_irqfd_init(void) 1014 { 1015 return 0; 1016 } 1017 1018 static inline void kvm_irqfd_exit(void) 1019 { 1020 } 1021 #endif 1022 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1023 void kvm_exit(void); 1024 1025 void kvm_get_kvm(struct kvm *kvm); 1026 bool kvm_get_kvm_safe(struct kvm *kvm); 1027 void kvm_put_kvm(struct kvm *kvm); 1028 bool file_is_kvm(struct file *file); 1029 void kvm_put_kvm_no_destroy(struct kvm *kvm); 1030 1031 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1032 { 1033 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1034 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1035 lockdep_is_held(&kvm->slots_lock) || 1036 !refcount_read(&kvm->users_count)); 1037 } 1038 1039 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1040 { 1041 return __kvm_memslots(kvm, 0); 1042 } 1043 1044 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1045 { 1046 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1047 1048 return __kvm_memslots(vcpu->kvm, as_id); 1049 } 1050 1051 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1052 { 1053 return RB_EMPTY_ROOT(&slots->gfn_tree); 1054 } 1055 1056 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1057 1058 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1059 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1060 if (WARN_ON_ONCE(!memslot->npages)) { \ 1061 } else 1062 1063 static inline 1064 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1065 { 1066 struct kvm_memory_slot *slot; 1067 int idx = slots->node_idx; 1068 1069 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1070 if (slot->id == id) 1071 return slot; 1072 } 1073 1074 return NULL; 1075 } 1076 1077 /* Iterator used for walking memslots that overlap a gfn range. */ 1078 struct kvm_memslot_iter { 1079 struct kvm_memslots *slots; 1080 struct rb_node *node; 1081 struct kvm_memory_slot *slot; 1082 }; 1083 1084 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1085 { 1086 iter->node = rb_next(iter->node); 1087 if (!iter->node) 1088 return; 1089 1090 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1091 } 1092 1093 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1094 struct kvm_memslots *slots, 1095 gfn_t start) 1096 { 1097 int idx = slots->node_idx; 1098 struct rb_node *tmp; 1099 struct kvm_memory_slot *slot; 1100 1101 iter->slots = slots; 1102 1103 /* 1104 * Find the so called "upper bound" of a key - the first node that has 1105 * its key strictly greater than the searched one (the start gfn in our case). 1106 */ 1107 iter->node = NULL; 1108 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1109 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1110 if (start < slot->base_gfn) { 1111 iter->node = tmp; 1112 tmp = tmp->rb_left; 1113 } else { 1114 tmp = tmp->rb_right; 1115 } 1116 } 1117 1118 /* 1119 * Find the slot with the lowest gfn that can possibly intersect with 1120 * the range, so we'll ideally have slot start <= range start 1121 */ 1122 if (iter->node) { 1123 /* 1124 * A NULL previous node means that the very first slot 1125 * already has a higher start gfn. 1126 * In this case slot start > range start. 1127 */ 1128 tmp = rb_prev(iter->node); 1129 if (tmp) 1130 iter->node = tmp; 1131 } else { 1132 /* a NULL node below means no slots */ 1133 iter->node = rb_last(&slots->gfn_tree); 1134 } 1135 1136 if (iter->node) { 1137 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1138 1139 /* 1140 * It is possible in the slot start < range start case that the 1141 * found slot ends before or at range start (slot end <= range start) 1142 * and so it does not overlap the requested range. 1143 * 1144 * In such non-overlapping case the next slot (if it exists) will 1145 * already have slot start > range start, otherwise the logic above 1146 * would have found it instead of the current slot. 1147 */ 1148 if (iter->slot->base_gfn + iter->slot->npages <= start) 1149 kvm_memslot_iter_next(iter); 1150 } 1151 } 1152 1153 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1154 { 1155 if (!iter->node) 1156 return false; 1157 1158 /* 1159 * If this slot starts beyond or at the end of the range so does 1160 * every next one 1161 */ 1162 return iter->slot->base_gfn < end; 1163 } 1164 1165 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1166 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1167 for (kvm_memslot_iter_start(iter, slots, start); \ 1168 kvm_memslot_iter_is_valid(iter, end); \ 1169 kvm_memslot_iter_next(iter)) 1170 1171 /* 1172 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1173 * - create a new memory slot 1174 * - delete an existing memory slot 1175 * - modify an existing memory slot 1176 * -- move it in the guest physical memory space 1177 * -- just change its flags 1178 * 1179 * Since flags can be changed by some of these operations, the following 1180 * differentiation is the best we can do for __kvm_set_memory_region(): 1181 */ 1182 enum kvm_mr_change { 1183 KVM_MR_CREATE, 1184 KVM_MR_DELETE, 1185 KVM_MR_MOVE, 1186 KVM_MR_FLAGS_ONLY, 1187 }; 1188 1189 int kvm_set_memory_region(struct kvm *kvm, 1190 const struct kvm_userspace_memory_region2 *mem); 1191 int __kvm_set_memory_region(struct kvm *kvm, 1192 const struct kvm_userspace_memory_region2 *mem); 1193 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1194 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1195 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1196 const struct kvm_memory_slot *old, 1197 struct kvm_memory_slot *new, 1198 enum kvm_mr_change change); 1199 void kvm_arch_commit_memory_region(struct kvm *kvm, 1200 struct kvm_memory_slot *old, 1201 const struct kvm_memory_slot *new, 1202 enum kvm_mr_change change); 1203 /* flush all memory translations */ 1204 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1205 /* flush memory translations pointing to 'slot' */ 1206 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1207 struct kvm_memory_slot *slot); 1208 1209 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1210 struct page **pages, int nr_pages); 1211 1212 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1213 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1214 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1215 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1216 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1217 bool *writable); 1218 void kvm_release_page_clean(struct page *page); 1219 void kvm_release_page_dirty(struct page *page); 1220 1221 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1222 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1223 bool *writable); 1224 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1225 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1226 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1227 bool atomic, bool interruptible, bool *async, 1228 bool write_fault, bool *writable, hva_t *hva); 1229 1230 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1231 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1232 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1233 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1234 1235 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1236 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1237 int len); 1238 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1239 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1240 void *data, unsigned long len); 1241 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1242 void *data, unsigned int offset, 1243 unsigned long len); 1244 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1245 int offset, int len); 1246 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1247 unsigned long len); 1248 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1249 void *data, unsigned long len); 1250 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1251 void *data, unsigned int offset, 1252 unsigned long len); 1253 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1254 gpa_t gpa, unsigned long len); 1255 1256 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1257 ({ \ 1258 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1259 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1260 int __ret = -EFAULT; \ 1261 \ 1262 if (!kvm_is_error_hva(__addr)) \ 1263 __ret = get_user(v, __uaddr); \ 1264 __ret; \ 1265 }) 1266 1267 #define kvm_get_guest(kvm, gpa, v) \ 1268 ({ \ 1269 gpa_t __gpa = gpa; \ 1270 struct kvm *__kvm = kvm; \ 1271 \ 1272 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1273 offset_in_page(__gpa), v); \ 1274 }) 1275 1276 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1277 ({ \ 1278 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1279 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1280 int __ret = -EFAULT; \ 1281 \ 1282 if (!kvm_is_error_hva(__addr)) \ 1283 __ret = put_user(v, __uaddr); \ 1284 if (!__ret) \ 1285 mark_page_dirty(kvm, gfn); \ 1286 __ret; \ 1287 }) 1288 1289 #define kvm_put_guest(kvm, gpa, v) \ 1290 ({ \ 1291 gpa_t __gpa = gpa; \ 1292 struct kvm *__kvm = kvm; \ 1293 \ 1294 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1295 offset_in_page(__gpa), v); \ 1296 }) 1297 1298 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1299 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1300 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1301 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1302 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1303 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1304 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1305 1306 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1307 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1308 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1309 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1310 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1311 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1312 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1313 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1314 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1315 int len); 1316 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1317 unsigned long len); 1318 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1319 unsigned long len); 1320 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1321 int offset, int len); 1322 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1323 unsigned long len); 1324 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1325 1326 /** 1327 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1328 * 1329 * @gpc: struct gfn_to_pfn_cache object. 1330 * @kvm: pointer to kvm instance. 1331 * 1332 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1333 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1334 * the caller before init). 1335 */ 1336 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1337 1338 /** 1339 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1340 * physical address. 1341 * 1342 * @gpc: struct gfn_to_pfn_cache object. 1343 * @gpa: guest physical address to map. 1344 * @len: sanity check; the range being access must fit a single page. 1345 * 1346 * @return: 0 for success. 1347 * -EINVAL for a mapping which would cross a page boundary. 1348 * -EFAULT for an untranslatable guest physical address. 1349 * 1350 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1351 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1352 * to ensure that the cache is valid before accessing the target page. 1353 */ 1354 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1355 1356 /** 1357 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1358 * 1359 * @gpc: struct gfn_to_pfn_cache object. 1360 * @hva: userspace virtual address to map. 1361 * @len: sanity check; the range being access must fit a single page. 1362 * 1363 * @return: 0 for success. 1364 * -EINVAL for a mapping which would cross a page boundary. 1365 * -EFAULT for an untranslatable guest physical address. 1366 * 1367 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1368 * merely bypasses a layer of address translation. 1369 */ 1370 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1371 1372 /** 1373 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1374 * 1375 * @gpc: struct gfn_to_pfn_cache object. 1376 * @len: sanity check; the range being access must fit a single page. 1377 * 1378 * @return: %true if the cache is still valid and the address matches. 1379 * %false if the cache is not valid. 1380 * 1381 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1382 * while calling this function, and then continue to hold the lock until the 1383 * access is complete. 1384 * 1385 * Callers in IN_GUEST_MODE may do so without locking, although they should 1386 * still hold a read lock on kvm->scru for the memslot checks. 1387 */ 1388 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1389 1390 /** 1391 * kvm_gpc_refresh - update a previously initialized cache. 1392 * 1393 * @gpc: struct gfn_to_pfn_cache object. 1394 * @len: sanity check; the range being access must fit a single page. 1395 * 1396 * @return: 0 for success. 1397 * -EINVAL for a mapping which would cross a page boundary. 1398 * -EFAULT for an untranslatable guest physical address. 1399 * 1400 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1401 * return from this function does not mean the page can be immediately 1402 * accessed because it may have raced with an invalidation. Callers must 1403 * still lock and check the cache status, as this function does not return 1404 * with the lock still held to permit access. 1405 */ 1406 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1407 1408 /** 1409 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1410 * 1411 * @gpc: struct gfn_to_pfn_cache object. 1412 * 1413 * This removes a cache from the VM's list to be processed on MMU notifier 1414 * invocation. 1415 */ 1416 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1417 1418 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1419 { 1420 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1421 } 1422 1423 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1424 { 1425 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1426 } 1427 1428 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1429 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1430 1431 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1432 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1433 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1434 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1435 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1436 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1437 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1438 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1439 1440 void kvm_flush_remote_tlbs(struct kvm *kvm); 1441 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1442 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1443 const struct kvm_memory_slot *memslot); 1444 1445 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1446 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1447 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1448 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1449 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1450 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1451 #endif 1452 1453 void kvm_mmu_invalidate_begin(struct kvm *kvm); 1454 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1455 void kvm_mmu_invalidate_end(struct kvm *kvm); 1456 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1457 1458 long kvm_arch_dev_ioctl(struct file *filp, 1459 unsigned int ioctl, unsigned long arg); 1460 long kvm_arch_vcpu_ioctl(struct file *filp, 1461 unsigned int ioctl, unsigned long arg); 1462 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1463 1464 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1465 1466 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1467 struct kvm_memory_slot *slot, 1468 gfn_t gfn_offset, 1469 unsigned long mask); 1470 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1471 1472 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1473 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1474 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1475 int *is_dirty, struct kvm_memory_slot **memslot); 1476 #endif 1477 1478 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1479 bool line_status); 1480 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1481 struct kvm_enable_cap *cap); 1482 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1483 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1484 unsigned long arg); 1485 1486 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1487 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1488 1489 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1490 struct kvm_translation *tr); 1491 1492 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1493 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1494 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1495 struct kvm_sregs *sregs); 1496 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1497 struct kvm_sregs *sregs); 1498 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1499 struct kvm_mp_state *mp_state); 1500 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1501 struct kvm_mp_state *mp_state); 1502 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1503 struct kvm_guest_debug *dbg); 1504 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1505 1506 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1507 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1508 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1509 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1510 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1511 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1512 1513 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1514 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1515 #endif 1516 1517 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1518 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1519 #else 1520 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1521 #endif 1522 1523 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1524 int kvm_arch_hardware_enable(void); 1525 void kvm_arch_hardware_disable(void); 1526 #endif 1527 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1528 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1529 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1530 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1531 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1532 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1533 int kvm_arch_post_init_vm(struct kvm *kvm); 1534 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1535 void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1536 1537 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1538 /* 1539 * All architectures that want to use vzalloc currently also 1540 * need their own kvm_arch_alloc_vm implementation. 1541 */ 1542 static inline struct kvm *kvm_arch_alloc_vm(void) 1543 { 1544 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1545 } 1546 #endif 1547 1548 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1549 { 1550 kvfree(kvm); 1551 } 1552 1553 #ifndef __KVM_HAVE_ARCH_VM_FREE 1554 static inline void kvm_arch_free_vm(struct kvm *kvm) 1555 { 1556 __kvm_arch_free_vm(kvm); 1557 } 1558 #endif 1559 1560 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1561 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1562 { 1563 return -ENOTSUPP; 1564 } 1565 #else 1566 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1567 #endif 1568 1569 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1570 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1571 gfn_t gfn, u64 nr_pages) 1572 { 1573 return -EOPNOTSUPP; 1574 } 1575 #else 1576 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1577 #endif 1578 1579 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1580 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1581 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1582 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1583 #else 1584 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1585 { 1586 } 1587 1588 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1589 { 1590 } 1591 1592 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1593 { 1594 return false; 1595 } 1596 #endif 1597 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1598 void kvm_arch_start_assignment(struct kvm *kvm); 1599 void kvm_arch_end_assignment(struct kvm *kvm); 1600 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1601 #else 1602 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1603 { 1604 } 1605 1606 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1607 { 1608 } 1609 1610 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1611 { 1612 return false; 1613 } 1614 #endif 1615 1616 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1617 { 1618 #ifdef __KVM_HAVE_ARCH_WQP 1619 return vcpu->arch.waitp; 1620 #else 1621 return &vcpu->wait; 1622 #endif 1623 } 1624 1625 /* 1626 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1627 * true if the vCPU was blocking and was awakened, false otherwise. 1628 */ 1629 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1630 { 1631 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1632 } 1633 1634 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1635 { 1636 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1637 } 1638 1639 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1640 /* 1641 * returns true if the virtual interrupt controller is initialized and 1642 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1643 * controller is dynamically instantiated and this is not always true. 1644 */ 1645 bool kvm_arch_intc_initialized(struct kvm *kvm); 1646 #else 1647 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1648 { 1649 return true; 1650 } 1651 #endif 1652 1653 #ifdef CONFIG_GUEST_PERF_EVENTS 1654 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1655 1656 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1657 void kvm_unregister_perf_callbacks(void); 1658 #else 1659 static inline void kvm_register_perf_callbacks(void *ign) {} 1660 static inline void kvm_unregister_perf_callbacks(void) {} 1661 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1662 1663 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1664 void kvm_arch_destroy_vm(struct kvm *kvm); 1665 void kvm_arch_sync_events(struct kvm *kvm); 1666 1667 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1668 1669 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1670 bool kvm_is_zone_device_page(struct page *page); 1671 1672 struct kvm_irq_ack_notifier { 1673 struct hlist_node link; 1674 unsigned gsi; 1675 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1676 }; 1677 1678 int kvm_irq_map_gsi(struct kvm *kvm, 1679 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1680 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1681 1682 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1683 bool line_status); 1684 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1685 int irq_source_id, int level, bool line_status); 1686 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1687 struct kvm *kvm, int irq_source_id, 1688 int level, bool line_status); 1689 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1690 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1691 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1692 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1693 struct kvm_irq_ack_notifier *kian); 1694 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1695 struct kvm_irq_ack_notifier *kian); 1696 int kvm_request_irq_source_id(struct kvm *kvm); 1697 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1698 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1699 1700 /* 1701 * Returns a pointer to the memslot if it contains gfn. 1702 * Otherwise returns NULL. 1703 */ 1704 static inline struct kvm_memory_slot * 1705 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1706 { 1707 if (!slot) 1708 return NULL; 1709 1710 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1711 return slot; 1712 else 1713 return NULL; 1714 } 1715 1716 /* 1717 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1718 * 1719 * With "approx" set returns the memslot also when the address falls 1720 * in a hole. In that case one of the memslots bordering the hole is 1721 * returned. 1722 */ 1723 static inline struct kvm_memory_slot * 1724 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1725 { 1726 struct kvm_memory_slot *slot; 1727 struct rb_node *node; 1728 int idx = slots->node_idx; 1729 1730 slot = NULL; 1731 for (node = slots->gfn_tree.rb_node; node; ) { 1732 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1733 if (gfn >= slot->base_gfn) { 1734 if (gfn < slot->base_gfn + slot->npages) 1735 return slot; 1736 node = node->rb_right; 1737 } else 1738 node = node->rb_left; 1739 } 1740 1741 return approx ? slot : NULL; 1742 } 1743 1744 static inline struct kvm_memory_slot * 1745 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1746 { 1747 struct kvm_memory_slot *slot; 1748 1749 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1750 slot = try_get_memslot(slot, gfn); 1751 if (slot) 1752 return slot; 1753 1754 slot = search_memslots(slots, gfn, approx); 1755 if (slot) { 1756 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1757 return slot; 1758 } 1759 1760 return NULL; 1761 } 1762 1763 /* 1764 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1765 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1766 * because that would bloat other code too much. 1767 */ 1768 static inline struct kvm_memory_slot * 1769 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1770 { 1771 return ____gfn_to_memslot(slots, gfn, false); 1772 } 1773 1774 static inline unsigned long 1775 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1776 { 1777 /* 1778 * The index was checked originally in search_memslots. To avoid 1779 * that a malicious guest builds a Spectre gadget out of e.g. page 1780 * table walks, do not let the processor speculate loads outside 1781 * the guest's registered memslots. 1782 */ 1783 unsigned long offset = gfn - slot->base_gfn; 1784 offset = array_index_nospec(offset, slot->npages); 1785 return slot->userspace_addr + offset * PAGE_SIZE; 1786 } 1787 1788 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1789 { 1790 return gfn_to_memslot(kvm, gfn)->id; 1791 } 1792 1793 static inline gfn_t 1794 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1795 { 1796 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1797 1798 return slot->base_gfn + gfn_offset; 1799 } 1800 1801 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1802 { 1803 return (gpa_t)gfn << PAGE_SHIFT; 1804 } 1805 1806 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1807 { 1808 return (gfn_t)(gpa >> PAGE_SHIFT); 1809 } 1810 1811 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1812 { 1813 return (hpa_t)pfn << PAGE_SHIFT; 1814 } 1815 1816 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1817 { 1818 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1819 1820 return !kvm_is_error_hva(hva); 1821 } 1822 1823 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1824 { 1825 lockdep_assert_held(&gpc->lock); 1826 1827 if (!gpc->memslot) 1828 return; 1829 1830 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1831 } 1832 1833 enum kvm_stat_kind { 1834 KVM_STAT_VM, 1835 KVM_STAT_VCPU, 1836 }; 1837 1838 struct kvm_stat_data { 1839 struct kvm *kvm; 1840 const struct _kvm_stats_desc *desc; 1841 enum kvm_stat_kind kind; 1842 }; 1843 1844 struct _kvm_stats_desc { 1845 struct kvm_stats_desc desc; 1846 char name[KVM_STATS_NAME_SIZE]; 1847 }; 1848 1849 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1850 .flags = type | unit | base | \ 1851 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1852 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1853 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1854 .exponent = exp, \ 1855 .size = sz, \ 1856 .bucket_size = bsz 1857 1858 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1859 { \ 1860 { \ 1861 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1862 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1863 }, \ 1864 .name = #stat, \ 1865 } 1866 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1867 { \ 1868 { \ 1869 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1870 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1871 }, \ 1872 .name = #stat, \ 1873 } 1874 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1875 { \ 1876 { \ 1877 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1878 .offset = offsetof(struct kvm_vm_stat, stat) \ 1879 }, \ 1880 .name = #stat, \ 1881 } 1882 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1883 { \ 1884 { \ 1885 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1886 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1887 }, \ 1888 .name = #stat, \ 1889 } 1890 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1891 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1892 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1893 1894 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1895 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1896 unit, base, exponent, 1, 0) 1897 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1898 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1899 unit, base, exponent, 1, 0) 1900 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1901 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1902 unit, base, exponent, 1, 0) 1903 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1904 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1905 unit, base, exponent, sz, bsz) 1906 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1907 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1908 unit, base, exponent, sz, 0) 1909 1910 /* Cumulative counter, read/write */ 1911 #define STATS_DESC_COUNTER(SCOPE, name) \ 1912 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1913 KVM_STATS_BASE_POW10, 0) 1914 /* Instantaneous counter, read only */ 1915 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1916 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1917 KVM_STATS_BASE_POW10, 0) 1918 /* Peak counter, read/write */ 1919 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1920 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1921 KVM_STATS_BASE_POW10, 0) 1922 1923 /* Instantaneous boolean value, read only */ 1924 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1925 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1926 KVM_STATS_BASE_POW10, 0) 1927 /* Peak (sticky) boolean value, read/write */ 1928 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1929 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1930 KVM_STATS_BASE_POW10, 0) 1931 1932 /* Cumulative time in nanosecond */ 1933 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1934 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1935 KVM_STATS_BASE_POW10, -9) 1936 /* Linear histogram for time in nanosecond */ 1937 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1938 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1939 KVM_STATS_BASE_POW10, -9, sz, bsz) 1940 /* Logarithmic histogram for time in nanosecond */ 1941 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1942 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1943 KVM_STATS_BASE_POW10, -9, sz) 1944 1945 #define KVM_GENERIC_VM_STATS() \ 1946 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1947 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1948 1949 #define KVM_GENERIC_VCPU_STATS() \ 1950 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1951 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1952 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1953 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1954 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1955 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1956 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1957 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1958 HALT_POLL_HIST_COUNT), \ 1959 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1960 HALT_POLL_HIST_COUNT), \ 1961 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1962 HALT_POLL_HIST_COUNT), \ 1963 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 1964 1965 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1966 const struct _kvm_stats_desc *desc, 1967 void *stats, size_t size_stats, 1968 char __user *user_buffer, size_t size, loff_t *offset); 1969 1970 /** 1971 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1972 * statistics data. 1973 * 1974 * @data: start address of the stats data 1975 * @size: the number of bucket of the stats data 1976 * @value: the new value used to update the linear histogram's bucket 1977 * @bucket_size: the size (width) of a bucket 1978 */ 1979 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1980 u64 value, size_t bucket_size) 1981 { 1982 size_t index = div64_u64(value, bucket_size); 1983 1984 index = min(index, size - 1); 1985 ++data[index]; 1986 } 1987 1988 /** 1989 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1990 * statistics data. 1991 * 1992 * @data: start address of the stats data 1993 * @size: the number of bucket of the stats data 1994 * @value: the new value used to update the logarithmic histogram's bucket 1995 */ 1996 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1997 { 1998 size_t index = fls64(value); 1999 2000 index = min(index, size - 1); 2001 ++data[index]; 2002 } 2003 2004 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2005 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2006 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2007 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2008 2009 2010 extern const struct kvm_stats_header kvm_vm_stats_header; 2011 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2012 extern const struct kvm_stats_header kvm_vcpu_stats_header; 2013 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2014 2015 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2016 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2017 { 2018 if (unlikely(kvm->mmu_invalidate_in_progress)) 2019 return 1; 2020 /* 2021 * Ensure the read of mmu_invalidate_in_progress happens before 2022 * the read of mmu_invalidate_seq. This interacts with the 2023 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2024 * that the caller either sees the old (non-zero) value of 2025 * mmu_invalidate_in_progress or the new (incremented) value of 2026 * mmu_invalidate_seq. 2027 * 2028 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2029 * than under kvm->mmu_lock, for scalability, so can't rely on 2030 * kvm->mmu_lock to keep things ordered. 2031 */ 2032 smp_rmb(); 2033 if (kvm->mmu_invalidate_seq != mmu_seq) 2034 return 1; 2035 return 0; 2036 } 2037 2038 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2039 unsigned long mmu_seq, 2040 gfn_t gfn) 2041 { 2042 lockdep_assert_held(&kvm->mmu_lock); 2043 /* 2044 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2045 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2046 * that might be being invalidated. Note that it may include some false 2047 * positives, due to shortcuts when handing concurrent invalidations. 2048 */ 2049 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2050 /* 2051 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2052 * but before updating the range is a KVM bug. 2053 */ 2054 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2055 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2056 return 1; 2057 2058 if (gfn >= kvm->mmu_invalidate_range_start && 2059 gfn < kvm->mmu_invalidate_range_end) 2060 return 1; 2061 } 2062 2063 if (kvm->mmu_invalidate_seq != mmu_seq) 2064 return 1; 2065 return 0; 2066 } 2067 2068 /* 2069 * This lockless version of the range-based retry check *must* be paired with a 2070 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2071 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2072 * get false negatives and false positives. 2073 */ 2074 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2075 unsigned long mmu_seq, 2076 gfn_t gfn) 2077 { 2078 /* 2079 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2080 * are always read from memory, e.g. so that checking for retry in a 2081 * loop won't result in an infinite retry loop. Don't force loads for 2082 * start+end, as the key to avoiding infinite retry loops is observing 2083 * the 1=>0 transition of in-progress, i.e. getting false negatives 2084 * due to stale start+end values is acceptable. 2085 */ 2086 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2087 gfn >= kvm->mmu_invalidate_range_start && 2088 gfn < kvm->mmu_invalidate_range_end) 2089 return true; 2090 2091 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2092 } 2093 #endif 2094 2095 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2096 2097 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2098 2099 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2100 int kvm_set_irq_routing(struct kvm *kvm, 2101 const struct kvm_irq_routing_entry *entries, 2102 unsigned nr, 2103 unsigned flags); 2104 int kvm_init_irq_routing(struct kvm *kvm); 2105 int kvm_set_routing_entry(struct kvm *kvm, 2106 struct kvm_kernel_irq_routing_entry *e, 2107 const struct kvm_irq_routing_entry *ue); 2108 void kvm_free_irq_routing(struct kvm *kvm); 2109 2110 #else 2111 2112 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2113 2114 static inline int kvm_init_irq_routing(struct kvm *kvm) 2115 { 2116 return 0; 2117 } 2118 2119 #endif 2120 2121 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2122 2123 void kvm_eventfd_init(struct kvm *kvm); 2124 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2125 2126 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2127 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2128 void kvm_irqfd_release(struct kvm *kvm); 2129 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2130 unsigned int irqchip, 2131 unsigned int pin); 2132 void kvm_irq_routing_update(struct kvm *); 2133 #else 2134 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2135 { 2136 return -EINVAL; 2137 } 2138 2139 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2140 2141 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2142 unsigned int irqchip, 2143 unsigned int pin) 2144 { 2145 return false; 2146 } 2147 #endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2148 2149 void kvm_arch_irq_routing_update(struct kvm *kvm); 2150 2151 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2152 { 2153 /* 2154 * Ensure the rest of the request is published to kvm_check_request's 2155 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2156 */ 2157 smp_wmb(); 2158 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2159 } 2160 2161 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2162 { 2163 /* 2164 * Request that don't require vCPU action should never be logged in 2165 * vcpu->requests. The vCPU won't clear the request, so it will stay 2166 * logged indefinitely and prevent the vCPU from entering the guest. 2167 */ 2168 BUILD_BUG_ON(!__builtin_constant_p(req) || 2169 (req & KVM_REQUEST_NO_ACTION)); 2170 2171 __kvm_make_request(req, vcpu); 2172 } 2173 2174 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2175 { 2176 return READ_ONCE(vcpu->requests); 2177 } 2178 2179 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2180 { 2181 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2182 } 2183 2184 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2185 { 2186 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2187 } 2188 2189 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2190 { 2191 if (kvm_test_request(req, vcpu)) { 2192 kvm_clear_request(req, vcpu); 2193 2194 /* 2195 * Ensure the rest of the request is visible to kvm_check_request's 2196 * caller. Paired with the smp_wmb in kvm_make_request. 2197 */ 2198 smp_mb__after_atomic(); 2199 return true; 2200 } else { 2201 return false; 2202 } 2203 } 2204 2205 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2206 extern bool kvm_rebooting; 2207 #endif 2208 2209 extern unsigned int halt_poll_ns; 2210 extern unsigned int halt_poll_ns_grow; 2211 extern unsigned int halt_poll_ns_grow_start; 2212 extern unsigned int halt_poll_ns_shrink; 2213 2214 struct kvm_device { 2215 const struct kvm_device_ops *ops; 2216 struct kvm *kvm; 2217 void *private; 2218 struct list_head vm_node; 2219 }; 2220 2221 /* create, destroy, and name are mandatory */ 2222 struct kvm_device_ops { 2223 const char *name; 2224 2225 /* 2226 * create is called holding kvm->lock and any operations not suitable 2227 * to do while holding the lock should be deferred to init (see 2228 * below). 2229 */ 2230 int (*create)(struct kvm_device *dev, u32 type); 2231 2232 /* 2233 * init is called after create if create is successful and is called 2234 * outside of holding kvm->lock. 2235 */ 2236 void (*init)(struct kvm_device *dev); 2237 2238 /* 2239 * Destroy is responsible for freeing dev. 2240 * 2241 * Destroy may be called before or after destructors are called 2242 * on emulated I/O regions, depending on whether a reference is 2243 * held by a vcpu or other kvm component that gets destroyed 2244 * after the emulated I/O. 2245 */ 2246 void (*destroy)(struct kvm_device *dev); 2247 2248 /* 2249 * Release is an alternative method to free the device. It is 2250 * called when the device file descriptor is closed. Once 2251 * release is called, the destroy method will not be called 2252 * anymore as the device is removed from the device list of 2253 * the VM. kvm->lock is held. 2254 */ 2255 void (*release)(struct kvm_device *dev); 2256 2257 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2258 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2259 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2260 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2261 unsigned long arg); 2262 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2263 }; 2264 2265 struct kvm_device *kvm_device_from_filp(struct file *filp); 2266 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2267 void kvm_unregister_device_ops(u32 type); 2268 2269 extern struct kvm_device_ops kvm_mpic_ops; 2270 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2271 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2272 2273 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2274 2275 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2276 { 2277 vcpu->spin_loop.in_spin_loop = val; 2278 } 2279 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2280 { 2281 vcpu->spin_loop.dy_eligible = val; 2282 } 2283 2284 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2285 2286 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2287 { 2288 } 2289 2290 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2291 { 2292 } 2293 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2294 2295 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2296 { 2297 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2298 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2299 } 2300 2301 struct kvm_vcpu *kvm_get_running_vcpu(void); 2302 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2303 2304 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2305 bool kvm_arch_has_irq_bypass(void); 2306 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2307 struct irq_bypass_producer *); 2308 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2309 struct irq_bypass_producer *); 2310 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2311 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2312 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2313 uint32_t guest_irq, bool set); 2314 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2315 struct kvm_kernel_irq_routing_entry *); 2316 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2317 2318 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2319 /* If we wakeup during the poll time, was it a sucessful poll? */ 2320 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2321 { 2322 return vcpu->valid_wakeup; 2323 } 2324 2325 #else 2326 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2327 { 2328 return true; 2329 } 2330 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2331 2332 #ifdef CONFIG_HAVE_KVM_NO_POLL 2333 /* Callback that tells if we must not poll */ 2334 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2335 #else 2336 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2337 { 2338 return false; 2339 } 2340 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2341 2342 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2343 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2344 unsigned int ioctl, unsigned long arg); 2345 #else 2346 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2347 unsigned int ioctl, 2348 unsigned long arg) 2349 { 2350 return -ENOIOCTLCMD; 2351 } 2352 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2353 2354 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2355 2356 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2357 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2358 #else 2359 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2360 { 2361 return 0; 2362 } 2363 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2364 2365 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2366 2367 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2368 uintptr_t data, const char *name, 2369 struct task_struct **thread_ptr); 2370 2371 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2372 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2373 { 2374 vcpu->run->exit_reason = KVM_EXIT_INTR; 2375 vcpu->stat.signal_exits++; 2376 } 2377 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2378 2379 /* 2380 * If more than one page is being (un)accounted, @virt must be the address of 2381 * the first page of a block of pages what were allocated together (i.e 2382 * accounted together). 2383 * 2384 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2385 * is thread-safe. 2386 */ 2387 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2388 { 2389 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2390 } 2391 2392 /* 2393 * This defines how many reserved entries we want to keep before we 2394 * kick the vcpu to the userspace to avoid dirty ring full. This 2395 * value can be tuned to higher if e.g. PML is enabled on the host. 2396 */ 2397 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2398 2399 /* Max number of entries allowed for each kvm dirty ring */ 2400 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2401 2402 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2403 gpa_t gpa, gpa_t size, 2404 bool is_write, bool is_exec, 2405 bool is_private) 2406 { 2407 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2408 vcpu->run->memory_fault.gpa = gpa; 2409 vcpu->run->memory_fault.size = size; 2410 2411 /* RWX flags are not (yet) defined or communicated to userspace. */ 2412 vcpu->run->memory_fault.flags = 0; 2413 if (is_private) 2414 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2415 } 2416 2417 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2418 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2419 { 2420 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2421 } 2422 2423 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2424 unsigned long mask, unsigned long attrs); 2425 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2426 struct kvm_gfn_range *range); 2427 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2428 struct kvm_gfn_range *range); 2429 2430 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2431 { 2432 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2433 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2434 } 2435 #else 2436 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2437 { 2438 return false; 2439 } 2440 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2441 2442 #ifdef CONFIG_KVM_PRIVATE_MEM 2443 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2444 gfn_t gfn, kvm_pfn_t *pfn, int *max_order); 2445 #else 2446 static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2447 struct kvm_memory_slot *slot, gfn_t gfn, 2448 kvm_pfn_t *pfn, int *max_order) 2449 { 2450 KVM_BUG_ON(1, kvm); 2451 return -EIO; 2452 } 2453 #endif /* CONFIG_KVM_PRIVATE_MEM */ 2454 2455 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2456 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2457 #endif 2458 2459 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2460 /** 2461 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2462 * 2463 * @kvm: KVM instance 2464 * @gfn: starting GFN to be populated 2465 * @src: userspace-provided buffer containing data to copy into GFN range 2466 * (passed to @post_populate, and incremented on each iteration 2467 * if not NULL) 2468 * @npages: number of pages to copy from userspace-buffer 2469 * @post_populate: callback to issue for each gmem page that backs the GPA 2470 * range 2471 * @opaque: opaque data to pass to @post_populate callback 2472 * 2473 * This is primarily intended for cases where a gmem-backed GPA range needs 2474 * to be initialized with userspace-provided data prior to being mapped into 2475 * the guest as a private page. This should be called with the slots->lock 2476 * held so that caller-enforced invariants regarding the expected memory 2477 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2478 * 2479 * Returns the number of pages that were populated. 2480 */ 2481 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2482 void __user *src, int order, void *opaque); 2483 2484 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2485 kvm_gmem_populate_cb post_populate, void *opaque); 2486 #endif 2487 2488 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2489 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2490 #endif 2491 2492 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2493 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2494 struct kvm_pre_fault_memory *range); 2495 #endif 2496 2497 #endif 2498