1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 54 * in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of install_new_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_ADDRESS_SPACE_NUM 84 #define KVM_ADDRESS_SPACE_NUM 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 100 /* 101 * error pfns indicate that the gfn is in slot but faild to 102 * translate it to pfn on host. 103 */ 104 static inline bool is_error_pfn(kvm_pfn_t pfn) 105 { 106 return !!(pfn & KVM_PFN_ERR_MASK); 107 } 108 109 /* 110 * error_noslot pfns indicate that the gfn can not be 111 * translated to pfn - it is not in slot or failed to 112 * translate it to pfn. 113 */ 114 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 115 { 116 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 117 } 118 119 /* noslot pfn indicates that the gfn is not in slot. */ 120 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 121 { 122 return pfn == KVM_PFN_NOSLOT; 123 } 124 125 /* 126 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 127 * provide own defines and kvm_is_error_hva 128 */ 129 #ifndef KVM_HVA_ERR_BAD 130 131 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 132 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 133 134 static inline bool kvm_is_error_hva(unsigned long addr) 135 { 136 return addr >= PAGE_OFFSET; 137 } 138 139 #endif 140 141 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 142 143 static inline bool is_error_page(struct page *page) 144 { 145 return IS_ERR(page); 146 } 147 148 #define KVM_REQUEST_MASK GENMASK(7,0) 149 #define KVM_REQUEST_NO_WAKEUP BIT(8) 150 #define KVM_REQUEST_WAIT BIT(9) 151 /* 152 * Architecture-independent vcpu->requests bit members 153 * Bits 4-7 are reserved for more arch-independent bits. 154 */ 155 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 156 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 157 #define KVM_REQ_UNBLOCK 2 158 #define KVM_REQ_UNHALT 3 159 #define KVM_REQ_VM_DEAD (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 160 #define KVM_REQ_GPC_INVALIDATE (5 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 161 #define KVM_REQUEST_ARCH_BASE 8 162 163 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 164 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 165 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 166 }) 167 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 168 169 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 170 unsigned long *vcpu_bitmap); 171 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 172 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 173 struct kvm_vcpu *except); 174 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 175 unsigned long *vcpu_bitmap); 176 177 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 178 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 179 180 extern struct mutex kvm_lock; 181 extern struct list_head vm_list; 182 183 struct kvm_io_range { 184 gpa_t addr; 185 int len; 186 struct kvm_io_device *dev; 187 }; 188 189 #define NR_IOBUS_DEVS 1000 190 191 struct kvm_io_bus { 192 int dev_count; 193 int ioeventfd_count; 194 struct kvm_io_range range[]; 195 }; 196 197 enum kvm_bus { 198 KVM_MMIO_BUS, 199 KVM_PIO_BUS, 200 KVM_VIRTIO_CCW_NOTIFY_BUS, 201 KVM_FAST_MMIO_BUS, 202 KVM_NR_BUSES 203 }; 204 205 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 206 int len, const void *val); 207 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 208 gpa_t addr, int len, const void *val, long cookie); 209 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 210 int len, void *val); 211 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 212 int len, struct kvm_io_device *dev); 213 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 214 struct kvm_io_device *dev); 215 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 216 gpa_t addr); 217 218 #ifdef CONFIG_KVM_ASYNC_PF 219 struct kvm_async_pf { 220 struct work_struct work; 221 struct list_head link; 222 struct list_head queue; 223 struct kvm_vcpu *vcpu; 224 struct mm_struct *mm; 225 gpa_t cr2_or_gpa; 226 unsigned long addr; 227 struct kvm_arch_async_pf arch; 228 bool wakeup_all; 229 bool notpresent_injected; 230 }; 231 232 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 233 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 234 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 235 unsigned long hva, struct kvm_arch_async_pf *arch); 236 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 237 #endif 238 239 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER 240 struct kvm_gfn_range { 241 struct kvm_memory_slot *slot; 242 gfn_t start; 243 gfn_t end; 244 pte_t pte; 245 bool may_block; 246 }; 247 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 248 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 249 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 250 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 251 #endif 252 253 enum { 254 OUTSIDE_GUEST_MODE, 255 IN_GUEST_MODE, 256 EXITING_GUEST_MODE, 257 READING_SHADOW_PAGE_TABLES, 258 }; 259 260 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 261 262 struct kvm_host_map { 263 /* 264 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 265 * a 'struct page' for it. When using mem= kernel parameter some memory 266 * can be used as guest memory but they are not managed by host 267 * kernel). 268 * If 'pfn' is not managed by the host kernel, this field is 269 * initialized to KVM_UNMAPPED_PAGE. 270 */ 271 struct page *page; 272 void *hva; 273 kvm_pfn_t pfn; 274 kvm_pfn_t gfn; 275 }; 276 277 /* 278 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 279 * directly to check for that. 280 */ 281 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 282 { 283 return !!map->hva; 284 } 285 286 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 287 { 288 return single_task_running() && !need_resched() && ktime_before(cur, stop); 289 } 290 291 /* 292 * Sometimes a large or cross-page mmio needs to be broken up into separate 293 * exits for userspace servicing. 294 */ 295 struct kvm_mmio_fragment { 296 gpa_t gpa; 297 void *data; 298 unsigned len; 299 }; 300 301 struct kvm_vcpu { 302 struct kvm *kvm; 303 #ifdef CONFIG_PREEMPT_NOTIFIERS 304 struct preempt_notifier preempt_notifier; 305 #endif 306 int cpu; 307 int vcpu_id; /* id given by userspace at creation */ 308 int vcpu_idx; /* index in kvm->vcpus array */ 309 int srcu_idx; 310 int mode; 311 u64 requests; 312 unsigned long guest_debug; 313 314 struct mutex mutex; 315 struct kvm_run *run; 316 317 #ifndef __KVM_HAVE_ARCH_WQP 318 struct rcuwait wait; 319 #endif 320 struct pid __rcu *pid; 321 int sigset_active; 322 sigset_t sigset; 323 unsigned int halt_poll_ns; 324 bool valid_wakeup; 325 326 #ifdef CONFIG_HAS_IOMEM 327 int mmio_needed; 328 int mmio_read_completed; 329 int mmio_is_write; 330 int mmio_cur_fragment; 331 int mmio_nr_fragments; 332 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 333 #endif 334 335 #ifdef CONFIG_KVM_ASYNC_PF 336 struct { 337 u32 queued; 338 struct list_head queue; 339 struct list_head done; 340 spinlock_t lock; 341 } async_pf; 342 #endif 343 344 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 345 /* 346 * Cpu relax intercept or pause loop exit optimization 347 * in_spin_loop: set when a vcpu does a pause loop exit 348 * or cpu relax intercepted. 349 * dy_eligible: indicates whether vcpu is eligible for directed yield. 350 */ 351 struct { 352 bool in_spin_loop; 353 bool dy_eligible; 354 } spin_loop; 355 #endif 356 bool preempted; 357 bool ready; 358 struct kvm_vcpu_arch arch; 359 struct kvm_vcpu_stat stat; 360 char stats_id[KVM_STATS_NAME_SIZE]; 361 struct kvm_dirty_ring dirty_ring; 362 363 /* 364 * The most recently used memslot by this vCPU and the slots generation 365 * for which it is valid. 366 * No wraparound protection is needed since generations won't overflow in 367 * thousands of years, even assuming 1M memslot operations per second. 368 */ 369 struct kvm_memory_slot *last_used_slot; 370 u64 last_used_slot_gen; 371 }; 372 373 /* 374 * Start accounting time towards a guest. 375 * Must be called before entering guest context. 376 */ 377 static __always_inline void guest_timing_enter_irqoff(void) 378 { 379 /* 380 * This is running in ioctl context so its safe to assume that it's the 381 * stime pending cputime to flush. 382 */ 383 instrumentation_begin(); 384 vtime_account_guest_enter(); 385 instrumentation_end(); 386 } 387 388 /* 389 * Enter guest context and enter an RCU extended quiescent state. 390 * 391 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 392 * unsafe to use any code which may directly or indirectly use RCU, tracing 393 * (including IRQ flag tracing), or lockdep. All code in this period must be 394 * non-instrumentable. 395 */ 396 static __always_inline void guest_context_enter_irqoff(void) 397 { 398 /* 399 * KVM does not hold any references to rcu protected data when it 400 * switches CPU into a guest mode. In fact switching to a guest mode 401 * is very similar to exiting to userspace from rcu point of view. In 402 * addition CPU may stay in a guest mode for quite a long time (up to 403 * one time slice). Lets treat guest mode as quiescent state, just like 404 * we do with user-mode execution. 405 */ 406 if (!context_tracking_guest_enter()) { 407 instrumentation_begin(); 408 rcu_virt_note_context_switch(smp_processor_id()); 409 instrumentation_end(); 410 } 411 } 412 413 /* 414 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 415 * guest_state_enter_irqoff(). 416 */ 417 static __always_inline void guest_enter_irqoff(void) 418 { 419 guest_timing_enter_irqoff(); 420 guest_context_enter_irqoff(); 421 } 422 423 /** 424 * guest_state_enter_irqoff - Fixup state when entering a guest 425 * 426 * Entry to a guest will enable interrupts, but the kernel state is interrupts 427 * disabled when this is invoked. Also tell RCU about it. 428 * 429 * 1) Trace interrupts on state 430 * 2) Invoke context tracking if enabled to adjust RCU state 431 * 3) Tell lockdep that interrupts are enabled 432 * 433 * Invoked from architecture specific code before entering a guest. 434 * Must be called with interrupts disabled and the caller must be 435 * non-instrumentable. 436 * The caller has to invoke guest_timing_enter_irqoff() before this. 437 * 438 * Note: this is analogous to exit_to_user_mode(). 439 */ 440 static __always_inline void guest_state_enter_irqoff(void) 441 { 442 instrumentation_begin(); 443 trace_hardirqs_on_prepare(); 444 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 445 instrumentation_end(); 446 447 guest_context_enter_irqoff(); 448 lockdep_hardirqs_on(CALLER_ADDR0); 449 } 450 451 /* 452 * Exit guest context and exit an RCU extended quiescent state. 453 * 454 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 455 * unsafe to use any code which may directly or indirectly use RCU, tracing 456 * (including IRQ flag tracing), or lockdep. All code in this period must be 457 * non-instrumentable. 458 */ 459 static __always_inline void guest_context_exit_irqoff(void) 460 { 461 context_tracking_guest_exit(); 462 } 463 464 /* 465 * Stop accounting time towards a guest. 466 * Must be called after exiting guest context. 467 */ 468 static __always_inline void guest_timing_exit_irqoff(void) 469 { 470 instrumentation_begin(); 471 /* Flush the guest cputime we spent on the guest */ 472 vtime_account_guest_exit(); 473 instrumentation_end(); 474 } 475 476 /* 477 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 478 * guest_timing_exit_irqoff(). 479 */ 480 static __always_inline void guest_exit_irqoff(void) 481 { 482 guest_context_exit_irqoff(); 483 guest_timing_exit_irqoff(); 484 } 485 486 static inline void guest_exit(void) 487 { 488 unsigned long flags; 489 490 local_irq_save(flags); 491 guest_exit_irqoff(); 492 local_irq_restore(flags); 493 } 494 495 /** 496 * guest_state_exit_irqoff - Establish state when returning from guest mode 497 * 498 * Entry from a guest disables interrupts, but guest mode is traced as 499 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 500 * 501 * 1) Tell lockdep that interrupts are disabled 502 * 2) Invoke context tracking if enabled to reactivate RCU 503 * 3) Trace interrupts off state 504 * 505 * Invoked from architecture specific code after exiting a guest. 506 * Must be invoked with interrupts disabled and the caller must be 507 * non-instrumentable. 508 * The caller has to invoke guest_timing_exit_irqoff() after this. 509 * 510 * Note: this is analogous to enter_from_user_mode(). 511 */ 512 static __always_inline void guest_state_exit_irqoff(void) 513 { 514 lockdep_hardirqs_off(CALLER_ADDR0); 515 guest_context_exit_irqoff(); 516 517 instrumentation_begin(); 518 trace_hardirqs_off_finish(); 519 instrumentation_end(); 520 } 521 522 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 523 { 524 /* 525 * The memory barrier ensures a previous write to vcpu->requests cannot 526 * be reordered with the read of vcpu->mode. It pairs with the general 527 * memory barrier following the write of vcpu->mode in VCPU RUN. 528 */ 529 smp_mb__before_atomic(); 530 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 531 } 532 533 /* 534 * Some of the bitops functions do not support too long bitmaps. 535 * This number must be determined not to exceed such limits. 536 */ 537 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 538 539 /* 540 * Since at idle each memslot belongs to two memslot sets it has to contain 541 * two embedded nodes for each data structure that it forms a part of. 542 * 543 * Two memslot sets (one active and one inactive) are necessary so the VM 544 * continues to run on one memslot set while the other is being modified. 545 * 546 * These two memslot sets normally point to the same set of memslots. 547 * They can, however, be desynchronized when performing a memslot management 548 * operation by replacing the memslot to be modified by its copy. 549 * After the operation is complete, both memslot sets once again point to 550 * the same, common set of memslot data. 551 * 552 * The memslots themselves are independent of each other so they can be 553 * individually added or deleted. 554 */ 555 struct kvm_memory_slot { 556 struct hlist_node id_node[2]; 557 struct interval_tree_node hva_node[2]; 558 struct rb_node gfn_node[2]; 559 gfn_t base_gfn; 560 unsigned long npages; 561 unsigned long *dirty_bitmap; 562 struct kvm_arch_memory_slot arch; 563 unsigned long userspace_addr; 564 u32 flags; 565 short id; 566 u16 as_id; 567 }; 568 569 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 570 { 571 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 572 } 573 574 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 575 { 576 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 577 } 578 579 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 580 { 581 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 582 583 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 584 } 585 586 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 587 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 588 #endif 589 590 struct kvm_s390_adapter_int { 591 u64 ind_addr; 592 u64 summary_addr; 593 u64 ind_offset; 594 u32 summary_offset; 595 u32 adapter_id; 596 }; 597 598 struct kvm_hv_sint { 599 u32 vcpu; 600 u32 sint; 601 }; 602 603 struct kvm_xen_evtchn { 604 u32 port; 605 u32 vcpu; 606 u32 priority; 607 }; 608 609 struct kvm_kernel_irq_routing_entry { 610 u32 gsi; 611 u32 type; 612 int (*set)(struct kvm_kernel_irq_routing_entry *e, 613 struct kvm *kvm, int irq_source_id, int level, 614 bool line_status); 615 union { 616 struct { 617 unsigned irqchip; 618 unsigned pin; 619 } irqchip; 620 struct { 621 u32 address_lo; 622 u32 address_hi; 623 u32 data; 624 u32 flags; 625 u32 devid; 626 } msi; 627 struct kvm_s390_adapter_int adapter; 628 struct kvm_hv_sint hv_sint; 629 struct kvm_xen_evtchn xen_evtchn; 630 }; 631 struct hlist_node link; 632 }; 633 634 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 635 struct kvm_irq_routing_table { 636 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 637 u32 nr_rt_entries; 638 /* 639 * Array indexed by gsi. Each entry contains list of irq chips 640 * the gsi is connected to. 641 */ 642 struct hlist_head map[]; 643 }; 644 #endif 645 646 #ifndef KVM_PRIVATE_MEM_SLOTS 647 #define KVM_PRIVATE_MEM_SLOTS 0 648 #endif 649 650 #define KVM_MEM_SLOTS_NUM SHRT_MAX 651 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 652 653 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 654 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 655 { 656 return 0; 657 } 658 #endif 659 660 struct kvm_memslots { 661 u64 generation; 662 atomic_long_t last_used_slot; 663 struct rb_root_cached hva_tree; 664 struct rb_root gfn_tree; 665 /* 666 * The mapping table from slot id to memslot. 667 * 668 * 7-bit bucket count matches the size of the old id to index array for 669 * 512 slots, while giving good performance with this slot count. 670 * Higher bucket counts bring only small performance improvements but 671 * always result in higher memory usage (even for lower memslot counts). 672 */ 673 DECLARE_HASHTABLE(id_hash, 7); 674 int node_idx; 675 }; 676 677 struct kvm { 678 #ifdef KVM_HAVE_MMU_RWLOCK 679 rwlock_t mmu_lock; 680 #else 681 spinlock_t mmu_lock; 682 #endif /* KVM_HAVE_MMU_RWLOCK */ 683 684 struct mutex slots_lock; 685 686 /* 687 * Protects the arch-specific fields of struct kvm_memory_slots in 688 * use by the VM. To be used under the slots_lock (above) or in a 689 * kvm->srcu critical section where acquiring the slots_lock would 690 * lead to deadlock with the synchronize_srcu in 691 * install_new_memslots. 692 */ 693 struct mutex slots_arch_lock; 694 struct mm_struct *mm; /* userspace tied to this vm */ 695 unsigned long nr_memslot_pages; 696 /* The two memslot sets - active and inactive (per address space) */ 697 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; 698 /* The current active memslot set for each address space */ 699 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 700 struct xarray vcpu_array; 701 702 /* Used to wait for completion of MMU notifiers. */ 703 spinlock_t mn_invalidate_lock; 704 unsigned long mn_active_invalidate_count; 705 struct rcuwait mn_memslots_update_rcuwait; 706 707 /* For management / invalidation of gfn_to_pfn_caches */ 708 spinlock_t gpc_lock; 709 struct list_head gpc_list; 710 711 /* 712 * created_vcpus is protected by kvm->lock, and is incremented 713 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 714 * incremented after storing the kvm_vcpu pointer in vcpus, 715 * and is accessed atomically. 716 */ 717 atomic_t online_vcpus; 718 int created_vcpus; 719 int last_boosted_vcpu; 720 struct list_head vm_list; 721 struct mutex lock; 722 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 723 #ifdef CONFIG_HAVE_KVM_EVENTFD 724 struct { 725 spinlock_t lock; 726 struct list_head items; 727 struct list_head resampler_list; 728 struct mutex resampler_lock; 729 } irqfds; 730 struct list_head ioeventfds; 731 #endif 732 struct kvm_vm_stat stat; 733 struct kvm_arch arch; 734 refcount_t users_count; 735 #ifdef CONFIG_KVM_MMIO 736 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 737 spinlock_t ring_lock; 738 struct list_head coalesced_zones; 739 #endif 740 741 struct mutex irq_lock; 742 #ifdef CONFIG_HAVE_KVM_IRQCHIP 743 /* 744 * Update side is protected by irq_lock. 745 */ 746 struct kvm_irq_routing_table __rcu *irq_routing; 747 #endif 748 #ifdef CONFIG_HAVE_KVM_IRQFD 749 struct hlist_head irq_ack_notifier_list; 750 #endif 751 752 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 753 struct mmu_notifier mmu_notifier; 754 unsigned long mmu_notifier_seq; 755 long mmu_notifier_count; 756 unsigned long mmu_notifier_range_start; 757 unsigned long mmu_notifier_range_end; 758 #endif 759 struct list_head devices; 760 u64 manual_dirty_log_protect; 761 struct dentry *debugfs_dentry; 762 struct kvm_stat_data **debugfs_stat_data; 763 struct srcu_struct srcu; 764 struct srcu_struct irq_srcu; 765 pid_t userspace_pid; 766 unsigned int max_halt_poll_ns; 767 u32 dirty_ring_size; 768 bool vm_bugged; 769 bool vm_dead; 770 771 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 772 struct notifier_block pm_notifier; 773 #endif 774 char stats_id[KVM_STATS_NAME_SIZE]; 775 }; 776 777 #define kvm_err(fmt, ...) \ 778 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 779 #define kvm_info(fmt, ...) \ 780 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 781 #define kvm_debug(fmt, ...) \ 782 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 783 #define kvm_debug_ratelimited(fmt, ...) \ 784 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 785 ## __VA_ARGS__) 786 #define kvm_pr_unimpl(fmt, ...) \ 787 pr_err_ratelimited("kvm [%i]: " fmt, \ 788 task_tgid_nr(current), ## __VA_ARGS__) 789 790 /* The guest did something we don't support. */ 791 #define vcpu_unimpl(vcpu, fmt, ...) \ 792 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 793 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 794 795 #define vcpu_debug(vcpu, fmt, ...) \ 796 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 797 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 798 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 799 ## __VA_ARGS__) 800 #define vcpu_err(vcpu, fmt, ...) \ 801 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 802 803 static inline void kvm_vm_dead(struct kvm *kvm) 804 { 805 kvm->vm_dead = true; 806 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 807 } 808 809 static inline void kvm_vm_bugged(struct kvm *kvm) 810 { 811 kvm->vm_bugged = true; 812 kvm_vm_dead(kvm); 813 } 814 815 816 #define KVM_BUG(cond, kvm, fmt...) \ 817 ({ \ 818 int __ret = (cond); \ 819 \ 820 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 821 kvm_vm_bugged(kvm); \ 822 unlikely(__ret); \ 823 }) 824 825 #define KVM_BUG_ON(cond, kvm) \ 826 ({ \ 827 int __ret = (cond); \ 828 \ 829 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 830 kvm_vm_bugged(kvm); \ 831 unlikely(__ret); \ 832 }) 833 834 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 835 { 836 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 837 } 838 839 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 840 { 841 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 842 lockdep_is_held(&kvm->slots_lock) || 843 !refcount_read(&kvm->users_count)); 844 } 845 846 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 847 { 848 int num_vcpus = atomic_read(&kvm->online_vcpus); 849 i = array_index_nospec(i, num_vcpus); 850 851 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 852 smp_rmb(); 853 return xa_load(&kvm->vcpu_array, i); 854 } 855 856 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 857 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 858 (atomic_read(&kvm->online_vcpus) - 1)) 859 860 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 861 { 862 struct kvm_vcpu *vcpu = NULL; 863 unsigned long i; 864 865 if (id < 0) 866 return NULL; 867 if (id < KVM_MAX_VCPUS) 868 vcpu = kvm_get_vcpu(kvm, id); 869 if (vcpu && vcpu->vcpu_id == id) 870 return vcpu; 871 kvm_for_each_vcpu(i, vcpu, kvm) 872 if (vcpu->vcpu_id == id) 873 return vcpu; 874 return NULL; 875 } 876 877 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 878 { 879 return vcpu->vcpu_idx; 880 } 881 882 void kvm_destroy_vcpus(struct kvm *kvm); 883 884 void vcpu_load(struct kvm_vcpu *vcpu); 885 void vcpu_put(struct kvm_vcpu *vcpu); 886 887 #ifdef __KVM_HAVE_IOAPIC 888 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 889 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 890 #else 891 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 892 { 893 } 894 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 895 { 896 } 897 #endif 898 899 #ifdef CONFIG_HAVE_KVM_IRQFD 900 int kvm_irqfd_init(void); 901 void kvm_irqfd_exit(void); 902 #else 903 static inline int kvm_irqfd_init(void) 904 { 905 return 0; 906 } 907 908 static inline void kvm_irqfd_exit(void) 909 { 910 } 911 #endif 912 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 913 struct module *module); 914 void kvm_exit(void); 915 916 void kvm_get_kvm(struct kvm *kvm); 917 bool kvm_get_kvm_safe(struct kvm *kvm); 918 void kvm_put_kvm(struct kvm *kvm); 919 bool file_is_kvm(struct file *file); 920 void kvm_put_kvm_no_destroy(struct kvm *kvm); 921 922 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 923 { 924 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 925 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 926 lockdep_is_held(&kvm->slots_lock) || 927 !refcount_read(&kvm->users_count)); 928 } 929 930 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 931 { 932 return __kvm_memslots(kvm, 0); 933 } 934 935 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 936 { 937 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 938 939 return __kvm_memslots(vcpu->kvm, as_id); 940 } 941 942 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 943 { 944 return RB_EMPTY_ROOT(&slots->gfn_tree); 945 } 946 947 #define kvm_for_each_memslot(memslot, bkt, slots) \ 948 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 949 if (WARN_ON_ONCE(!memslot->npages)) { \ 950 } else 951 952 static inline 953 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 954 { 955 struct kvm_memory_slot *slot; 956 int idx = slots->node_idx; 957 958 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 959 if (slot->id == id) 960 return slot; 961 } 962 963 return NULL; 964 } 965 966 /* Iterator used for walking memslots that overlap a gfn range. */ 967 struct kvm_memslot_iter { 968 struct kvm_memslots *slots; 969 struct rb_node *node; 970 struct kvm_memory_slot *slot; 971 }; 972 973 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 974 { 975 iter->node = rb_next(iter->node); 976 if (!iter->node) 977 return; 978 979 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 980 } 981 982 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 983 struct kvm_memslots *slots, 984 gfn_t start) 985 { 986 int idx = slots->node_idx; 987 struct rb_node *tmp; 988 struct kvm_memory_slot *slot; 989 990 iter->slots = slots; 991 992 /* 993 * Find the so called "upper bound" of a key - the first node that has 994 * its key strictly greater than the searched one (the start gfn in our case). 995 */ 996 iter->node = NULL; 997 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 998 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 999 if (start < slot->base_gfn) { 1000 iter->node = tmp; 1001 tmp = tmp->rb_left; 1002 } else { 1003 tmp = tmp->rb_right; 1004 } 1005 } 1006 1007 /* 1008 * Find the slot with the lowest gfn that can possibly intersect with 1009 * the range, so we'll ideally have slot start <= range start 1010 */ 1011 if (iter->node) { 1012 /* 1013 * A NULL previous node means that the very first slot 1014 * already has a higher start gfn. 1015 * In this case slot start > range start. 1016 */ 1017 tmp = rb_prev(iter->node); 1018 if (tmp) 1019 iter->node = tmp; 1020 } else { 1021 /* a NULL node below means no slots */ 1022 iter->node = rb_last(&slots->gfn_tree); 1023 } 1024 1025 if (iter->node) { 1026 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1027 1028 /* 1029 * It is possible in the slot start < range start case that the 1030 * found slot ends before or at range start (slot end <= range start) 1031 * and so it does not overlap the requested range. 1032 * 1033 * In such non-overlapping case the next slot (if it exists) will 1034 * already have slot start > range start, otherwise the logic above 1035 * would have found it instead of the current slot. 1036 */ 1037 if (iter->slot->base_gfn + iter->slot->npages <= start) 1038 kvm_memslot_iter_next(iter); 1039 } 1040 } 1041 1042 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1043 { 1044 if (!iter->node) 1045 return false; 1046 1047 /* 1048 * If this slot starts beyond or at the end of the range so does 1049 * every next one 1050 */ 1051 return iter->slot->base_gfn < end; 1052 } 1053 1054 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1055 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1056 for (kvm_memslot_iter_start(iter, slots, start); \ 1057 kvm_memslot_iter_is_valid(iter, end); \ 1058 kvm_memslot_iter_next(iter)) 1059 1060 /* 1061 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1062 * - create a new memory slot 1063 * - delete an existing memory slot 1064 * - modify an existing memory slot 1065 * -- move it in the guest physical memory space 1066 * -- just change its flags 1067 * 1068 * Since flags can be changed by some of these operations, the following 1069 * differentiation is the best we can do for __kvm_set_memory_region(): 1070 */ 1071 enum kvm_mr_change { 1072 KVM_MR_CREATE, 1073 KVM_MR_DELETE, 1074 KVM_MR_MOVE, 1075 KVM_MR_FLAGS_ONLY, 1076 }; 1077 1078 int kvm_set_memory_region(struct kvm *kvm, 1079 const struct kvm_userspace_memory_region *mem); 1080 int __kvm_set_memory_region(struct kvm *kvm, 1081 const struct kvm_userspace_memory_region *mem); 1082 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1083 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1084 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1085 const struct kvm_memory_slot *old, 1086 struct kvm_memory_slot *new, 1087 enum kvm_mr_change change); 1088 void kvm_arch_commit_memory_region(struct kvm *kvm, 1089 struct kvm_memory_slot *old, 1090 const struct kvm_memory_slot *new, 1091 enum kvm_mr_change change); 1092 /* flush all memory translations */ 1093 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1094 /* flush memory translations pointing to 'slot' */ 1095 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1096 struct kvm_memory_slot *slot); 1097 1098 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1099 struct page **pages, int nr_pages); 1100 1101 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1102 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1103 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1104 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1105 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1106 bool *writable); 1107 void kvm_release_page_clean(struct page *page); 1108 void kvm_release_page_dirty(struct page *page); 1109 void kvm_set_page_accessed(struct page *page); 1110 1111 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1112 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1113 bool *writable); 1114 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1115 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1116 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1117 bool atomic, bool *async, bool write_fault, 1118 bool *writable, hva_t *hva); 1119 1120 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1121 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1122 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1123 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1124 1125 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1126 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1127 int len); 1128 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1129 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1130 void *data, unsigned long len); 1131 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1132 void *data, unsigned int offset, 1133 unsigned long len); 1134 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1135 int offset, int len); 1136 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1137 unsigned long len); 1138 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1139 void *data, unsigned long len); 1140 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1141 void *data, unsigned int offset, 1142 unsigned long len); 1143 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1144 gpa_t gpa, unsigned long len); 1145 1146 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1147 ({ \ 1148 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1149 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1150 int __ret = -EFAULT; \ 1151 \ 1152 if (!kvm_is_error_hva(__addr)) \ 1153 __ret = get_user(v, __uaddr); \ 1154 __ret; \ 1155 }) 1156 1157 #define kvm_get_guest(kvm, gpa, v) \ 1158 ({ \ 1159 gpa_t __gpa = gpa; \ 1160 struct kvm *__kvm = kvm; \ 1161 \ 1162 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1163 offset_in_page(__gpa), v); \ 1164 }) 1165 1166 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1167 ({ \ 1168 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1169 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1170 int __ret = -EFAULT; \ 1171 \ 1172 if (!kvm_is_error_hva(__addr)) \ 1173 __ret = put_user(v, __uaddr); \ 1174 if (!__ret) \ 1175 mark_page_dirty(kvm, gfn); \ 1176 __ret; \ 1177 }) 1178 1179 #define kvm_put_guest(kvm, gpa, v) \ 1180 ({ \ 1181 gpa_t __gpa = gpa; \ 1182 struct kvm *__kvm = kvm; \ 1183 \ 1184 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1185 offset_in_page(__gpa), v); \ 1186 }) 1187 1188 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1189 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1190 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1191 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1192 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1193 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1194 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1195 1196 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1197 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1198 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1199 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1200 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1201 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 1202 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1203 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1204 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1205 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1206 int len); 1207 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1208 unsigned long len); 1209 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1210 unsigned long len); 1211 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1212 int offset, int len); 1213 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1214 unsigned long len); 1215 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1216 1217 /** 1218 * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a 1219 * given guest physical address. 1220 * 1221 * @kvm: pointer to kvm instance. 1222 * @gpc: struct gfn_to_pfn_cache object. 1223 * @vcpu: vCPU to be used for marking pages dirty and to be woken on 1224 * invalidation. 1225 * @guest_uses_pa: indicates that the resulting host physical PFN is used while 1226 * @vcpu is IN_GUEST_MODE so invalidations should wake it. 1227 * @kernel_map: requests a kernel virtual mapping (kmap / memremap). 1228 * @gpa: guest physical address to map. 1229 * @len: sanity check; the range being access must fit a single page. 1230 * @dirty: mark the cache dirty immediately. 1231 * 1232 * @return: 0 for success. 1233 * -EINVAL for a mapping which would cross a page boundary. 1234 * -EFAULT for an untranslatable guest physical address. 1235 * 1236 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for 1237 * invalidations to be processed. Invalidation callbacks to @vcpu using 1238 * %KVM_REQ_GPC_INVALIDATE will occur only for MMU notifiers, not for KVM 1239 * memslot changes. Callers are required to use kvm_gfn_to_pfn_cache_check() 1240 * to ensure that the cache is valid before accessing the target page. 1241 */ 1242 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1243 struct kvm_vcpu *vcpu, bool guest_uses_pa, 1244 bool kernel_map, gpa_t gpa, unsigned long len, 1245 bool dirty); 1246 1247 /** 1248 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache. 1249 * 1250 * @kvm: pointer to kvm instance. 1251 * @gpc: struct gfn_to_pfn_cache object. 1252 * @gpa: current guest physical address to map. 1253 * @len: sanity check; the range being access must fit a single page. 1254 * @dirty: mark the cache dirty immediately. 1255 * 1256 * @return: %true if the cache is still valid and the address matches. 1257 * %false if the cache is not valid. 1258 * 1259 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1260 * while calling this function, and then continue to hold the lock until the 1261 * access is complete. 1262 * 1263 * Callers in IN_GUEST_MODE may do so without locking, although they should 1264 * still hold a read lock on kvm->scru for the memslot checks. 1265 */ 1266 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1267 gpa_t gpa, unsigned long len); 1268 1269 /** 1270 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache. 1271 * 1272 * @kvm: pointer to kvm instance. 1273 * @gpc: struct gfn_to_pfn_cache object. 1274 * @gpa: updated guest physical address to map. 1275 * @len: sanity check; the range being access must fit a single page. 1276 * @dirty: mark the cache dirty immediately. 1277 * 1278 * @return: 0 for success. 1279 * -EINVAL for a mapping which would cross a page boundary. 1280 * -EFAULT for an untranslatable guest physical address. 1281 * 1282 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1283 * returm from this function does not mean the page can be immediately 1284 * accessed because it may have raced with an invalidation. Callers must 1285 * still lock and check the cache status, as this function does not return 1286 * with the lock still held to permit access. 1287 */ 1288 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1289 gpa_t gpa, unsigned long len, bool dirty); 1290 1291 /** 1292 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache. 1293 * 1294 * @kvm: pointer to kvm instance. 1295 * @gpc: struct gfn_to_pfn_cache object. 1296 * 1297 * This unmaps the referenced page and marks it dirty, if appropriate. The 1298 * cache is left in the invalid state but at least the mapping from GPA to 1299 * userspace HVA will remain cached and can be reused on a subsequent 1300 * refresh. 1301 */ 1302 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1303 1304 /** 1305 * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache. 1306 * 1307 * @kvm: pointer to kvm instance. 1308 * @gpc: struct gfn_to_pfn_cache object. 1309 * 1310 * This removes a cache from the @kvm's list to be processed on MMU notifier 1311 * invocation. 1312 */ 1313 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1314 1315 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1316 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1317 1318 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1319 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1320 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1321 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1322 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1323 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1324 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1325 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 1326 1327 void kvm_flush_remote_tlbs(struct kvm *kvm); 1328 void kvm_reload_remote_mmus(struct kvm *kvm); 1329 1330 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1331 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1332 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1333 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1334 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1335 #endif 1336 1337 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 1338 unsigned long end); 1339 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 1340 unsigned long end); 1341 1342 long kvm_arch_dev_ioctl(struct file *filp, 1343 unsigned int ioctl, unsigned long arg); 1344 long kvm_arch_vcpu_ioctl(struct file *filp, 1345 unsigned int ioctl, unsigned long arg); 1346 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1347 1348 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1349 1350 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1351 struct kvm_memory_slot *slot, 1352 gfn_t gfn_offset, 1353 unsigned long mask); 1354 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1355 1356 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1357 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1358 const struct kvm_memory_slot *memslot); 1359 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1360 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1361 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1362 int *is_dirty, struct kvm_memory_slot **memslot); 1363 #endif 1364 1365 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1366 bool line_status); 1367 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1368 struct kvm_enable_cap *cap); 1369 long kvm_arch_vm_ioctl(struct file *filp, 1370 unsigned int ioctl, unsigned long arg); 1371 1372 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1373 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1374 1375 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1376 struct kvm_translation *tr); 1377 1378 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1379 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1380 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1381 struct kvm_sregs *sregs); 1382 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1383 struct kvm_sregs *sregs); 1384 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1385 struct kvm_mp_state *mp_state); 1386 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1387 struct kvm_mp_state *mp_state); 1388 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1389 struct kvm_guest_debug *dbg); 1390 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1391 1392 int kvm_arch_init(void *opaque); 1393 void kvm_arch_exit(void); 1394 1395 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1396 1397 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1398 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1399 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1400 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1401 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1402 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1403 1404 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1405 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1406 #endif 1407 1408 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1409 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1410 #endif 1411 1412 int kvm_arch_hardware_enable(void); 1413 void kvm_arch_hardware_disable(void); 1414 int kvm_arch_hardware_setup(void *opaque); 1415 void kvm_arch_hardware_unsetup(void); 1416 int kvm_arch_check_processor_compat(void *opaque); 1417 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1418 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1419 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1420 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1421 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1422 int kvm_arch_post_init_vm(struct kvm *kvm); 1423 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1424 int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1425 1426 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1427 /* 1428 * All architectures that want to use vzalloc currently also 1429 * need their own kvm_arch_alloc_vm implementation. 1430 */ 1431 static inline struct kvm *kvm_arch_alloc_vm(void) 1432 { 1433 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1434 } 1435 #endif 1436 1437 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1438 { 1439 kvfree(kvm); 1440 } 1441 1442 #ifndef __KVM_HAVE_ARCH_VM_FREE 1443 static inline void kvm_arch_free_vm(struct kvm *kvm) 1444 { 1445 __kvm_arch_free_vm(kvm); 1446 } 1447 #endif 1448 1449 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1450 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1451 { 1452 return -ENOTSUPP; 1453 } 1454 #endif 1455 1456 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1457 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1458 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1459 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1460 #else 1461 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1462 { 1463 } 1464 1465 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1466 { 1467 } 1468 1469 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1470 { 1471 return false; 1472 } 1473 #endif 1474 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1475 void kvm_arch_start_assignment(struct kvm *kvm); 1476 void kvm_arch_end_assignment(struct kvm *kvm); 1477 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1478 #else 1479 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1480 { 1481 } 1482 1483 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1484 { 1485 } 1486 1487 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1488 { 1489 return false; 1490 } 1491 #endif 1492 1493 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1494 { 1495 #ifdef __KVM_HAVE_ARCH_WQP 1496 return vcpu->arch.waitp; 1497 #else 1498 return &vcpu->wait; 1499 #endif 1500 } 1501 1502 /* 1503 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1504 * true if the vCPU was blocking and was awakened, false otherwise. 1505 */ 1506 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1507 { 1508 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1509 } 1510 1511 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1512 { 1513 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1514 } 1515 1516 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1517 /* 1518 * returns true if the virtual interrupt controller is initialized and 1519 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1520 * controller is dynamically instantiated and this is not always true. 1521 */ 1522 bool kvm_arch_intc_initialized(struct kvm *kvm); 1523 #else 1524 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1525 { 1526 return true; 1527 } 1528 #endif 1529 1530 #ifdef CONFIG_GUEST_PERF_EVENTS 1531 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1532 1533 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1534 void kvm_unregister_perf_callbacks(void); 1535 #else 1536 static inline void kvm_register_perf_callbacks(void *ign) {} 1537 static inline void kvm_unregister_perf_callbacks(void) {} 1538 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1539 1540 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1541 void kvm_arch_destroy_vm(struct kvm *kvm); 1542 void kvm_arch_sync_events(struct kvm *kvm); 1543 1544 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1545 1546 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1547 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1548 1549 struct kvm_irq_ack_notifier { 1550 struct hlist_node link; 1551 unsigned gsi; 1552 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1553 }; 1554 1555 int kvm_irq_map_gsi(struct kvm *kvm, 1556 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1557 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1558 1559 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1560 bool line_status); 1561 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1562 int irq_source_id, int level, bool line_status); 1563 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1564 struct kvm *kvm, int irq_source_id, 1565 int level, bool line_status); 1566 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1567 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1568 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1569 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1570 struct kvm_irq_ack_notifier *kian); 1571 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1572 struct kvm_irq_ack_notifier *kian); 1573 int kvm_request_irq_source_id(struct kvm *kvm); 1574 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1575 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1576 1577 /* 1578 * Returns a pointer to the memslot if it contains gfn. 1579 * Otherwise returns NULL. 1580 */ 1581 static inline struct kvm_memory_slot * 1582 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1583 { 1584 if (!slot) 1585 return NULL; 1586 1587 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1588 return slot; 1589 else 1590 return NULL; 1591 } 1592 1593 /* 1594 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1595 * 1596 * With "approx" set returns the memslot also when the address falls 1597 * in a hole. In that case one of the memslots bordering the hole is 1598 * returned. 1599 */ 1600 static inline struct kvm_memory_slot * 1601 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1602 { 1603 struct kvm_memory_slot *slot; 1604 struct rb_node *node; 1605 int idx = slots->node_idx; 1606 1607 slot = NULL; 1608 for (node = slots->gfn_tree.rb_node; node; ) { 1609 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1610 if (gfn >= slot->base_gfn) { 1611 if (gfn < slot->base_gfn + slot->npages) 1612 return slot; 1613 node = node->rb_right; 1614 } else 1615 node = node->rb_left; 1616 } 1617 1618 return approx ? slot : NULL; 1619 } 1620 1621 static inline struct kvm_memory_slot * 1622 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1623 { 1624 struct kvm_memory_slot *slot; 1625 1626 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1627 slot = try_get_memslot(slot, gfn); 1628 if (slot) 1629 return slot; 1630 1631 slot = search_memslots(slots, gfn, approx); 1632 if (slot) { 1633 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1634 return slot; 1635 } 1636 1637 return NULL; 1638 } 1639 1640 /* 1641 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1642 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1643 * because that would bloat other code too much. 1644 */ 1645 static inline struct kvm_memory_slot * 1646 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1647 { 1648 return ____gfn_to_memslot(slots, gfn, false); 1649 } 1650 1651 static inline unsigned long 1652 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1653 { 1654 /* 1655 * The index was checked originally in search_memslots. To avoid 1656 * that a malicious guest builds a Spectre gadget out of e.g. page 1657 * table walks, do not let the processor speculate loads outside 1658 * the guest's registered memslots. 1659 */ 1660 unsigned long offset = gfn - slot->base_gfn; 1661 offset = array_index_nospec(offset, slot->npages); 1662 return slot->userspace_addr + offset * PAGE_SIZE; 1663 } 1664 1665 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1666 { 1667 return gfn_to_memslot(kvm, gfn)->id; 1668 } 1669 1670 static inline gfn_t 1671 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1672 { 1673 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1674 1675 return slot->base_gfn + gfn_offset; 1676 } 1677 1678 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1679 { 1680 return (gpa_t)gfn << PAGE_SHIFT; 1681 } 1682 1683 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1684 { 1685 return (gfn_t)(gpa >> PAGE_SHIFT); 1686 } 1687 1688 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1689 { 1690 return (hpa_t)pfn << PAGE_SHIFT; 1691 } 1692 1693 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1694 gpa_t gpa) 1695 { 1696 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1697 } 1698 1699 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1700 { 1701 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1702 1703 return kvm_is_error_hva(hva); 1704 } 1705 1706 enum kvm_stat_kind { 1707 KVM_STAT_VM, 1708 KVM_STAT_VCPU, 1709 }; 1710 1711 struct kvm_stat_data { 1712 struct kvm *kvm; 1713 const struct _kvm_stats_desc *desc; 1714 enum kvm_stat_kind kind; 1715 }; 1716 1717 struct _kvm_stats_desc { 1718 struct kvm_stats_desc desc; 1719 char name[KVM_STATS_NAME_SIZE]; 1720 }; 1721 1722 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1723 .flags = type | unit | base | \ 1724 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1725 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1726 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1727 .exponent = exp, \ 1728 .size = sz, \ 1729 .bucket_size = bsz 1730 1731 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1732 { \ 1733 { \ 1734 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1735 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1736 }, \ 1737 .name = #stat, \ 1738 } 1739 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1740 { \ 1741 { \ 1742 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1743 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1744 }, \ 1745 .name = #stat, \ 1746 } 1747 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1748 { \ 1749 { \ 1750 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1751 .offset = offsetof(struct kvm_vm_stat, stat) \ 1752 }, \ 1753 .name = #stat, \ 1754 } 1755 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1756 { \ 1757 { \ 1758 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1759 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1760 }, \ 1761 .name = #stat, \ 1762 } 1763 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1764 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1765 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1766 1767 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1768 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1769 unit, base, exponent, 1, 0) 1770 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1771 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1772 unit, base, exponent, 1, 0) 1773 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1774 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1775 unit, base, exponent, 1, 0) 1776 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1777 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1778 unit, base, exponent, sz, bsz) 1779 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1780 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1781 unit, base, exponent, sz, 0) 1782 1783 /* Cumulative counter, read/write */ 1784 #define STATS_DESC_COUNTER(SCOPE, name) \ 1785 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1786 KVM_STATS_BASE_POW10, 0) 1787 /* Instantaneous counter, read only */ 1788 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1789 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1790 KVM_STATS_BASE_POW10, 0) 1791 /* Peak counter, read/write */ 1792 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1793 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1794 KVM_STATS_BASE_POW10, 0) 1795 1796 /* Cumulative time in nanosecond */ 1797 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1798 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1799 KVM_STATS_BASE_POW10, -9) 1800 /* Linear histogram for time in nanosecond */ 1801 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1802 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1803 KVM_STATS_BASE_POW10, -9, sz, bsz) 1804 /* Logarithmic histogram for time in nanosecond */ 1805 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1806 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1807 KVM_STATS_BASE_POW10, -9, sz) 1808 1809 #define KVM_GENERIC_VM_STATS() \ 1810 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1811 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1812 1813 #define KVM_GENERIC_VCPU_STATS() \ 1814 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1815 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1816 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1817 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1818 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1819 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1820 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1821 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1822 HALT_POLL_HIST_COUNT), \ 1823 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1824 HALT_POLL_HIST_COUNT), \ 1825 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1826 HALT_POLL_HIST_COUNT), \ 1827 STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking) 1828 1829 extern struct dentry *kvm_debugfs_dir; 1830 1831 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1832 const struct _kvm_stats_desc *desc, 1833 void *stats, size_t size_stats, 1834 char __user *user_buffer, size_t size, loff_t *offset); 1835 1836 /** 1837 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1838 * statistics data. 1839 * 1840 * @data: start address of the stats data 1841 * @size: the number of bucket of the stats data 1842 * @value: the new value used to update the linear histogram's bucket 1843 * @bucket_size: the size (width) of a bucket 1844 */ 1845 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1846 u64 value, size_t bucket_size) 1847 { 1848 size_t index = div64_u64(value, bucket_size); 1849 1850 index = min(index, size - 1); 1851 ++data[index]; 1852 } 1853 1854 /** 1855 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1856 * statistics data. 1857 * 1858 * @data: start address of the stats data 1859 * @size: the number of bucket of the stats data 1860 * @value: the new value used to update the logarithmic histogram's bucket 1861 */ 1862 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1863 { 1864 size_t index = fls64(value); 1865 1866 index = min(index, size - 1); 1867 ++data[index]; 1868 } 1869 1870 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1871 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1872 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1873 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1874 1875 1876 extern const struct kvm_stats_header kvm_vm_stats_header; 1877 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1878 extern const struct kvm_stats_header kvm_vcpu_stats_header; 1879 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1880 1881 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1882 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1883 { 1884 if (unlikely(kvm->mmu_notifier_count)) 1885 return 1; 1886 /* 1887 * Ensure the read of mmu_notifier_count happens before the read 1888 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1889 * mmu_notifier_invalidate_range_end to make sure that the caller 1890 * either sees the old (non-zero) value of mmu_notifier_count or 1891 * the new (incremented) value of mmu_notifier_seq. 1892 * PowerPC Book3s HV KVM calls this under a per-page lock 1893 * rather than under kvm->mmu_lock, for scalability, so 1894 * can't rely on kvm->mmu_lock to keep things ordered. 1895 */ 1896 smp_rmb(); 1897 if (kvm->mmu_notifier_seq != mmu_seq) 1898 return 1; 1899 return 0; 1900 } 1901 1902 static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1903 unsigned long mmu_seq, 1904 unsigned long hva) 1905 { 1906 lockdep_assert_held(&kvm->mmu_lock); 1907 /* 1908 * If mmu_notifier_count is non-zero, then the range maintained by 1909 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1910 * might be being invalidated. Note that it may include some false 1911 * positives, due to shortcuts when handing concurrent invalidations. 1912 */ 1913 if (unlikely(kvm->mmu_notifier_count) && 1914 hva >= kvm->mmu_notifier_range_start && 1915 hva < kvm->mmu_notifier_range_end) 1916 return 1; 1917 if (kvm->mmu_notifier_seq != mmu_seq) 1918 return 1; 1919 return 0; 1920 } 1921 #endif 1922 1923 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1924 1925 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1926 1927 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1928 int kvm_set_irq_routing(struct kvm *kvm, 1929 const struct kvm_irq_routing_entry *entries, 1930 unsigned nr, 1931 unsigned flags); 1932 int kvm_set_routing_entry(struct kvm *kvm, 1933 struct kvm_kernel_irq_routing_entry *e, 1934 const struct kvm_irq_routing_entry *ue); 1935 void kvm_free_irq_routing(struct kvm *kvm); 1936 1937 #else 1938 1939 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1940 1941 #endif 1942 1943 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1944 1945 #ifdef CONFIG_HAVE_KVM_EVENTFD 1946 1947 void kvm_eventfd_init(struct kvm *kvm); 1948 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1949 1950 #ifdef CONFIG_HAVE_KVM_IRQFD 1951 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1952 void kvm_irqfd_release(struct kvm *kvm); 1953 void kvm_irq_routing_update(struct kvm *); 1954 #else 1955 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1956 { 1957 return -EINVAL; 1958 } 1959 1960 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1961 #endif 1962 1963 #else 1964 1965 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1966 1967 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1968 { 1969 return -EINVAL; 1970 } 1971 1972 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1973 1974 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1975 static inline void kvm_irq_routing_update(struct kvm *kvm) 1976 { 1977 } 1978 #endif 1979 1980 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1981 { 1982 return -ENOSYS; 1983 } 1984 1985 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1986 1987 void kvm_arch_irq_routing_update(struct kvm *kvm); 1988 1989 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1990 { 1991 /* 1992 * Ensure the rest of the request is published to kvm_check_request's 1993 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1994 */ 1995 smp_wmb(); 1996 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1997 } 1998 1999 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2000 { 2001 return READ_ONCE(vcpu->requests); 2002 } 2003 2004 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2005 { 2006 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2007 } 2008 2009 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2010 { 2011 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2012 } 2013 2014 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2015 { 2016 if (kvm_test_request(req, vcpu)) { 2017 kvm_clear_request(req, vcpu); 2018 2019 /* 2020 * Ensure the rest of the request is visible to kvm_check_request's 2021 * caller. Paired with the smp_wmb in kvm_make_request. 2022 */ 2023 smp_mb__after_atomic(); 2024 return true; 2025 } else { 2026 return false; 2027 } 2028 } 2029 2030 extern bool kvm_rebooting; 2031 2032 extern unsigned int halt_poll_ns; 2033 extern unsigned int halt_poll_ns_grow; 2034 extern unsigned int halt_poll_ns_grow_start; 2035 extern unsigned int halt_poll_ns_shrink; 2036 2037 struct kvm_device { 2038 const struct kvm_device_ops *ops; 2039 struct kvm *kvm; 2040 void *private; 2041 struct list_head vm_node; 2042 }; 2043 2044 /* create, destroy, and name are mandatory */ 2045 struct kvm_device_ops { 2046 const char *name; 2047 2048 /* 2049 * create is called holding kvm->lock and any operations not suitable 2050 * to do while holding the lock should be deferred to init (see 2051 * below). 2052 */ 2053 int (*create)(struct kvm_device *dev, u32 type); 2054 2055 /* 2056 * init is called after create if create is successful and is called 2057 * outside of holding kvm->lock. 2058 */ 2059 void (*init)(struct kvm_device *dev); 2060 2061 /* 2062 * Destroy is responsible for freeing dev. 2063 * 2064 * Destroy may be called before or after destructors are called 2065 * on emulated I/O regions, depending on whether a reference is 2066 * held by a vcpu or other kvm component that gets destroyed 2067 * after the emulated I/O. 2068 */ 2069 void (*destroy)(struct kvm_device *dev); 2070 2071 /* 2072 * Release is an alternative method to free the device. It is 2073 * called when the device file descriptor is closed. Once 2074 * release is called, the destroy method will not be called 2075 * anymore as the device is removed from the device list of 2076 * the VM. kvm->lock is held. 2077 */ 2078 void (*release)(struct kvm_device *dev); 2079 2080 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2081 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2082 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2083 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2084 unsigned long arg); 2085 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2086 }; 2087 2088 void kvm_device_get(struct kvm_device *dev); 2089 void kvm_device_put(struct kvm_device *dev); 2090 struct kvm_device *kvm_device_from_filp(struct file *filp); 2091 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2092 void kvm_unregister_device_ops(u32 type); 2093 2094 extern struct kvm_device_ops kvm_mpic_ops; 2095 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2096 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2097 2098 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2099 2100 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2101 { 2102 vcpu->spin_loop.in_spin_loop = val; 2103 } 2104 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2105 { 2106 vcpu->spin_loop.dy_eligible = val; 2107 } 2108 2109 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2110 2111 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2112 { 2113 } 2114 2115 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2116 { 2117 } 2118 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2119 2120 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2121 { 2122 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2123 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2124 } 2125 2126 struct kvm_vcpu *kvm_get_running_vcpu(void); 2127 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2128 2129 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2130 bool kvm_arch_has_irq_bypass(void); 2131 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2132 struct irq_bypass_producer *); 2133 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2134 struct irq_bypass_producer *); 2135 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2136 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2137 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2138 uint32_t guest_irq, bool set); 2139 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2140 struct kvm_kernel_irq_routing_entry *); 2141 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2142 2143 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2144 /* If we wakeup during the poll time, was it a sucessful poll? */ 2145 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2146 { 2147 return vcpu->valid_wakeup; 2148 } 2149 2150 #else 2151 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2152 { 2153 return true; 2154 } 2155 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2156 2157 #ifdef CONFIG_HAVE_KVM_NO_POLL 2158 /* Callback that tells if we must not poll */ 2159 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2160 #else 2161 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2162 { 2163 return false; 2164 } 2165 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2166 2167 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2168 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2169 unsigned int ioctl, unsigned long arg); 2170 #else 2171 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2172 unsigned int ioctl, 2173 unsigned long arg) 2174 { 2175 return -ENOIOCTLCMD; 2176 } 2177 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2178 2179 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 2180 unsigned long start, unsigned long end); 2181 2182 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2183 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2184 #else 2185 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2186 { 2187 return 0; 2188 } 2189 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2190 2191 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2192 2193 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2194 uintptr_t data, const char *name, 2195 struct task_struct **thread_ptr); 2196 2197 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2198 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2199 { 2200 vcpu->run->exit_reason = KVM_EXIT_INTR; 2201 vcpu->stat.signal_exits++; 2202 } 2203 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2204 2205 /* 2206 * This defines how many reserved entries we want to keep before we 2207 * kick the vcpu to the userspace to avoid dirty ring full. This 2208 * value can be tuned to higher if e.g. PML is enabled on the host. 2209 */ 2210 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2211 2212 /* Max number of entries allowed for each kvm dirty ring */ 2213 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2214 2215 #endif 2216